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When people are asked to retrieve members of a category from memory, clusters of semantically
related items tend to be retrieved together. A recent article by Hills, Jones, and Todd (2012) argued
that this pattern reflects a process similar to optimal strategies for foraging for food in patchy spatial
environments, with an individual making a strategic decision to switch away from a cluster of related
information as it becomes depleted. We demonstrate that similar behavioral phenomena also emerge
from a random walk on a semantic network derived from human word-association data. Random
walks provide an alternative account of how people search their memories, postulating an undirected
rather than a strategic search process. We show that results resembling optimal foraging are
produced by random walks when related items are close together in the semantic network. These
findings are reminiscent of arguments from the debate on mental imagery, showing how different
processes can produce similar results when operating on different representations.
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How do people search their memories for information related
to a given cue? One classic method for exploring this question,
the semantic fluency task, asks people to retrieve as many
members of a category as possible in a limited amount of time
(Bousfield & Sedgewick, 1944; Thurstone, 1938). This simple
task has been used to explore the representations and processes
that support semantic memory, and has even been used in
clinical settings to study memory deficits in patients with
different forms of dementia (Lezak, 1995; Tröster, Salmon,
McCullough, & Butters, 1989; Troyer, Moscovitch, Winocur,
Leach, & Freedman, 1998). Previous researchers have found
that retrieval from semantic memory in fluency tasks tends to be
produced in bursts of semantically related words with large
pauses between bursts (e.g., Bousfield & Sedgewick, 1944;

Romney, Brewer, & Batchelder, 1993; Troyer, Moscovitch, &
Winocur, 1997). For example, Troyer et al. (1997) asked par-
ticipants to “name as many animals as you can” and observed
that the retrieved animals tended to group into clusters (e.g.,
pets, African animals). The pauses between pairs of retrieved
words in the same cluster (e.g., “dog– cat”) were very small
when compared with the large pauses between pairs of retrieved
words that do not belong to any of the same clusters (e.g.,
“cat– giraffe”). This pattern of patchy responses led Troyer et
al. (1997) to posit that search through semantic memory is
comprised of two processes, one process that jumps between
clusters related to the given cue and another process that
retrieves words within each cluster.

Inspired by this pattern of bursts in retrieval from semantic
memory, recent work by Hills, Jones, and Todd (2012) com-
pared search through semantic memory with how animals for-
age for food. When animals search for food, they must consider
the costs and benefits of further depleting their current food
source as opposed to searching for a new patch of food. A large
subfield in biology called optimal foraging theory has compared
animal foraging with ideal strategies (Stephens & Krebs, 1986).
In particular, the marginal value theorem shows that an ani-
mal’s expected rate of food retrieval is optimal if it stops
exploiting the current patch of food when the instantaneous rate
(the marginal value) of food acquisition from the current patch
is lower than their overall expected rate of food retrieval
(Charnov, 1976).

Human search through semantic memory could be considered
analogous to how animals search for food, with semantically
related clusters playing the role of patches. If this were the case,
then the pattern of pauses between pairs of retrieved words
could be consistent with optimal foraging theory: Responders
should switch clusters when the marginal value of finding
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another item within the current cluster is less than the overall
rate of return across memory. Hills et al. (2012) found that
human memory search was consistent with this prediction of
optimal foraging theory. Based on these results and a compar-
ison of the performance of several different computational
models, they proposed that human memory search involves two
distinct processes, a “clustering” and a “switching” process,
with the strategy for switching being consistent with the mar-
ginal value theorem.1

In this article, we show that behavioral phenomena consistent
with a two-stage search process can also be produced by a
random walk on a semantic network derived from human word
association data. This potentially provides an alternative ac-
count of human performance on semantic fluency tasks, and is
consistent with previous work linking random walks on seman-
tic networks with memory search (Griffiths, Steyvers, & Firl,
2007; Rhodes & Turvey, 2007; Thompson, Kello, & Montez,
2013). We show that predictions consistent with the results of
Hills et al. (2012) are produced by random walks on semantic
networks in which items that belong to the same cluster are
close together in the network.

By providing an alternative account of the behavioral data
that does not explicitly encode aspects of optimal foraging, our
analyses suggest that further experiments will be required to
determine whether the processes underlying human memory
search involve optimal foraging. Furthermore, these results
provide a concrete illustration of a theoretical problem for
cognitive psychologists that was identified by Anderson (1978)
in the context of the mental imagery debate: Different algo-
rithms operating over different representations can produce the
same predictions. In this case, a one-stage search process (a
random walk) operating on one representation (a semantic
network) can resemble a two-stage search process (optimal
foraging) operating on another representation (a semantic
space). The mimicry may not be complete—it might be possible
to construct experiments that differentiate these two accounts—
but both models produce key behavioral phenomena from the
semantic memory literature.

