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In the real world, causal variables do not come pre-identified or
occur in isolation, but instead are embedded within a continuous
temporal stream of events. A challenge faced by both human learn-
ers and machine learning algorithms is identifying subsequences
that correspond to the appropriate variables for causal inference.
A specific instance of this problem is action segmentation: dividing
a sequence of observed behavior into meaningful actions, and deter-
mining which of those actions lead to effects in the world. Here we
present a Bayesian analysis of how statistical and causal cues to seg-
mentation should optimally be combined, as well as four experi-
ments investigating human action segmentation and causal
inference. We find that both people and our model are sensitive to
statistical regularities and causal structure in continuous action,
and are able to combine these sources of information in order to cor-
rectly infer both causal relationships and segmentation boundaries.
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1. Introduction

Human social reasoning depends on understanding the relationship between actions, goals and
outcomes. In order to understand the reasons behind others’ behavior, we must be able to distinguish
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the unique actions we see others performing, and recognize the effects of these actions. Imagine
watching someone coming home and opening their front door. To understand this simple scene, an
observer needs to identify meaningful behaviors from within the continuous stream of motion they
see, such as ‘‘exiting the car’’, ‘‘coming up the stairs’’ and ‘‘opening the door’’, which are themselves
composed of smaller motion elements such as ‘‘standing up’’, ‘‘closing the car door’’, ‘‘taking a step’’,
‘‘reaching for the doorknob’’, and so on.

Determining which subsequences of motion go together hierarchically, and what outcomes they
produce, is also an important instance of the more general problem of causal variable discovery (a sim-
ilar problem – determining how spatially distributed observations should be encoded as variables – is
discussed by Goodman, Mansinghka, & Tenenbaum (2007)). Consider the case of learning which
actions are necessary to open a door by observing multiple performances, embedded in everyday
scenes such as the one above. A learner might notice that people almost always grasp and then turn
a doorknob before the door opens, but sometimes they pull a handle instead. They frequently insert a
key into a lock and then turn it before trying the doorknob, but not always. Often, other actions pre-
cede the door opening as well – putting down groceries, fumbling around in a purse, ringing a door-
bell, sliding a bolt – which of these are causally necessary and which are incidental? While this
ambiguity can make causal learning more challenging, the presence of statistical variation can actually
aid inference. Motions that do not consistently precede outcomes are less likely to be causally neces-
sary. Motions that reliably appear together and, in fact, predict each other, are more likely to be coher-
ent units, corresponding to intentional, goal-directed action.

There is now a large body of evidence suggesting that both infants and adults can use statistical
patterns in spoken language to help solve the related problem of segmenting words from continuous
speech (for a partial review, see Gómez & Gerken, 2000). Recently, Baldwin, Andersson, Saffran, and
Meyer (2008) demonstrated that a similar sensitivity to statistical regularities in continuous action
sequences may play an important role in action processing. However, a key difference between action
segmentation and word segmentation is that intentional actions usually have effects in the world. In
fact, many of the causal relationships we experience result from our own and others’ actions, suggest-
ing that understanding action may bootstrap learning about causation, and vice versa. Here we pres-
ent a combination of experimental and computational approaches investigating how the ability to
segment action and to infer its causal structure functions and develops.

We first introduce a Bayesian analysis of action segmentation and causal inference, which provides
a rational analysis of how statistical and causal cues to segmentation should optimally be combined.
Next, we present four experiments investigating how both people and our model use statistical and
causal cues to action structure. Our first experiment demonstrates that people are able to segment sta-
tistically determined actions using only the co-occurrence patterns between motions. This experiment
is also the first to demonstrate that the continuous boundary judgment measures used in event seg-
mentation research align with the sequence discrimination measures traditionally used in the statis-
tical segmentation literature. Our second experiment demonstrates that people experience these
actions as coherent, meaningful, and most importantly, causal sequences. Our third experiment shows
that people are able to extract the correct causal variables from within a longer action sequence, and
that they find causal sequences to be more coherent and meaningful than other sequences with equiv-
alent statistical structure. Our fourth experiment demonstrates that, when statistical and causal cues
conflict, both sets of cues influence segmentation and causal inference, suggesting that action struc-
ture and causal structure are learned jointly and simultaneously, and demonstrates that these results
are not accounted for by simpler heuristic models. We conclude by discussing our results in the con-
text of broader work, as well as its implications for more generalized human statistical learning
abilities.
2. Background

Many if not most of the causal outcomes we witness are the result of intentional human action. We
must be able to distinguish the unique actions we see other people performing and recognize their
effects in order to understand the reasons behind others’ behavior, and in order to potentially bring
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about those effects ourselves. But before we can interpret actions, we first must identify meaningful
behaviors within a continuous, dynamic stream of motion (Byrne, 1999; Sharon & Wynn, 1998). What
cues do we use to do this? How might infants and young children begin to break into the behavior
stream in order to identify intentional, goal-directed actions? Could the causal relationships between
actions and their outcomes in the world help us understand action structure itself? How might we
identify reaching, grasping, and turning and then group them into the action ‘‘opening the door’’?

Prior research has shown that adults can segment common everyday behaviors into meaningful
events (e.g., Newtson, Engquist, & Bois, 1977; Zacks, Tversky, & Iyer, 2001), and that they do so uncon-
sciously and automatically (e.g., Speer, Swallow, & Zacks, 2003; Zacks, Braver et al., 2001; Zacks, Speer,
Swallow, & Maley, 2010). When asked to explicitly provide boundary judgments for videos of every-
day intentional action, adults agree on the boundary locations (e.g., Newtson, 1973; Speer et al., 2003),
and their boundary judgments correspond to the goals and intentions underlying the actor’s behavior
(e.g., Zacks, 2004; Zacks et al., 2010). People’s boundary judgments are also sensitive to the hierarchi-
cal structure of human action – they are able to consistently segment actions at multiple levels of
granularity (e.g., ‘‘reach, grasp, turn’’ versus ‘‘open door’’) (Hard, Tversky, & Lang, 2006; Newtson,
1973; Zacks, Braver et al., 2001; Zacks, Tversky et al., 2001).

While a full understanding of human action requires knowledge about goals and intentions, even
young infants demonstrate sensitivity to the boundaries between intentional action segments
(Baldwin, Baird, Saylor, & Clark, 2001; Hespos, Saylor, & Grossman, 2009; Saylor, Baldwin, Baird, &
LaBounty, 2007; Woodward & Sommerville, 2000) well before they are thought to have a fully devel-
oped theory of mind (e.g., Wellman & Liu, 2004). This suggests that there may also be low-level cues to
intentional action structure available in human motion that infants might initially use to begin iden-
tifying meaningful actions, allowing them to bootstrap their way into a more fully-fledged under-
standing of human action. The existence of low-level cues to intentional action structure, such as
changes in body pose and movement features, corresponding to the locations of adult boundary judg-
ments is supported by a variety of recent work (Buchsbaum, Canini, & Griffiths, 2011; Hard, Recchia, &
Tversky, 2011; Hard et al., 2006; Meyer, DeCamp, Hard, & Baldwin, 2010; Newtson et al., 1977; Zacks,
2004; Zacks, Kumar, Abrams, & Mehta, 2009).