The remainder of the article is organized as follows. First, we
provide relevant background information on the retrieval phe-
nomena predicted by an optimal foraging account of semantic
fluency. We then discuss random walks as an alternative frame-
work for modeling memory search, beginning with a model that
Hills et al. (2012) considered. This random walk provided a
poor fit to human data and did not produce behavior consistent
with optimal foraging. We then show that a random walk
operating on a different representation—a semantic network
based on free-association data— does produce behavior consis-
tent with optimal foraging. An analysis of the two representa-
tions on which these random walks are based suggests that the
critical difference is that the semantic network better captures
the clustering of animals, and a minimal model confirms that a
random walk based purely on such a cluster structure produces
the key phenomena. We conclude by discussing the implica-
tions of our work for understanding the role of representations
and algorithms in human foraging behavior and outlining pos-
sible directions for future research.

Optimal Foraging as an Account of Semantic Fluency

Optimal foraging theory covers a wide range of situations
that a hungry animal might encounter (Stephens & Krebs,
1986), but the most basic scenario involves deciding how to
navigate a “patchy” environment for resources. In this environ-
ment, food is contained in a set of discrete patches, which
become depleted as the animal consumes the food. Staying in a
patch thus provides diminishing returns, and the animal has to
decide when to leave the patch and seek food elsewhere. The
solution is provided by the marginal value theorem (Charnov,
1976), which indicates that the animal should leave the patch
when the rate of return for staying drops below the average rate
of return in the environment. Hills et al. (2012) suggested that
retrieval from semantic memory is analogous to animals forag-
ing for food, in that a patch corresponds to a cluster of seman-
tically related items and acquiring food corresponds to retriev-
ing an item from this cluster.

To investigate whether optimal foraging theory might account
for human search through semantic memory, Hills et al. (2012) had
people perform a semantic fluency tas, in which people were asked
to “Name as many animals as you can in 3 min.” They then
analyzed the search paths taken through memory, as indicated by
the time between the animal names people produced, called the
interitem response time (IRT). These names were assigned to the
predetermined animal categories identified by Troyer et al. (1997),
which were used to analyze patterns in people’s responses: If an
item shares a category with the item immediately before it, it is
considered part of the same cluster, otherwise that item defines a
transition between clusters. For example, given the sequence
“dog–cat–giraffe,” “dog” and “cat” are considered elements of the
same cluster, whereas “giraffe” is considered the point of transition
to a new cluster.

As a first measure of correspondence with optimal foraging
theory, the ratio between IRTs and the long-term average IRTs
for each participant were examined at different retrieval posi-
tions relative to a cluster switch.2 Figure 1a displays the results
of this analysis. The first word in a cluster (indicated by an
order of entry of 1) takes longer to produce than the overall
long-term average IRT (indicated by the dotted line), and the
second word in a cluster (indicated by 2) takes much less time
to produce (reported results of a within-participant paired t test
were t(140) � 13.14, p � .001 and t(140) � 11.92, p � .001 for
the first and second words, respectively). Furthermore, the IRTs
for words preceding a cluster switch (indicated by �1) did not
differ significantly from most participants’ own long-term av-
erage IRTs (reported results using a one-sample t test: 132 of
141 participants were not significantly different, and the nine

1 Hills et al. (2012) are not the first to suggest that a switching process
is involved in memory search—similar ideas appear in previous work (e.g.,
Raaijmakers & Shiffrin, 1981; Dougherty, Harbison, & Davelaar, 2014).

2 Hills et al. (2012) also examined a number of preliminary tests to check
their assumptions of memory search in a patchy semantic space. As a test
of whether transition points occur when local semantic patches are de-
pleted, the “residual proximity” (or inverse semantic distance) of each
word produced was compared to all remaining words not yet produced.
They found that items produced immediately before a transition point had
a lower residual proximity than items produced immediately after, consis-
tent with their prediction.
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that were significantly different all had preswitch IRT averages
less than their long-term averages). These results are in line
with the marginal value theorem, which predicts that IRTs
should increase monotonically toward the long-term average
IRT prior to a cluster switch, going above this average only
when switching to a new cluster.

As a further test of the marginal value theorem’s predictions,
the absolute difference between the preswitch IRT and long-
term average IRT was plotted against the number of words a

participant produced (see Figure 1b). Participants with a larger
absolute difference (indicating they either left clusters too soon
or too late) produced fewer words, as predicted by the marginal
value theorem. Reported results using a linear regression model
indicated a significant negative relationship between partici-
pants’ deviation from the marginal value theorem policy for
patch departures and the total number of words the participants
produced, with a slope of �5.35, t(139) � �5.77, p � .001.

An Initial Comparison of Optimal Foraging and
Random Walks

Inspired by the marginal value theorem, Hills et al. (2012)
suggested a two-part process model to account for the results of
their experiment: when the IRT following a word exceeds the
long-term average IRT, search switches from local to global
cues. They compared this model to several simpler alternatives,
including one in which memory search is simply construed as a
random walk over a set of items (called the “one cue–static”
model in their article). Random walks have a long history as
models of memory (Anderson, 1972), and recent work has
shown that random walks on semantic networks can produce a
distribution of IRTs in fluency tasks (Rhodes & Turvey, 2007;
Thompson et al., 2013) and a pattern of responses in free-
association tasks (Griffiths, Steyvers, & Firl, 2007) similar to
those produced by people.