Another potentially important source of information is statistical regularities in the action stream.
It has frequently been suggested that the nature of intentional, goal-directed action means that actors’
motions will often produce structured, predictable patterns (e.g., reaching often precedes grasping,
turning the door knob often precedes opening the door), detectable even without explicit knowledge
of the underlying goal structure that generated them (e.g., Baldwin et al., 2001; Byrne, 1999; Newtson
et al., 1977; Reynolds, Zacks, & Braver, 2007). Therefore, one way that infants might be able to segment
actions is by using statistical regularities in human motion. There is now a lot of evidence that both
infants and adults use statistical patterns in spoken language to help solve the related problem of seg-
menting words from continuous speech (e.g., Aslin, Saffran, & Newport, 1998; Pelucchi, Hay, & Saffran,
2009; Saffran, Aslin, & Newport, 1996; Saffran, Newport, & Aslin, 1996; Saffran, Newport, Aslin, Tunick,
& Barrueco, 1997). In these experiments, infants (and adults) listen to an artificial language con-
structed of made-up words, usually created from English syllables (e.g., dutaba, patubi, pidabu). The
words are assembled into a continuous speech stream (e.g., dutabapatubipidabu.), with other poten-
tial segmentation cues such as intonation and pauses removed. In these experiments, as in many
words in real languages, syllables within a word have higher transitional probabilities than syllables
between words – you are more likely to hear ta followed by ba (as in dutaba) than to hear bi followed
by pi (as in patubi pidabu). Both infants and adults are able to use these transitional probabilities in
order to distinguish words in these artificial languages (dutaba, patubi, pidabu), from part-words –
combinations of syllables that cross a word boundary (e.g., tabapa, tubipi), and from non-words, com-
binations of syllables that do not appear in the artificial language at all (e.g., dupapi, babibu).

Infants have also been shown to succeed at statistical language segmentation even when more nat-
uralistic language stimuli are used (Lew-Williams, Pelucchi, & Saffran, 2011; Pelucchi et al., 2009).
Likewise, infants have been shown to use conditional probabilities in the visual domain to learn which
components group together into visual objects (e.g., Fiser & Aslin, 2002), and in order to learn visual
sequences over time (e.g., Kirkham, Slemmer, & Johnson, 2002).
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Intriguingly, there is also evidence that children and adults can successfully map words learned
through this type of segmentation to meanings (Graf Estes, Evans, Alibali, & Saffran, 2007; Hay,
Pelucchi, Graf Estes, & Saffran, 2011; Mirman, Magnuson, Graf Estes, & Dixon, 2008) and, conversely,
can use words they already know to help find boundaries and discover new words (Bortfeld, Morgan,
Golinkoff, & Rathbun, 2005). Similarly, a recent study shows that, in the visual domain, children use
statistical patterns to infer the boundaries between objects, and then use that information to make
further predictions about how objects will behave (Wu, Gopnik, Richardson, & Kirkham, 2011). So,
children do not just detect the statistics and then segment the streams accordingly. They actually treat
those statistical units as if they were meaningful. Across domains, statistical learning can be viewed
as a potentially powerful means by which infants can ‘‘break into’’ some more domain-specific
inference task.

Recently, a similar sensitivity to statistical regularities in action sequences has been demonstrated
in both adults (Baldwin et al., 2008; Meyer & Baldwin, 2011) and infants (Roseberry, Richie, Hirsh-
Pasek, Golinkoff, & Shipley, 2011; Stahl, Romberg, Roseberry, Golinkoff, & Hirsh-Pasek, 2014).
Baldwin et al. (2008) extended the artificial language approach described above to the action domain,
demonstrating that, just as people can recognize statistically coherent words from an artificial lan-
guage, and distinguish them from non-words and part-words, they can also recognize artificial actions
grouped only by statistical relationships, and can distinguish these sequences from non-actions
(motions that never appeared together) and part-actions (motion sequences that cross an action
boundary). Stahl et al. (2014) found similar results in 7–9 month old infants, showing that infants
looked longer to part-action than to action sequences.

It is worth noting that, while the event segmentation experiments described earlier asked people to
provide explicit boundary judgments for videos of everyday actions, interpretable in terms of goals
and intentions, Baldwin et al. (2008) and Stahl et al. (2014) used sequences that, by design, were
not inherently meaningful. In every day action, higher-level intentional structure and statistical cues
are confounded (e.g., reach generally precedes grasp because of the overarching goal of retrieving an
object). By making the combinations intentionally arbitrary, but statistically coherent, sensitivity to
just statistical cues could be tested. As a result, this work used discrimination of isolated action and
part-action sequences to measure segmentation performance. This approach is consistent with the
previously described statistical word segmentation literature, on which these experiments were
based. While it has been assumed that the ability to discriminate statistically coherent sequences from
incoherent ones is the result of successful segmentation, the correspondence between discrimination
measures and explicit boundary judgments has not yet been established.

Just as the ability to track statistical relationships appears to play an important role in word and
action segmentation, recent work has demonstrated that both children and adults also rely on statis-
tical relationships to make causal inferences, and can infer structured causal relationships from pat-
terns of conditional probability between potential causes and their effects (e.g., Cheng, 1997; Gopnik
et al., 2004; Griffiths, Sobel, Tenenbaum, & Gopnik, 2011). In fact, though a variety of sources of infor-
mation inform people’s causal inferences (e.g., temporal information, mechanical knowledge, domain
knowledge, social knowledge), patterns of conditional probability alone are sufficient for at least some
causal inferences (e.g., Cheng, 1997; Gopnik et al., 2004; Griffiths & Tenenbaum, 2005; Shanks, 1995). In
addition, Bayesian inference over causal graphical models has successfully been used to capture causal
learning in both children (e.g., Buchsbaum, Gopnik, Griffiths, & Shafto, 2011; Gopnik et al., 2004;
Griffiths et al., 2011; Schulz, Bonawitz, & Griffiths, 2007; Sobel, Tenenbaum, & Gopnik, 2004) and adults
(e.g., Glymour (1998); Rehder (2003); Tenenbaum & Griffiths (2001); Tenenbaum & Griffiths (2003);
Griffiths & Tenenbaum (2005); Lu, Yuille, Liljeholm, Cheng, & Holyoak (2008), but see Bes, Sloman,
Lucas, & Raufaste (2012) for cases where this approach may not capture human behavior).

Further, problems of causal reasoning, language learning, and action parsing, and other tasks tra-
ditionally studied under the rubric of statistical learning, share a common problem of variable selec-
tion. That is, not only do learners have to discover the predictive patterns between variables in the
domain, they have to discover what groupings of stimuli or features constitute the variables in the first
place. In the case of language learning, infants not only have to discover which meanings correspond
to which words, they have to discover the words themselves. Similarly, reasoning about causal
relationships requires identifying which features group together into potential causes. However,
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previous work has generally assumed that the possible causes are known in advance. Figuring out how
causal variables are identified from within a continuous sequence remains an important problem in
this area.

In the same way that words have meanings, intentional actions usually lead to causal outcomes. In
fact, as noted above, statistically coherent action sequences likely arise, at least in many cases, because
the small-scale acts involved are causally linked in achieving a goal. This suggests that, just as iden-
tifying words assists in mapping them to meanings, segmenting human action may bootstrap learning
about causation and vice versa. However, researchers have not yet explored whether action parsing
and causal structure can be learned jointly.

Below, we introduce a Bayesian ideal observer model of action segmentation and causal inference.
This model provides a computational level account of how an ideal learner, sensitive to statistical evi-
dence in both domains, should identify meaningful and causal units of action from within a fluid
stream. Just as Baldwin et al. (2008) modeled their statistical action experiments on previous exper-
iments in statistical word segmentation, here we base our model on an ideal observer model of sta-
tistical word segmentation (Goldwater, Griffiths, & Johnson, 2009). There exists a natural analogy
between the problems of segmenting speech and segmenting actions – both are dynamic sensory
streams that pose similar challenges to the processor. We discuss this choice of model and describe
the model in more detail in the following sections, as well as in Appendix A.
3. An ideal learner for action segmentation

We created an ideal learner model that jointly infers action segmentation and causal structure,
using statistical regularities and temporal cues to causal relationships in an action stream. The role
of this model is as an ideal observer (Geisler, 2003), meaning that it represents the best possible seg-
mentation performance for the data, given a set of starting assumptions about how that data was gen-
erated (a generative model). Our ‘‘ideal learner’’ analysis is intended to be in the spirit of rational
analysis (Anderson, 1990, 1991) and Marr’s (1982) notion of a ‘‘computational level’’. We will focus
on qualitative comparisons of people to the model, since our goal is to understand the capacities peo-
ple have to use relevant statistical information and not to directly model the mechanisms by which
that information is used.

Bayes’ rule is often used as a way of modeling this type of ideal learner. Bayesian models work by
assuming that a learner is evaluating a set of hypotheses about the state of the world, and has assigned
a ‘‘prior’’ probability PðhÞ to each hypothesis h in that set. Then, Bayes’ rule indicates that after seeing
data d, the learner should assign each hypothesis a ‘‘posterior’’ probability PðhjdÞ proportional to PðhÞ
multiplied by the probability of observing d if h were true, PðdjhÞ. Bayes’ rule is a principled way to
combine inductive biases, represented as the prior distribution, with the evidence provided by data,
using an explicit model of how the world generated that data. For instance, in the case of segmenting
continuous speech into words, the observed data would be an unsegmented sequence of syllables, the
prior would be the assumption that this sequence is actually composed of discrete, multi-syllable
words with particular distributional properties, and a hypothesis would be a segmentation of that
sequence into words (see Fig. 1). Bayesian analysis gives us a principled way of determining what seg-
mentation and causal inferences an ideal learner should make, given a set of assumptions about how
the data was generated. It also forces us to clearly lay out those assumptions.

As discussed earlier, the computational problems of word segmentation and action segmentation
are very similar. In both domains, a temporally transient, continuous stream must be divided into
the discrete, hierarchically organized units that generated it. In both language and action, there are
theoretically an infinite number of possible words or actions, but only a finite set that is ever actually
heard or observed. The learner must therefore infer not only boundary locations, but also the word or
action vocabulary that is being used to generate sentences or action sequences. Finally, in both
domains, there is evidence that distributional cues, even in the absence of information about meaning
or intentions, may be sufficient for performing at least some amount of segmentation.

Given these similarities, an ideal learner for statistical action segmentation should share many
assumptions with one for statistical word segmentation. The Goldwater et al. (2009) model has



Fig. 1. Example data and hypothesis for the Goldwater et al. (2009) model of word segmentation. (a) The data are a stream of
unsegmented syllables. (b) A segmentation hypothesis, proposing a segmentation of this stream into words.

Fig. 2. Example data and hypotheses for our ideal observer action segmentation model. (a) The data are a stream of
unsegmented motions. (b) Two segmentation hypotheses. Under our model, Hypothesis 1, where an effect follows a causal
action, is more likely than Hypothesis 2, where an effect occurs in the middle of an action.
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already been empirically tested as a rational model of statistical word segmentation, providing a rea-
sonable starting point for developing a similar model for action.

Goldwater et al. (2009) model the generative process for creating a speech stream as successively
selecting words to add to the sequence one at a time. Here, we model sequences of action in exactly
the same way, with actions composed of individual small-scale motions taking the place of words
composed of syllables (see Fig. 2). In addition, we incorporated cause and effect information into
the generative model, allowing some actions to be probabilistic causes. In the following sections,
we describe these two pieces of our model – the model’s assumptions about how the sequence of
actions was generated, and the model’s assumptions about how effects occurring during this sequence
were caused – in more detail.

We will use this model to explore whether it is, in principle, possible to jointly infer action segmen-
tation and causal structure using only the statistical co-occurrence information present in both
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domains. This is an interesting question, since it could be that other cues (e.g., intentional information,
mechanistic causal cues) might be necessary to segment action sequences and to discover causally
meaningful units of action. Similarly, we can contrast this model with models with even simpler
assumptions, for instance those that perform segmentation and causal inference separately, and see
whether the optimal segmentations under these models differ in meaningful ways. To the extent that
our model qualitatively reflects human performance, it suggests that people are operating under
assumptions similar to our model’s, and provides support for the idea that people are sensitive to
the same statistical and causal cues as our model, and are combining them in their own inference.

3.1. Generative model for action sequences

We first look at how a sequence of actions is generated. As noted earlier, our model for this process
is exactly that used by Goldwater et al. (2009) to model sequences of words. This model has conve-
nient properties for capturing our intuitions about how action sequences are generated, most impor-
tantly that any given action sequence is composed of a finite number of action types, but that there is a
theoretically infinite space of possible actions.

Just as a sentence is composed of words, which are in turn composed of syllables, in our model an
action sequence A is composed of actions ai which are themselves composed of motions mj. We
assume that complete actions are chosen one at a time, and then added to the sequence. For each
action ai that is generated, we first decide whether it will be a novel action, or an action that has
already occurred in the sequence. The probability of a previously occurring action is
pðai ¼ previously occurring actionja1; a2; . . . ; ai�1Þ ¼
n

nþ a0
ð1Þ
and of a novel action is
pðai ¼ novel actionja1; a2; . . . ; ai�1Þ ¼
a0

nþ a0
ð2Þ
where a1; a2; . . . ; ai�1 are the actions already in the sequence, and n is the length of a1; a2; . . . ; ai�1. So,
the probability of performing a novel action depends on the concentration parameter a0, and on the
number of actions already performed. Intuitively, this means that the more actions you have per-
formed, the less likely it is that the next action you perform will be one you have never done before.
In this work we expect a0 to be small, representing an expectation that the set of all possible actions is
relatively small. This is consistent with the small vocabulary of actions used in previous statistical
action segmentation experiments (Baldwin et al., 2008; Meyer & Baldwin, 2011; Stahl et al., 2014),
and in our own experiments described below.

If the next action in the sequence ai is a previously occurring action, we must decide which one. The
probability that the next action in the sequence will have a particular value ai ¼ w is
pðai ¼ wja1; a2; . . . ; ai�1Þ ¼
nw

n
ð3Þ
where nw is the number of times action w has already appeared. In other words, frequently occurring
actions have a higher probability of being chosen again.

If the next action ai is novel, then we need to generate its form. Actions are created by first choosing
the action’s length. We use a geometric distribution over length, which favors shorter actions
pðlength ¼ lÞ ¼ p#ð1� p#Þ
l�1 ð4Þ
where l is the length of action ai in motions and p# is the probability of ending the action after each
motion. In this work we expect p# to be relatively large, which represents a bias towards finding smal-
ler length actions, such as those used in previous statistical action segmentation experiments
(Baldwin et al., 2008; Meyer & Baldwin, 2011; Stahl et al., 2014), and in our own experiments
described below.

To create the new action type, we randomly select motions one at a time, until the chosen length is
reached. For simplicity, we assume that all motions are uniformly distributed.
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3.2. Generative model for events

The action sequence A also contains non-action events e, which can occur between motions. We
must now add a model of how these non-action events in our sequence are generated. The key
assumption we would like to capture is that actions are more likely to be causal than other sequences
of motion. An additional set of assumptions is motivated by previous research on causal inference,
demonstrating that both children (Buchsbaum et al., 2011; Griffiths et al., 2011; Schulz &
Sommerville, 2006), and adults (Lu et al., 2008; Lucas & Griffiths, 2010; Yeung & Griffiths, 2011)
strongly favor fewer, high probability causes.

To model the generation of causal effects, we use a probabilistic-OR model, commonly used to
model human causal inference (Cheng, 1997; Griffiths & Tenenbaum, 2005), in which each potential
causal variable has a probability p of being a cause, and each cause has an independent probability x
of generating the effect. There is also a background probability of the effect occurring on its own (or
due to unknown causes) �.