The random walk considered by Hills et al. (2012) operated
over a set of 771 animals being possible responses in the
semantic fluency task. The model assumed that responses peo-
ple produced were sampled from a distribution based on previ-
ous responses, with the probability of each animal given by

P(Xi | Xj) � S(Xi, Xj)
� (1)

where S(Xi, Xj) is the similarity between the previous animal
response, Xj, and the current animal response, Xi, given by the
BEAGLE model of semantic representation (bound encoding of
the aggregate language environment; Jones & Mewhort, 2007). In
this model, each word is represented by a vector in a semantic
space, and the similarity between words is based on the cosine
similarity of their vectors. � is a free parameter of the model
controlling the saliency (attention weight) assigned to a given cue.

Hills et al. (2012) compared this model with a two-part model
that switched between exploring a cluster using a similar random
walk and making a larger leap between clusters (called the “com-
bined cue–dynamic” model in their article). In this two-part
model, the global switching process was carried out using a ge-
neric model of memory retrieval based on the architectures of
SAM (search of associative memory; Raaijmakers & Shiffrin,
1981) and ACT-R (adaptive character of thought-rational; Ander-
son, 1990). This makes it possible to calculate the probability of
each participant’s sequence of responses under both models, and
Hills et al. (2012) found that the two-part model gave a better fit
to the human data than the random-walk model.

Another way to evaluate the performance of the random-walk
model is to examine whether it can produce the key phenomena
of human behavior that are suggestive of optimal foraging: the
correspondence between the average IRT and the time at which
people switch clusters, and the relationship between deviation
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Figure 1. Experimental results of a semantic fluency experiment (free
recall from the category of animals) reproduced from Hills et al. (2012). (a)
The mean ratio between the interitem response time (IRT) for an item and
the participant’s long-term average IRT over the entire task, relative to the
order of entry for the item (where “1” refers to the relative IRT between the
first word in a cluster and the last word in the preceding cluster). The dotted
line indicates where item IRTs would be the same as the participant’s
average IRT for the entire task; (b) the relationship between a participant’s
deviation from the marginal value theorem policy for cluster departures
(horizontal axis) and the total number of words a participant produced.
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from the marginal value theorem and overall performance (as
shown in Figure 1). To examine this, we simulated random
walks generating responses via Equation 1 and subjected these
responses to the same analyses that Hills et al. (2012) used on
their data. We used their reported mean � � 4.34 in the
simulations below.

To connect the output of a simulation (the sequence of items
visited by the random-walk model) to the experimental results
(i.e., IRTs), we needed to define a method for mapping the
sequence of items to IRTs. In our analyses, we considered only
the time between first visits to animals, which we denote as �(k)
for the kth unique animal item seen (out of the K unique animal
items visited on the random walk). For example the output of a
simulated random walk might be

X0 � “ dog, ” X1 � “ cat, ” X2 � “ dog, ” X3 � “ mouse ”.

Here, K � 3, with k � 1 referring to “dog,” k � 2 referring to
“cat,” and k � 3 referring to “mouse.” Our �(k) function would
return �(1) � 1, �(2) � 2, and �(3) � 4 for this example because
we only considered the first time “dog” was visited (at time step
n � 1). Thus, we defined the IRT between animals k and k � 1 in
a sequence of nodes visited along a random walk as

IRT(k) � �(k) � �(k � 1) (2)

where �(k) is the first hitting time of animal X�(k). For the above
example, the IRT between “mouse” (k � 3) and “cat” (k � 2) is

IRT(3) � �(3) � �(2) � 4 � 2 � 2.

With this mapping defined, we can perform the same set of
analyses as Hills et al. (2012) on IRTs between animal words for
our random-walker simulations.3

A total of 141 simulated random walks were run for 45
iterations, which was selected so that the average number of
animals produced by a simulated random walk was approxi-
mately equal to the average number of animals typed by a
participant in Hills et al. (2012). Figure 2 shows the results.
Consistent with its poor fit to people’s responses, the random-
walk model did not produce behavior that resembles optimal
foraging. Although there was a negative linear relationship
between the deviation from the marginal value theorem and
overall performance, slope � �31.21, t(138) � �4.00, p �
.001,4 there are few differences between the IRTs and long-term
average IRTs, regardless of retrieval position. This latter dif-
ference is particularly important when analyzing whether tran-
sitions between clusters occur at the point predicted by optimal
foraging.

Exploring a Different Semantic Representation

In arguing that people engage in a two-stage process based on
optimal foraging theory, Hills et al. (2012) are making a com-
mitment to a particular algorithm for memory search. In par-
ticular, they show that this algorithm accounts for human be-
havior better than a random walk. However, in making this
comparison they also need to commit to a representation of
semantic memory—in this case the spatial representation pro-
vided by BEAGLE (Jones & Mewhort, 2007). But, as Anderson
(1978) pointed out, claims with respect to representation cannot

be evaluated on behavioral evidence alone without assuming a
particular algorithm or process on that representation (due to

3 Hills et al., (2012) consider only animals in their search space, we
present this method to operate over multidomain spaces more generally.

4 We removed outliers from all such analyses, which were defined as
foragers whose deviation from the marginal value theorem or the number
of words produced were more than three standard deviations from their
respective means.
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Figure 2. Results from 141 simulations of the random-walk model from
Hills et al. (2012), submitted to the same analyses as their human data. (a)
The mean ratio between the interitem response time (IRT) for an item and
the walker’s long-term average IRT over the entire task, relative to the
order of entry for the item (where “1” refers to the relative IRT between the
first word in a cluster and the last word in the preceding cluster). The dotted
line indicates where item IRTs would be the same as the participant’s
average IRT for the entire task; (b) the relationship between a participant’s
deviation from the marginal value theorem policy for cluster departures
(horizontal-axis) and the total number of words a participant produced.
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mimicry): With a different representation, a random walk might
produce a closer match to human behavior.

Whereas Hills et al. (2012) focused on spatial representa-
tions, other researchers in the memory literature have used
random walks to capture aspects of human memory search
(Griffiths, Steyvers, & Firl, 2007; Rhodes & Turvey, 2007;
Thompson et al., 2013) by assuming a different kind of repre-
sentation: a semantic network (Collins & Loftus, 1975). In a
semantic network, nodes and edges in a graph encode words
and pairwise associations, respectively.5 Previous work has
explored how semantic networks can be used to explore ques-
tions about the structure of semantic memory (Griffiths,
Steyvers, & Firl, 2007; Griffiths, Steyvers, & Tenenbaum,
2007; Romney et al., 1993; Steyvers, Shiffrin, & Nelson, 2004;
Steyvers & Tenenbaum, 2005). Following this work, we ap-
proximate the structure of semantic memory with a semantic
network constructed from people’s behavior in a word-
association task in which people are given a cue and then list
words associated with the cue (Nelson, McEvoy, & Schreiber,
2004). For example, if a participant were told the cue “bed,”
they might respond with “pillow,” “blanket,” and “sheet.” The
result is a semantic network with 5018 nodes, representing the asso-
ciations between words from “a” to “zucchini.” This semantic net-
work has 178 animal nodes from the set of 771 animal words that
Hills et al. (2012) operated over. Of these 178 animals, 13 of them did
not associate with any other word and so we removed them from this
and subsequent analyses (leaving 165 animals for analysis).6

A random walk on a semantic network searches memory in the
following way. Initially, it starts at the node whose label corre-
sponds to the cue. It moves to a new node by following an edge,
selected at random, from the current node to the new node. A
random walk on a semantic network could retrieve items in a
patchy manner, appearing to make deliberate switches between
clusters, if the clusters correspond to densely linked sets of nodes
with few links between them. Thus, if the clusters that appear in
people’s responses are reflected in the structure of the semantic
network, this nonstrategic search process might be sufficient to
capture the phenomena reported by Hills et al. (2012).

Other than the network, there are two other steps to defining a
random walk: (a) defining at what node the random walk starts (or
a probability distribution over nodes), and (b) defining the prob-
ability distribution for transitioning from one node to the next node
(a transition-probability matrix). We assumed that the random
walk started at the node that represented cue C given to the
participant. So, to capture the results of Hills et al. (2012), we
assumed that C was “animal,” and X0 � l �1(C), where l (·) was
a function whose input was a node and output was its correspond-
ing label, and l �1(·) is the inverse function, whose input was the
label and its output was the node with that label. We explored four
possible transition-probability matrices defined by the orthogonal
combination of two factors: whether the probability of transition-
ing out of a node was uniform or weighted over its edges and
whether there was a nonzero probability of jumping back to the
node corresponding to the cue.

The first factor was whether the probability of transitioning out
of a node was uniform over its outgoing edges from the current
node (as discussed in the previous example) or weighted, allowing
the model to represent the degree of association between two
items. In the case of the weighted model, the probability of

transitioning from the current node to a new node is proportional
to the frequency that the label of the new node was said by a
participant given the current node as a cue in the word-association
database (Nelson et al., 2004). Formally, the associations between
a set of n items can be represented as a n � n matrix L, where
Lij � 1 when item j was associated with item i and was 0
otherwise. A random walk over these n items was defined by a
matrix M of transition probabilities, where Mij denoted the con-
ditional probability of jumping to item i, given that the random
walk was currently at item j. In the uniform model, this was

Mij �
Lij

�k�1
n Lkj

. (3)

The denominator is called the out-degree of node j, or the
number of items that are associates of item j and so it is the number
of possible items that the random walk could move to from node
j. For the weighted model, Lij is proportional to the number of
times that i was an associate of j. The weighted model can capture
that some associations (e.g., “dog” and “cat”) are stronger than
others (e.g., “dog” and “house”).