In our model, the potential causal variables are the sequences that have been identified as actions.
Every time a novel action type is generated, it is causal with probability p. We assume that p is small,
which captures our assumption that relatively few actions are causes for a particular effect. If an action
is a cause, then it is followed by an event with relatively high probability x. We use a small value � for
the probability of an effect occurring after a non-causal sequence (in the middle of an action, or after a
non-causal action, as shown in Fig. 3). This captures our assumption that events are unlikely to follow
non-causal sequences, and likely to occur after actions that are causes.
3.3. Inferring segmentation and causal structure

An unsegmented action sequence consists of the motions mj without any breaks between them, as
well as the effects that occurred during this sequence. Given such a sequence, how do we find the
boundaries between actions, and infer which actions are causal? A segmentation hypothesis h indi-
cates whether there is an action boundary after each motion mj, and whether each of the action types
in the inferred vocabulary is causal. Each hypothesis also implicitly includes a proposed action vocab-
ulary from which the sequence was composed. For a given segmentation hypothesis h, and unseg-
mented action sequence d, we use Bayes’ rule pðhjdÞ / pðdjhÞpðhÞ to infer the posterior distribution
pðhjdÞ. It is worth emphasizing that, unlike previous Bayesian models of causal inference (Griffiths
& Tenenbaum, 2005, 2009), we do not start with a fixed, known set of potential causes. Instead, the
sequences to be considered for causal inference must themselves be inferred. In our model, the
sequences considered to be potential causes are precisely those proposed as actions.

We can estimate pðhjdÞ using a standard Markov chain Monte Carlo method known as Gibbs
sampling (Gilks, Richardson, & Spiegelhalter, 1996). The key property of a Gibbs sampler is that it
allows us to sample segmentation hypotheses from the posterior distribution pðhjdÞ. Each sample
corresponds to one possible segmentation of the corpus into actions, and includes not only the pro-
posed boundaries but also implicitly includes a proposed action vocabulary from which the sequence
was composed (see Fig. 2 for an example of possible hypotheses). For causal inference, each action
type in the sample’s vocabulary is also assigned a causal value. For all simulations described in this
work, we ran three randomly seeded Gibbs samplers and averaged results from 10 samples from each
Fig. 3. A theoretical action sequence depicting causal relationships in the model.
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sampler to estimate the posterior distributions and evaluate the model (for additional details see
Appendix A.5 as well as Goldwater et al. (2009)).
3.4. Predictions for human segmentation

Our model represents a number of assumptions about how fluid streams of motion are generated,
including that (i) motions are not produced randomly, but instead as coherent groupings, correspond-
ing to meaningful units of action, which tend to appear repeatedly and predictably and (ii) that some
actions are causal, and are likely to generate non-action events.

The key intuition captured by this model is that action segmentation and causal structure are
jointly learned, taking advantage of statistical evidence in both domains. The model represents our
assumption that the same underlying process generates human actions and causal motion sequences,
implicitly capturing that actions are being chosen intentionally, often to bring about causal outcomes.
This means that in this model action segmentation and causal structure are inferred simultaneously
and interdependently. Sequences of motion that correspond to known actions are considered more
likely to be causes, and sequences of motion that appear to be causal (they predict events in the world)
are considered more likely to be actions. The inferred action boundaries help determine the inferred
causal structure and vice versa. This corresponds to our hypothesis that people believe intentional
actions and causal effects go hand in hand.

As an ideal observer model, our model’s role is to provide a description of the best possible perfor-
mance under our assumptions, rather than as a psychological process model meant to capture the pre-
cise mechanisms underlying human performance. Our goal in exploring this ideal model is to
determine how statistical information should be used in identifying variables for causal learning. This
then motivates our experiments, in which we explore qualitative predictions about the kinds of infer-
ences people should make, if they are operating under similar assumptions, and compare those pre-
dictions to those made by alternative models.

First, if people are sensitive to the same types of statistical cues as our model then they should be
able to segment sequences of action using these cues. This prediction is tested in Experiment 1. Exper-
iment 1 also establishes a basic methodology for evaluating people’s ability to identify actions, by
demonstrating that explicit boundary judgments align with discrimination judgments. Second, if sta-
tistical action structure is in fact a cue to causal relationships then, like our model, people should think
statistically grouped actions are more likely to be potential causes than other equivalent sequences.
This prediction is tested in Experiment 2. Third, if people believe that causal sequences of motion
are also likely to be actions, they should be able to identify and segment out causal sequences, and
should find those sequences to be more meaningful and coherent than other sequences of motion with
equivalent statistical regularities. This prediction is tested in Experiment 3. Finally, if action segmen-
tation and causal relationships are truly jointly learned, then we should see cue combination and cue
conflict effects emerge, as in other cases of joint perceptual inference (Ernst & Banks, 2002). This pre-
diction is tested in Experiment 4.
4. Using statistical cues

In this first set of model simulations and experiments, we examined the boundary judgments pro-
duced by our model and by human participants, when presented with continuous sequences of
motion generated from ‘‘artificial action grammars’’, similar to those used in previous action segmen-
tation experiments (Baldwin et al., 2008; Meyer & Baldwin, 2011), and paralleling the designs used in
the statistical word segmentation literature (e.g., Saffran et al., 1996, 1997). Our subsequent simula-
tions and experiments examine causal inferences from these same types of sequences.

Just as a sentence is composed of words, which are in turn composed of syllables, here an action
sequence is composed of actions, which are themselves composed of small motion elements (SMEs).
We created two exposure corpora, each assembled by adding ‘‘actions’’ to the sequence one at a time,
selecting from four ‘‘actions’’ each made up of three distinct recognizable object-directed motions (see
Table 1 for a description of the 12 motions used). Each action appears 90 times for a total of 360



Table 1
Small motion elements (SMEs) used in Experiments 1, 2, 3 and 4. After Meyer and Baldwin (2011).

SME Description Length (ms)

Empty Bottle is turned over as if to pour into open hand 1259
Clean Flat hand wipes top of bottle 1079
Under Bottom of bottle is examined 1139
Feel Index finger touches side of bottle in an up-and-down motion 1169
Blow Bottle is lifted to mouth and blown into 1049
Look Bottle is lifted to face and interior examined 1259
Drink Bottle is lifted and tipped into mouth as if drinking 1289
Twirl Bottle edge is lifted from table and spun around 959
Read Finger traces over label and bottle is lifted from table as if to read 1948
Rattle Bottle is lifted close to ear and shaken 1199
Slide Bottle is pushed forward on the table and returned 779
Poke Index finger is inserted and removed from top of bottle 869
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actions and 1080 motions. A more detailed description of how the corpora were constructed is given in
the methods section of Experiment 1a. The key feature of these corpora is that within an action the
transitional probabilities between adjacent motion elements are higher (1.0 in all cases) than between
actions (�0.33). In this first set of experiments, no causal outcomes were added to the corpora. We
first ran the model on the exposure corpora to examine its segmentation performance and inferred
action vocabulary, and then looked at human performance on these same corpora.