The second factor is either nonjumping, where there is no effect
of the cue besides for initializing the random walk, or jumping,
where at each time step, the model “jumps” back to the cue with
probability �, but otherwise (with probability 1 � �) the model
transitions in the same way as described above.7

In sum, we explored four different random-walk models that
were formed by combining two factors: the probability of transi-
tioning, whether the edges are uniform or weighted and whether
the random walk randomly jumps back to the cue (jumping) or not
(nonjumping). Formally, they are all defined by the following
equation

P(Xn�1 | C � “ animal ”, Xn � xn) � �P(Xn�1 | Xn � l�1[ “ animal ” ])

� (1 � �)P(Xn�1 | Xn � xn) (4)

5 Technically, any random walk on a discrete set of objects can be
interpreted as a random walk on a graph. From this perspective, the
random walk considered by Hills et al. (2012) could be viewed as a
random walk on a semantic network. However, the probabilities of
moving between nodes on this graph were derived from the spatial
representation used in BEAGLE, which places constraints on what
kinds of conditional probabilities (and graph structures) are possible
(for a discussion of these constraints, see Tversky, 1977; Griffiths,
Steyvers, & Tenenbaum, 2007). In particular, low-dimensional spatial
representations constrain the number of items to which an item can be
the nearest neighbor (Tversky & Hutchinson, 1986)—a property that
might be relevant to the behavior of a random walk.

6 Our random-walk models operate over all 5018 nodes in the semantic
network, however our �(k) function operates over just these 165 animals.

7 We note this is a qualitatively different operation than the proposal of
“jumping” between different search cues made by Hills et al. (2012).
Rather than reflecting a strategic decision to switch between clusters, the
jumps are executed at random and simply “prime” the search process by
returning to the initial state. In simulations not presented in the article, we
also examined the consequences of jumping to random nodes—a process
which is more similar to the move from local to global cues in the model
proposed by Hills et al. (2012), and has precedent in other work on random
walks and semantic memory (Goñi et al., 2010, 2011). However, this
jumping process produces qualitatively similar results to those described in
the main text.
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where P(Xn	1|Xn) is defined by Equation 3, with L defined ac-
cording to whether the model is uniform or weighted, and � � 0
when the model was nonjumping or 0 � � 	 1 when the model
was jumping.

A direct quantitative comparison between these models and
the models considered by Hills et al., (2012) is difficult, as there
are different numbers of animals in the free-association data
and in the BEAGLE representation. This makes comparison
hard because the probabilities assigned to participant responses
by each model are determined in part by the number of possible responses
(roughly speaking, the more animals in the model, the less proba-
bility the model assigned to each animal). Instead, we perform
qualitative comparisons of these models the same way we did for
the random walk earlier in the article.

A total of 141 simulated random walks were run for each of the
four models. Each simulation was run for 2000 iterations, which
was selected so that the average number of animals produced by a
simulated random walk was approximately equal to the average
number of animals typed by a participant in Hills et al. (2012). On
average, each participant responded with 36.8 animals, and an
average of 33.5, 42.5, 23.8, and 30.9 animals were produced by the
uniform nonjumping, uniform jumping, weighted nonjumping, and
weighted jumping random-walk models, respectively. We ex-
pected the jumping models to produce more animals than the
nonjumping models because “jumps” got the model away from
nodes already visited by the random walk. In addition, we ex-
pected slightly fewer animals to be produced by the random-walk
models than participants because of the small number of animals
included in the semantic network (most people have probably
encountered more than 165 animals). For the jumping models, we
selected the probability of jumping on a given trial, �, to be 0.05.
Other values for � produced similar results (assuming the value
was small).

Figure 3 shows the results of analyzing the simulations of the
four random-walk models for optimal foraging-like behavior in the
same way that Hills et al., (2012) performed for participants in
their experiment.8 In the left column of Figure 3 is the average
ratio of the IRT of an item relative to its distance to the closest
cluster switch (“order of entry”), and, the overall average IRT for
each random-walk model. Like people, the first item in a cluster
(indicated by 1) had a significantly longer IRT than the overall
average IRT, t(140) 
 17, p � .001, for all four models, and the
second item in a cluster (indicated by 2) had a significantly shorter
IRT than the overall average IRT, t(140) � � 15, p � .001, for all
four models.9 In addition, the IRTs for words preceding a cluster
switch (indicated by �1) were not signficantly different from most
walkers’ long-term average IRTs.10 This pattern of results is
consistent with the results of participants in Hills et al.’s (2012)
experiment, the marginal value theorem, and optimal foraging.
Each time the IRT increased dramatically (at 1) and then decreased
dramatically (at 2), one might have been tempted to suggest that
the model “found” another “patch” of relevant items in the seman-
tic network. However, the model didn’t use search strategies. It
was simply walking randomly over the semantic network and
emitting the labels of nodes that it visited. Thus, a simple process
over a structured representation is sufficient to capture optimal
foraging-like behavior.

The right column of Figure 3 shows the marginal value theo-
rem’s cluster-switching policy, where the absolute difference be-

tween the preswitch IRT and long-term average IRT was plotted
against the number of words a random walker produced, along
with a regression line through this data (as in Figure 1b). Across all
four models, walkers with a larger absolute difference (indicating
they either left clusters too soon or too late), produced fewer
words—a linear regression model revealed a significant negative
relationship between axes for each of the four models:
slope � �0.19, t(137) � 2.51, p � .05, slope � �0.21, t(137) �
1.98, p � .05, slope � �0.10, t(135) � 3.25, p � .05,
slope � �0.09, t(137) � 2.15, p � .05 for the uniform nonjump-
ing, uniform jumping, weighted nonjumping, and weighted jump-
ing models, respectively. We were intrigued that each of the
models produced the basic phenomena that were considered evi-
dence for the use of the marginal value theorem in memory search.
These results show that behavior consistent with following the
marginal value theorem can be produced by surprisingly simple
search algorithms, at least when measured along these metrics. In
the following sections, we turn to examining how the structure of
semantic memory affects the behavior of these random walks.

The Importance of Clustering

Our results so far show that a random walk on a semantic
network derived from free associations produces phenomena sug-
gestive of optimal foraging, whereas a random walk on a spatial
representation generated by BEAGLE (Jones & Mewhort, 2007)
does not. This raises a natural question: Why? What is the critical
difference between these two representations?

To address this question, we examined whether the similarity
between items in these two representations reflects the clusters
used by Troyer et al. (1997). According to the semantic network,
the similarity between the animals corresponding to nodes i and j
was encoded as sij � exp{�dij}, where dij is the shortest path
distance between the nodes i and j in the semantic network. To
derive similarities from the clusters, we used an additive clustering
model (Shepard & Arabie, 1979) in which the (nonexclusive)
clusters from Troyer et al. (1997) were interpreted as features. To
do so, we formed a 165 � 165 similarity matrix S. According to
additive clustering, the similarity matrix is defined as

S � FWF� (5)

where F is the matrix of clusters interpreted as features (Fac � 1 when
animal a is in cluster c), and W is a diagonal weight matrix, whose
elements are non-negative and represent the psychological weights of

8 We also examined “residual proximity,” finding each of the models to
follow the prediction that the last word in a patch has a lower residual
proximity than the first word in a patch, t(140) � �2.4, p � .05 for all four
models.

9 The introduction of jumps primarily reduces the difference for IRTs
before (at �2) and after a cluster switch (at 2 and 3), while increasing the
amount of time it takes to find the first item in a cluster. This can be
explained by the model randomly jumping back to the cue anywhere along
the search path, making it difficult to find a new animal, yet once one is
found, there are more unseen animals left to find nearby.

10 The IRT for words preceding cluster switches (indicated by �1) of
140, 138, 139, and 138 out of 141 walkers were not significantly different
for the uniform nonjumping, uniform jumping, weighted nonjumping, or
weighted jumping models respectively, and all of the walkers that were
significantly different had preswitch IRT averages less than their long-term
averages for each of the four models.
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the clusters. We used the 22 animal clusters defined by Troyer et al.
(1997) to define F. We inferred W by maximizing the posterior
distribution of reconstructing S based on graph distances using addi-
tive clustering, assuming a Gaussian prior on W and a Gaussian
reconstruction error (as outlined in Navarro & Griffiths, 2008).

The top row of Figure 4 shows the graph-based S matrix and the
S matrix reconstructed using additive clustering. Visual inspection
of the block structure in both S matrices confirms that they are
very similar and provides evidence that the semantic network

implicitly encodes the clusters. The distance between the nodes
corresponding to animals in the same cluster is smaller than the
distance between animals in different clusters and the retrieval
process depends (implicitly or explicitly) on this distance. This
may be why a random walk on a semantic network can produce
behavior that resembles optimal foraging.

By comparison, the representation used in the random walk
evaluated by Hills et al. (2012) did not show the same pattern of
clustering. We used the same additive-clustering technique on the

Figure 3 (opposite). Results after 141 simulations for the four random-walk models: (b) the uniform transition model with no jumps, (a) the weighted
transition model with no jumps, (d) the uniform transition model with a jump probability of 0.05, and (c) the weighted transition model with a jump
probability of 0.05. The left column displays the mean ratio between IRT for an item and the walker’s long-term average IRT over the entire task, relative
to the order of entry for the item (where 1 refers to the relative IRT between the first word in a cluster and the last word in the preceding cluster). The
dotted line indicates where item IRTs would be the same as the walker’s average IRT for the entire task. The right column displays the relationship between
a walker’s deviation from the marginal value theorem policy for cluster departures (horizontal-axis) and the total number of words a walker produced.