4.1. Model simulations

An abstract representation of each unsegmented corpus was used as input to the model, with a let-
ter standing for each SME. For example, the sequence blow, look, read, twirl, feel, drink, poke,
empty, clean would be represented as BLRTFDPEC (see Appendix C for examples of complete
corpora). Our model has two free segmentation parameters: p#, which influences action length, and
a0, which influences the number of unique action types.1

We evaluated model results across a wide range of parameter values, comparing our results to the
true segmentation, and calculated average precision and recall scores across samples, commonly used
metrics in the natural language processing literature (e.g., Brent, 1999; Venkataraman, 2001), and
which were also used by Goldwater et al. (2009). Precision (P) is the percent of all actions in the pro-
duced segmentation that are correct, while recall (R) is the percent of all actions in the true segmen-
tation that were found. In other words, following Brent (1999)
1 The
Since th
the valu
p$ ¼ 0:0
P ¼ true positives
true positivesþ false positives

ð5Þ

R ¼ true positives
true positivesþ false negatives

ð6Þ
For example, for the true sequence BLR TFD PEC a segmentation hypothesis of BLR TFDPEC would
have P ¼ 1 because the one boundary found also appears in the true segmentation, and R � 0:33,
because only one out of the three true boundaries was found. Meanwhile, the hypothesis BLR TFD

P E C would have P ¼ 0:5 because only two out of the four proposed boundaries appear in the true
segmentation, and R ¼ 1, because all of the correct boundary locations were found. The correct seg-
mentation BLR TFD PEC would have perfect precision and recall, P ¼ 1;R ¼ 1.

We ran simulations for a0 2 f1;2;5;10;20;50;100;200;500g and p# 2 f0:5;0:7;0:9;0:95;0:99g.
Overall, segmentation performance was quite good across parameter values, with perfect boundary
re is also one additional model parameter we did not mention, p$ , the prior probability of the action sequence terminating.
e action sequence ends only once, the effect of p$ on segmentation results is negligible – preliminary simulations varying
e of p$ confirmed that the exact value had little influence on the resulting segmentation. We therefore used a fixed value of
1 for our simulations.
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precision for all parameter values, meaning that regardless of the parameter settings, the model never
identified boundaries in incorrect locations. Recall results were more variable, and are shown in Fig. 5.
In general, segmentation performance improves with smaller values of a0 that favor a smaller vocab-
ulary, and larger values of p#, favoring shorter actions. This makes sense, given that for these corpora
the true vocabulary is four actions, each of which is three motions long. For p# ¼ 0:99 and a0 6 50 the
model consistently produces a perfect segmentation across samples, suggesting that the posterior dis-
tribution for these parameter values is highly peaked around the true segmentation.

As a0 gets bigger and p# gets smaller, the model’s prior expectations shift towards a larger vocab-
ulary, and longer actions. As a result, the model begins to undersegment, joining together adjacent
actions. For instance if the true segmentation is BLR TFD PEC the model might produce BLRTFD

PEC, treating BLRTFD as a single action. This can be seen as analogous to the part-words and part-
actions in the statistical segmentation work described earlier – extracting actions that cross a bound-
ary in the true segmentation.

Across a broad range of parameters, our model produces a very good segmentation of corpora sim-
ilar to those used by Baldwin et al. (2008), and modeled after classic statistical word segmentation
experiments, and a range of parameter values consistently produce a perfectly segmented sequence.
These results confirm that the sequential probabilities available in the corpus can, in principle, be used
for segmentation.
5. Experiment 1a: Online segmentation of statistical actions

In this experiment, we had participants directly segment a corpus of statistically-determined
actions in order to see whether, like our model, people can segment a sequence of actions using only
statistical cues from the co-occurrences of motions within the sequence. As noted earlier, while pre-
vious work has demonstrated that people are sensitive to statistical cues in an action stream, this work
had people provide judgments of discrete, already segmented sequences. Here we examine whether
people can also use statistical cues to make online boundary judgments, in order to establish that
these two methodologies for evaluating segmentation performance align.

Having established this correspondence in Experiments 1a and 1b, our remaining experiments will
use discrimination measures to evaluate participants’ segmentation judgments and causal inferences.
This approach allows us to query participants about the appropriate hierarchical level of unit, and
allows us to see whether they have extracted the statistical structure of the stimuli without making
them aware of the segmentation task. This approach also has the advantage of allowing us to use
exactly the same measure for judgments of familiarity, causality and coherence, and to evaluate par-
ticipants’ responses in cases where a single correct segmentation of the stimuli may not be possible –
such as cases where only causal information is available, or cases of conflicting statistical and causal
cues. Discrimination measures also provide us with information about the kinds of items people have
extracted from an unfolding stream.

5.1. Method

5.1.1. Participants
Participants were 43 U.C. Berkeley undergraduate students who received course credit for partic-

ipating. Participants were randomly assigned to view one of four exposure corpora. For each exposure
corpus, three test corpora were created, making for 12 possible combinations, counterbalanced across
participants.

5.1.2. Stimuli
Similar to Baldwin et al. (2008), we used 12 individual video clips of object-directed motions

(referred to as small motion elements or SMEs in the previous work), to create four actions composed
of three SMEs each (see Fig. 4). The SMEs in this experiment are identical to those in Meyer and
Baldwin (2011). As in previous work, SMEs were sped up slightly and transitions were smoothed using
iMovie HD to make the exposure corpus appear more continuous.



Fig. 4. (a) Four actions composed of three unique motions each were used to create the exposure corpus. (b) A second corpus.
The actions of corpus 1 are the non-actions of corpus 2. (c) Example Action, Part-Action and Non-Action for corpus 1.
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We created a 23 min exposure corpus by randomly choosing actions to add to the sequence, with
the condition that no action follow itself, and that all actions and transitions between actions appear
an equal number of times, resulting in 90 appearances of each action and 30 appearances of each tran-
sition. To ensure that none of our randomly assembled actions were inherently more causal or mean-
ingful, we also created a set of four non-actions, each composed of three SMEs that never appear
together in the first corpus, and assembled a second corpus using these sequences as the actions
(see Fig. 4). Finally, we created two additional corpora, using the same actions but presented in a dif-
ferent order, to ensure that good segmentation performance was not limited to a particular order of
presentation.

To create our test corpora, we excerpted three 10-min (154 or 155 action) sections from each of the
four exposure corpora. After viewing one exposure corpus, each participant was tested on an excerpt
from the other corpus assembled from the same actions, so that they segmented a sequence they had
not previously viewed. We limited participants to 10 min of segmentation due to the overall length of
the experiment.

5.1.3. Procedure
Before the exposure corpus, participants were instructed only to pay close attention, and told only

that they would be asked about the video after it had played. After the exposure corpus, participants
were directed to watch the test corpus and, while watching, to divide the video up into action units by
pressing a key whenever they believed that a natural and meaningful unit of action had ended and a
new one was beginning (these instructions are modeled on those used by Zacks (2004)). The exact
instructions were as follows:

In the next part of the experiment you will be asked to divide an action sequence into natural and
meaningful units of activity. What we mean by natural and meaningful is as follows. Imagine I
remove a pen cap and then start writing with the pen. Those two actions go together in a sensible
way. Now what if, instead, I remove the pen cap and then tie my shoe. I could do those actions
together, but they don’t really go together. We would like you to press a button whenever you
think a sequence that goes together has ended and a new sequence is beginning.

As noted earlier, previous work has shown that people can segment at multiple hierarchical levels.
In order to guide participants towards segmenting at the level of actions rather than SMEs. partici-
pants were also told:



Fig. 5. Average boundary recall probability for Experiment 1 model simulations. Results are shown for a range of values of the
two segmentation parameters, p# and a0. The model has good recall performance across a broad range of parameter values,
with perfect performance for all combinations of p# ¼ 0:99 and a0 6 50.
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People can also vary the level at which they break up actions. For example, you could separate
‘‘uncap pen’’ from ‘‘begin writing’’ or you could lump them together into one larger action: ‘‘writing
with pen’’. We would like you to press a button to mark the end of the largest units that seem nat-
ural and meaningful to you, those that are like ‘‘writing with pen’’.

Following the exposure corpus, the test video was preceded by a supervised trial with a practice
video (consisting of entirely novel stimuli) that allowed participants to learn the interface, and during
which the experimenter would clarify that participants did not need to mark a division after every
SME, but instead should be marking meaningful actions one or more SMEs in length.

The experiment interface was a custom web application using HTML5, JavaScript, PHP, and MySQL.
However, all participants participated from in-lab computers.

5.2. Results

Fig. 6 shows the distribution of participants’ raw key presses across actions. In order to interpret
participant responses, each key press was subsequently assigned to a boundary between two SMEs.
Preliminary plotting of the timing of key presses within SMEs revealed that presses were distributed
bimodally (Fig. 6), with one mode occurring at the boundary between SMEs, and the other occurring in
the middle of the SME. Since participants were instructed to mark the boundary at the end of each
action, we assigned the presses in the middle of the motion to the preceding boundary.

Accordingly, key presses during the first three quarters of an SME were rounded to the preceding
boundary, and only those in the last quarter of an SME were assigned to the upcoming boundary.
Redundant key presses – presses beyond the first assigned to a particular boundary by each sub-
ject–were excluded from analysis. Finally, the boundary after the final SME and any key presses
assigned to it were excluded from analysis. This was done because the test corpus video ended imme-
diately after the final SME and, therefore, participants did not have a complete opportunity to mark a
boundary after the final SME.

Participants marked a total of 5830 boundaries between units of action (excluding 198 boundaries
by the criteria described above). Boundaries marked between the final SME of one action and the first
SME of the next were considered correct and all other marked boundaries were considered incorrect
(giving a chance level of 1

3 if boundaries were distributed randomly). The precision (correct marked
boundaries/ total marked boundaries) of the group was 48.3%, performance significantly greater than
would be expected by chance (two-tailed binomial test, p < 0:0001).

Individual participants marked an average of 136:7 boundary points each (min ¼ 31 max ¼ 374),
out of approximately 465 possible boundaries and approximately 155 possible correct boundaries.



Fig. 6. (a) Distribution of participants’ boundary presses within actions. The two vertical lines represent the motion boundaries.
The y-axis is the percentage of all presses occurring at that temporal point in their action. (b) Distribution of boundary presses
within a motion. The y-axis is the percentage of all presses occurring at that temporal point in their motion.
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The average precision among participants was 50.2%. 21 of the 43 participants performed significantly
better than chance (two-tailed binomial tests, p < :05). The average recall (correct marked boundaries/
number of correct boundaries in the test corpus) among participants was 42.7%. There was no effect of
the particular actions viewed on participants performing above chance (Fisher’s exact test, p ¼ 0:23).

5.3. Discussion

The results of Experiment 1a are the first to demonstrate that people are able to provide online seg-
mentation judgments for artificially constructed statistical actions, using the same type of segmenta-
tion paradigm previously applied to videos of everyday intentional actions (e.g., Newtson, 1973; Zacks,
Tversky et al., 2001). Participants were significantly more likely to mark boundaries at the end of an
action than within an action, indicating that they perceived actions, rather than parts of actions, to be
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the natural units in these sequences. Participants were able to provide correct segmentation judg-
ments for these sequences using only the transitional probabilities between the motions in the
sequence.

It is worth noting that participants in this task faced a significantly more challenging problem than
our model: they were presented with continuous video to segment rather than a set of discrete
motions, and they were not aware of the precise hierarchical level of segmentation we were looking
for. For instance, segmenting each individual SME in the corpus (a valid level of segmentation) would
lead to chance precision, while segmenting at a higher hierarchical level and grouping multiple actions
would lead to low recall. Finally, since SMEs are only �1 s long, participants needed to time their key
presses very precisely to have them assigned to the correct boundary, whereas our model has no
equivalent source of error.
6. Experiment 1b: Group segmentation

The results of Experiment 1a suggest that people are capable of providing accurate online segmen-
tation judgments for statistically constructed action sequences, and that this result is not dependent
on the particular sequences of SMEs chosen to be actions, or the order in which they are presented in
the corpus. Here, we present all participants with the same exposure corpus and test corpus, in order
to use the aggregate boundary judgments to produce a ‘‘group segmentation’’, such as that used in
past work on intentional action sequences (Newtson, 1973).

6.1. Method

6.1.1. Participants
Participants were 39 adults from the United States who were recruited through the Amazon

Mechanical Turk marketplace (MTurk) and were paid 4.50 for participating. All participants were cer-
tified ‘‘Master Workers’’ on MTurk, indicating an especially high feedback score on their past work.

6.1.2. Stimuli
We selected one of the four exposure corpora from Experiment 1a and showed it to all participants.

Similarly, all participants viewed the same test corpus (selected from the three test corpora from
Experiment 1a matched to the selected exposure corpus). This gave us a significant number of
responses to a single test corpus, allowing us to generate a meaningful ‘‘group-segmentation’’ of
the test corpus.

6.1.3. Procedure
Online participants completed the same task as the in-lab participants in Experiment 1a, with a few

small modifications. As online participants could not ask questions of – or receive feedback from – the
experimenter, the instructions were expanded and clarified to address the most common questions
and points of confusion observed in Experiment 1a. Specifically, participants were still asked to divide
the video into ‘‘natural and meaningful units of activity’’ and were presented with the same examples.
However, we replaced the instruction to ‘‘mark the end of the largest units that seem natural and
meaningful’’ with the more explicit instruction ‘‘We are asking you to mark meaningful groups of
(one or more) motions, we are not asking you to separate out each individual motion’’. To further min-
imize confusion, the video played during the interface practice session (between the exposure and test
corpora) was changed to a short excerpt of the exposure corpus, instead of a clip of entirely novel
stimuli.

Finally, whereas Experiment 1a had ended after the test corpus, there were a few attention-check
questions after the test corpus in Experiment 1b. To assess how closely participants had been
watching the exposure corpus, they were asked to report whether each of 16 motions (described in
one sentence each) had appeared in the exposure corpus. Half of the described motions had appeared
in the exposure corpus, and half had not. Experiment 1b used the same custom web interface as
Experiment 1a.
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6.2. Results

We used the same algorithm as in Experiment 1a to assign key presses to boundaries between
SMEs, and excluded boundaries by the same criteria. Participants marked a total of 5961 boundaries
between units of action (excluding 209 boundaries). 36 of 39 participants performed significantly bet-
ter than chance (binomial test, p < :05) on the attention-check questions. Data from the three partic-
ipants who did not perform significantly better than chance were excluded from analysis. The
precision of the group was 41.2%, performance significantly greater than would be expected by chance
(binomial test, p < 0:0001). The average precision among individual participants was 43.1%. 16 of the
36 participants performed significantly better than chance (binomial tests, p < :05). The average recall
among participants was 42%.

Following Newtson (1973), we created a ‘‘group-segmentation’’ of the test corpus. For each bound-
ary between SMEs, we counted the number of participants who marked a boundary at that location
and calculated the mean, l and standard deviation, r, of these values. Then, we segmented the test
corpus at each boundary at which the number of participants who marked a boundary was greater
than l + r. The precision of the group-segmented corpus was 77.4%, performance significantly better
than would be expected by chance (two-tailed binomial test, p < 0:0001). The recall of the group-seg-
mented corpus was 42.3%. We also created a group-segmented corpus based only on data from par-
ticipants who individually performed significantly better than chance. This produced the group-
segmented corpus seen in Fig. C3. The precision and recall of this corpus are 91.4% (two-tailed bino-
mial test, p < 0:0001) and 62.5%, respectively.