Semantic network similarity matrix Additive clustering reconstructed matrix

BEAGLE space similarity matrix Additive clustering reconstructed matrix

Figure 4. (Top row) A visualization of the similarity between pairs of animals in the semantic network (left panel)
and an additive clustering model (right panel), where darker colors represent stronger similarities (bottom row). A
visualization of the BEAGLE animal similarity space (left panel) and an additive clustering model (right panel). The
rows and columns of each matrix were reordered to display animals in the clusters with largest weight first.
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similarity data from BEAGLE, examining how well the similarity
data could be predicted from the cluster membership of different
animals. The bottom row of Figure 4 shows the results: there was
only a weak signature of the animal clusters in these data. Conse-
quently, the poor performance of this model could be a result of the
underlying representation not encoding a clear cluster structure.

These results suggest that the critical difference between these
two representations may be the extent to which they capture the
cluster structure of animals. Because items that are in the same
cluster are close in the semantic network, a random walk tends to
stay within clusters and occasionally switches between clusters,
creating the illusion of a two-stage search process. To evaluate this
idea, and to demonstrate that the performance of our model does
not depend on any of the specifics of the free-association data from
which our semantic network was formed, we conducted a further
simulation using a minimal random-walk model. In this model, we
assumed that the probability of a transition from item j to item i is
given by

Lij � �
0 i � j

(1 � p) ⁄ Cj i and j are in the same cluster

p ⁄ (n � Cj � 1) i and j are not in the same cluster

(6)

where Cj is the number of items that belong to the same cluster as
item j (excluding item j) and n is the total number of items. This
model only makes use of the cluster structure, assigning a high
probability to transitions within a cluster when p is small, but uses
no other information about the items to determine the transition
probabilities.

The random walk was run over the subset of 165 animals from
the semantic network used in our previous simulation, and p was
determined by calculating the average probability of making a
transition outside a cluster in the uniform nonjumping random
walk based on the word-association network. We ran 141 simula-
tions for a total of 45 steps each, and submitted them to the same
analyses as Hills et al. (2012). The results are shown in Figure 5.
The left column shows the key phenomena associated with optimal
foraging, with the first word in a patch taking significantly longer
to produce on average, t(140) � 9.49, p � .001, and the second
word taking much less time to produce than the long-term mean,
t(140) � �11.11, p � .001. The right column of Figure 5 exam-
ines consistency with the cluster-leaving policy indicated by the
marginal value theorem, where again we find that walkers with a
larger absolute difference, indicating they either left clusters too
soon or too late) produced fewer words (a linear regression model
found a significant negative relationship between axes:
slope � �4.88, t(132) � 4.09, p � .001.

The fact that this minimal model produced behavior similar to
optimal foraging suggests that random walks can mimic a two-
stage search process, provided they are on a representation that
captures the underlying cluster structure. This suggests the success
of the random-walk model using the semantic network based on
free associations in producing behavior that resembles optimal
foraging, and the failure of the random walk using the BEAGLE
representation considered by Hills et al. (2012) may be considered
a consequence in the extent to which they capture this cluster
structure.

Discussion

In this article, we examined two potential explanations for why
people show optimal foraging-like behavior when they retrieve
items from semantic memory. Both explanations produced behav-
ior consistent with the predictions of optimal foraging, but they
proposed that very different representations and processes are
responsible for this behavior. Hills et al. (2012) suggested that
semantic memory is based on spatial representations and search is
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Figure 5. Results for the minimal model on our semantic network with p
estimated from the uniform transition word association matrix. (a) The
mean ratio between the IRT for an item and the walker’s long-term average
IRT over the entire task, relative to the order of entry for the item (where
1 refers to the relative IRT between the first word in a patch and the last
word in the preceding patch). The dotted line indicates where item IRTs
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a dynamic process, retrieving items from one cluster at a time and
switching between clusters when the retrieval rate falls below a
threshold. We proposed an alternative explanation, that is, seman-
tic memory is represented by a network and search is simply a
random walk on the network. In support of this proposal, we
showed that predictions consistent with the results of Hills et al.
(2012) are produced by a random-walk model on a network where
semantically related items are close together in the network.

In the remainder of the article we discuss some of the implica-
tions of our results. In particular, the observation that different
algorithms operating on different representations can yield similar
predictions echoes previous arguments about the challenges of
identifying cognitive representations and processes (Anderson,
1978). We explore this connection and highlight some directions
for future research to try and shed light on the processes that
underlie performance on semantic fluency tasks.

Representations and Algorithms

Taken together, our simulations showed that the behavior in
semantic fluency tasks that Hills et al. (2012) viewed as evidence
for optimal foraging is also predicted by a random walk on a
semantic network. This behavior depends on the representation
used by the random-walk model, which we find crucial to note: A
random walk on a semantic network produces optimal foraging
behavior, but a random walk on corresponding spatial representa-
tions does not. Consequently, it seems that there is something
special about the semantic network representation that allows the
simple random walk to appear similar to optimal foraging.