6.3. Discussion

These results further demonstrate that people’s online boundary judgments are consistent with the
statistical structure of the action sequence. The group segmented corpus from Experiment 1b shows
quite good precision and recall, with the group segmentation produced by those participants who
individually performed above chance (and therefore both understood and attended to the task, and
segmented at a hierarchical level above that of the individual SME), approaching the levels of perfor-
mance of our ideal observer model. Again, it is important to note that our ideal observer model pro-
vides a ceiling on possible performance, and that people performed well despite additional processing
and response constraints not faced by our model. In addition, as can be seen in Fig. C3, like our model
results, the errors in this group segmentation are mostly undersegmentations – failing to divide two
(or more) adjacent actions.

As noted earlier, previous work on statistical action segmentation has assumed that discrimination
of actions versus part-actions and non-actions is the result of segmenting the exposure corpus appro-
priately, in order to extract coherent units. However, the correspondence between rating measures
and boundary judgments had never been explicitly established. The results of this experiment verify
that these methodologies do in fact align.
7. Statistical cues to causal structure

Just as people can recognize words from an artificial language, and distinguish them from non-
words and part-words, we also know that they can recognize artificial actions grouped only by statis-
tical relationships and can distinguish these sequences from non-actions (motions that never
appeared together) and part-actions (motion sequences that cross an action boundary) (Baldwin
et al., 2008). Here we investigate whether these groupings are also considered meaningful, and
whether they are inferred to be causal.

7.1. Model simulations

For this experiment, we used the same set of model simulations presented in Experiment 1. In
addition to examining the model’s segmentation directly, we can also query the model about what



Fig. 7. Average probability of a sequence appearing in the action vocabulary. Results are shown for a range of values of the two
segmentation parameters, p# and a0. Across all parameter values, actions are more likely than part-actions.
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it has inferred about action sequences from this segmentation. In particular, here we examined the
model’s resulting action vocabulary – the set of sequences the model inferred as coherent units of
behavior.

Fig. 7 shows example results for the average probability that an action versus a part-action appears
in the vocabulary. Notice that though the absolute difference varies with the parameter values, at least
within the parameter ranges tested, actions are always more likely to be in the vocabulary than part-
actions. In other words, across all parameter settings tested, after observing and segmenting the data,
the model is more likely to believe that actions form coherent sequences that are likely to be observed
again in the future, as compared to part-actions. Critically, this means that perfect segmentation per-
formance is not required in order to extract and recognize statistically coherent units of action.

Finally, while there are no observed causal effects in these corpora, we can treat the effects as
unobserved, and ask which sequences the model thinks would have been likely to lead to effects. In
this case, the probability of a sequence leading to an effect reverts to the prior probability under
the model, which is ðp �xÞ þ ð1� pÞ� for actions in the vocabulary and � for other sequences. There-
fore, when ðp �xÞ þ ð1� pÞ� > �, the model will predict that actions are more likely to lead to effects
than other motion sequences. This inequality will be true as long as x > �; In other words, as long as
effects are more likely to follow causes than non-causes. As x� �, actions become increasingly more
likely to be causal relative to part-actions and non-actions.

These results confirm that the sequential probabilities available in the corpus can in principle be
used to distinguish actions from part-action and non-action sequences. The model also suggests that
actions are more likely to be causal than other sequences, even when effects are not observed, and that
the true action sequences used to construct the corpus are more likely to be identified as coherent
units of motion that appear in the action vocabulary than sequences that cross an action boundary
in the true segmentation, and that this inference about the relative coherence of actions versus other
sequences can be made even without a perfect segmentation of the corpus. In the following experi-
ment, we examine people’s inferences and segmentation performance for these same corpora.
8. Experiment 2: Coherence and causality of statistical actions

We hypothesized that, like our model, participants would judge artificial actions to be more coher-
ent and meaningful than similar non-action and part-action sequences (see Fig. 4), and would also view
actions as more likely to cause a (hidden) effect than non-actions and part-actions.
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8.1. Method

8.1.1. Participants
Participants were 93 U.C Berkeley undergraduate students, who received course credit for partic-

ipating. Participants were randomly assigned to view one of the two exposure corpora, and were also
randomly assigned to one of three follow-up question conditions. 28 participants were assigned to the
familiarity condition, 30 to the causal condition, and 37 participants were assigned to the coherence
condition.

8.1.2. Stimuli
We used two of the exposure corpora used for Experiment 1. We also created four action, four non-

action and four part-action comparison stimuli, where a non-action is a combination of three SMEs that
never appear together in the exposure corpus, and a part-action is a combination of three SMEs that
appears across a transition (e.g., the last two SMEs from the first action and the first SME from the sec-
ond action, see Fig. 4). Following Experiment 1, the actions of one corpus were used as the non-actions
of the other corpus.

8.1.3. Procedure
All participants were instructed to attend closely to the exposure corpus, and were told that they

would be asked questions about it later. Following the exposure corpus, participants in the familiarity
condition were presented with all 12 actions, non-actions, and part-actions individually, and asked
‘‘How familiar is this action sequence?’’. They responded by choosing a value on a 1 to 7 Likert scale,
with 1 representing ‘‘not familiar’’ and 7 representing ‘‘very familiar’’ (other than the use of ratings
instead of a forced choice format, this condition is almost identical to Baldwin et al. (2008)). In the
causal condition, participants were given a ‘‘hidden effect’’ cover story before viewing the exposure
corpus. These participants were told that certain actions would cause the bottle being manipulated
to play a musical sound, but that they would be watching the video with the sound off. Following
the exposure corpus, these participants were asked ‘‘How likely is this sequence to make the bottle
play a musical sound?’’, with 1 representing ‘‘not likely’’ and 7 representing ‘‘most likely’’. Finally,
in the coherence condition, participants were asked the question ‘‘How well does this action sequence
go together?’’. Like participants in Experiment 1, they were given the example of removing a pen cap
and then writing with the pen as ‘‘going together’’ and of removing a pen cap and then tying your
shoes as ‘‘not going together’’. As in Experiment 1a, prior to rating these sequences, participants in
all conditions were first presented with two practice videos featuring sequences of motion that had
not appeared in the exposure corpus, performed by a different actor, in order to become familiar with
the ratings procedure. They then rated all test items on a scale with 1 being ‘‘does not go together’’ and
7 being ‘‘goes together well’’.

For all conditions, we used a custom Java program to present video of action sequences and collect
ratings. The program presented all 12 actions, non-actions, and part-actions individually and in a ran-
dom order.

8.2. Results

We analyzed results by condition, using 2 � 3 ANOVAs on exposure corpus (1 or 2) and sequence
type (action, non-action, part-action). Results are shown in Fig. 8.

In addition, in order to examine the effect of the particular sequences chosen as actions, we ran
2 � 8 ANOVAs on sequence type (action or non-action), and action sequence (the 8 possible three-
motion combinations used as actions and non-actions, see Fig. 4). Part-actions were not included in
this analysis since these sequences were unique to each corpus, and so did not change sequence type
across corpora, and were not rated by all participants.

Ratings from 27 participants in the familiarity condition were analyzed (data from one additional
participants who rated all sequences identically as either a 1 or 7 was discarded). As predicted by pre-
vious results (Baldwin et al., 2008; Meyer & Baldwin, 2011), there was an overall significant effect of
sequence type F(2,50) = 25.14, MSE = 41.12, p < 0.0001, with actions rated significantly more familiar



Fig. 8. Results of Experiment 2. bars show one standard error.
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than part-actions and non-actions t(26) = 5.84, p < 0.0001, one sample t-test on contrast values, and
part-actions rated significantly more familiar than non-actions t(26) = 3.65, p < 0.01. There was no
effect of exposure corpus F(1,25) = 0.16, MSE = 0.42, p = 0.69, and no interaction between corpus
and sequence type F(2,50) = 0.01, MSE = 0.02, p = 0.99. There was also no effect of action sequence
F(7,208) = 0.68, MSE = 2.33, p = 0.69, and no interaction between action sequence and sequence type,
F(7,208) = 0.37, MSE = 1.26, p = 0.92.