Finding that different algorithms operating on different repre-
sentations can produce the same behavior might seem surprising,
but has a precedent in cognitive psychology. The mental imagery
debate (e.g., Kosslyn, 1994; Pylyshyn, 1973) depended crucially
on this issue—whether there are effective ways of identifying the
algorithms and representations that human minds employ. Ander-
son (1978) convincingly argued that we should not be surprised to
find cases in which algorithms and representations that seem quite
different nonetheless end up producing similar behavior—such
cases are the rule, rather than the exception. In fact, for a suffi-
ciently rich set of algorithms and representations, we can always
find algorithm–representation pairs that cannot be discriminated
based purely on behavior.

The situation illustrated by our analyses is not necessarily as
extreme as the cases that Anderson (1978) considered, but they do
illustrate one of the fundamental challenges of cognitive psychol-
ogy: Possible psychological representations and mechanisms are
always underdetermined by the available behavioral data, and even
behavior that seems like the signature of one mechanism can
sometimes be produced by others. In this case, further experiments
may be able to discriminate between optimal foraging and random
walks, but these experiments will have to be specifically designed
to distinguish between these two accounts rather than motivated by
the predictions of one account alone.

Future Directions

Demonstrating that random-walk models can produce behavior
consistent with optimal foraging in semantic fluency tasks gener-
ates some interesting directions for future research. As mentioned

in the previous section, having two competing accounts of the
same phenomena suggests that the next step in exploring semantic
fluency is designing an experiment that distinguishes between
these accounts. One way to do this might be to explore the extent
to which human memory search really is strategic—offering peo-
ple the opportunity to get a “hint” (say, an example category
member) might provide the way to do this, as it would be possible
to examine whether people seek hints at the moments predicted by
the marginal value theorem.

An alternative approach to distinguish these models is consid-
ering whether the optimal foraging account can also predict results
that the random-walk model has previously been used to explain.
One such result is the correspondence of word fluency with Pag-
eRank (Griffiths, Steyvers, & Firl, 2007), something that follows
directly from the random-walk account, but might be more chal-
lenging to account for in terms of optimal foraging. Likewise,
additional support for optimal foraging in memory has been found
that directly measures variables associated with working-memory
capacity and relates them to features associated with the search
process (Hills & Pachur, 2012; Hills, Mata, Wilke, & Samanez-
Larkin, 2013). Accordingly, these findings provide future tests for
the random-walk account.

Another direction for future research would be to consider how
these different proposals fare in accounting for changes in seman-
tic fluency in clinical populations. Given that conditions such as
Alzheimer’s and Parkinson’s diseases differentially affect cluster-
ing and switching (Borge-Holthoefer, Moreno, & Arenas, 2011;
Johns et al., 2013; Lezak, 1995; Tröster et al., 1989; Troyer et al.,
1997, 1998), comparing what degradations to the models are
needed to explain the differential changes in different clinical
populations might help to answer practical as well as theoretical
questions about human memory.

Finally, exploring some of the nuances of optimal foraging as
an account for human memory search is likely to be productive.
Human foraging behavior has been examined in a few other
domains, including information foraging (Pirolli & Card, 1999)
and searching for resources in a simulated spatial environment
(e.g., Cain, Vul, Clark, & Mitroff, 2012; Hutchinson, Wilke, &
Todd, 2008; Kalff, Hills, & Wiener, 2010; Wolfe, 2013). In
particular, researchers conducting studies in simulated environ-
ments have investigated the strategies people use in multiple-
target search and have examined whether searchers adapt their
strategies based on the target distribution statistics. The com-
mon finding is that people are in fact sensitive to the resource
distributions of their environment, spending more time in
resource-dense patches as predicted by optimal foraging theory.
However, their actual departure times from these patches tend
to be at nonoptimal rates (e.g., dependent on patch quality and
not the long-term average rate of return, as predicted by the
marginal value theorem). It would be interesting to see whether
modifying the optimal foraging model considered by Hills et al.
(2012) to produce behavior more consistent with human search
in these other domains would increase or decrease its fit to the
data from semantic fluency tasks.

Conclusion

Identifying and retrieving information relevant to a cue is one
of the basic capabilities of the human memory system. Under-
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standing how people solve the task of searching this vast store
of information is likely to give us insight, not just into the
human mind, but into how to build better artificial information
retrieval systems. Optimal foraging and random walks on se-
mantic networks offer two quite different accounts of this
process— one based on an intelligent search strategy, the other
on a rich representational framework. Both algorithms also
have links to other disciplines, offering links to literatures in
biology and computer science, respectively. That both accounts
can produce similar behavior is surprising, but also exciting, in
that it creates new opportunities to explore these connections
more deeply and develop a more complete picture of this
remarkable human capacity.
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