Ratings from 29 participants in the causal condition were analyzed (data from one additional par-
ticipant was discarded). As predicted, there was an overall significant effect of sequence type
F(2,54) = 10.20, MSE = 12.869, p < 0.001, with actions rated as significantly more likely to cause a
musical effect than part-actions or non-actions t(28) = 2.36, p < 0.01, one sample t-test on contrast val-
ues, and part-actions rated significantly more likely to be causal than non-actions, t(28) = 2.36,
p < 0.05. There was no effect of exposure corpus, F(1,27) = 2.21, MSE = 4.6, p = 0.15, and no interaction
between corpus and sequence type, F(2,54) = 0.56, MSE = 0.70, p = 0.57. There was also no effect of
action sequence, F(7,224) = 1.66, MSE = 6.09, p = 0.12, and no interaction between action sequence
and sequence type, F(7,224) = 1.51, MSE = 5.52, p = 0.17.

Ratings from 37 participants in the coherence condition were analyzed. As predicted, there was an
overall significant effect of sequence type F(2,70) = 9.18, MSE = 14.47, p < 0.001, with actions rated as
going together significantly better than part-actions or non-actions t(36) = 3.87, p < 0.001, one sample
t-test on contrast values. There was also a marginally significant difference between part-action and
non-action ratings t(36) = 2.0, p = 0.05. There was an effect of exposure corpus, F(1,35) = 7.3,
MSE = 14.47, p < 0.05 but no interaction between corpus and sequence type, F(2, 70) = 0.44,
MSE = 0.70, p = 0.65. Similarly, there was a marginal effect of action sequence F(7,280) = 1.99,
MSE = 7.38, p = 0.057, but no interaction between action sequence and sequence type,
F(7,224) = 0.86, MSE = 3.18, p = 0.54.
8.3. Discussion

The results of this experiment support the hypothesis that people experience sequences of action
grouped only by their statistical regularities as causally significant, meaningful groupings. Participants
rated actions as more likely to cause a hidden musical effect than part-action and non-action
sequences. Similarly, participants rated actions as going together (a question we used as a measure
of sequence coherence and meaningfulness) significantly better than other sequences. Anecdotally,
a number of participants reported a feeling that the action sequences made more intuitive sense to
them than the other sequences. Finally, these results support the findings of Experiment 1, and of
Baldwin et al. (2008), that people are able to extract and recognize statistically grouped actions from
within a longer action sequence, and differentiate them from other non-action groupings.
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It is important to note that participants rated actions as more familiar, more likely to be causal and
more coherent than part-action and non-action sequences, even though all sequences were equally
arbitrary, and in fact the non-actions for one exposure corpus were the actions for the other, meaning
that the same sequences reversed their rating merely based on the number of times the SMEs
appeared together. While the fact that there was a marginal effect of action sequence in the coherence
condition suggests that some sequences were individually perceived as more or less meaningful, the
perception of all sequences was nonetheless influenced by being an action or a non-action in the same
way. Across conditions, the lack of interaction between the action sequences and their sequence type
confirms that it was not the particular choice of motion combinations that led participants to rate
actions as more familiar, causal and coherent. In fact, across conditions, all 8 individual sequences
had a higher average rating when they were actions than when they were non-actions.

These results have several important implications. First, they demonstrate that people’s sensitivity
to the statistical patterns in the exposure corpus is not simply an artifact of the impoverished stimuli,
but appears to play a real role in their subsequent understanding of the intentional structure of the
action sequence. The fact that participants found the statistically grouped actions to be more coherent
suggests that they do not experience the sequences they segment out as arbitrary, but assume that
they are meaningful groupings that play some (possibly intentional) role. This is further supported
by the results from the causal condition which show that, even without being presented with overt
causal structure, people believe the statistically grouped actions are more likely to lead to external
effects in the world.

Finally, these results also support our hypothesis that inference of action structure and causal
structure are linked, with statistically grouped actions being perceived as more likely to also be causal
variables. This result is consistent with our computational model, which also predicts that, without
other evidence of causal structure, actions are more likely to be causal than non-action and part-action
sequences.
9. Using causal structure

Our previous results suggest that statistical action structure can be used to infer causal relation-
ships, but can causal relationships be used to identify meaningful actions?

To investigate this, we constructed two new exposure corpora. In these corpora, there were no a
priori, statistically-grounded actions. Instead, each exposure corpus was assembled using four SMEs,
so that each individual SME would be seen an equal number of times, and all possible length three
sequences of SMEs would also occur with equal frequency.2 Throughout the exposure corpus, no length
three subsequences containing repeats of an SME were allowed to occur. This resulted in 24 possible
three-motion sequences (‘‘triplets’’). A target triplet of SMEs was then randomly chosen as the ‘‘cause’’.
Whenever this sequence of motions was performed in the exposure corpus, it was followed by an obser-
vable causal outcome (see Methods section of Experiment 3a, as well as Appendix B for further details on
the construction of these corpora). We first ran the model on the exposure corpora to examine its seg-
mentation and causal inference performance, and then looked at human performance on these same
corpora.
9.1. Model simulations

As before, an abstract representation of each unsegmented corpus was used as input to the model
(see Appendix C for an example corpus), with a letter standing for each SME, and ‘‘⁄’’ representing a
causal outcome. The model has three causal inference parameters: p the probability that an action
is causal, x the probability that a causal sequence leads to an effect, and � the probability of an effect
following a non-causal sequence. However, as noted earlier, what is relevant for causal inference is the
ratio of x to �. Therefore, we use a fixed value of � = 0.001, and vary only x. We also maintained the
2 In fact, it turns out that all length two sequences appear with approximately equal frequency as well, so that the transitional
probability between any two motions is �0.33.
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relationship x� �, reflecting our assumption that causes are relatively effective, and are much more
likely to precede effects than are non-causes. Following the results of Experiment 1, we used segmen-
tation parameter values a0 ¼ 3 and p# ¼ 0:99 throughout,3 and evaluated model results across values
of x 2 f0:5;0:7;0:9;0:99g and p 2 f0:01;0:05;0:1;0:2;0:3;0:4;0:5g.

We were interested in seeing whether the model could infer the correct causal subsequence from
within the longer sequence of motions (since there was no ‘‘correct’’ segmentation for the remainder
of the corpus, overall segmentation performance is not evaluated here). For all parameter values
tested, the model performed perfectly or almost perfectly, correctly identifying the target triplet as
causal across all samples and parameter values. Additionally, for all parameter values, the model cor-
rectly segmented either 23/24 or 24/24 occurrences of the causal triplet. Similarly, the target triplet
appeared in the vocabulary across all samples.

We ran our model on corpora designed so that all possible three-motion sequences occurred
equally often. Across all parameter values, our model consistently identifies the correct causal
sequence and segments out this sequence as an action. This suggests that, even when the transitional
probabilities between motions are uniform, it is possible to identify and extract the correct length cau-
sal sequence, using only the causal statistics in the corpora.
10. Experiment 3a: Inferring causal variables

This experiment investigates whether people are able to pick out causal subsequences from within
a longer stream of actions, and whether they use this causal information to inform their action seg-
mentation. Specifically, we hypothesized that when statistical cues to action segmentation are
unavailable, adults, like our model, will be able to use causal event structure to identify meaningful
units of action.
10.1. Method

10.1.1. Participants
Participants were 95 U.C. Berkeley undergraduates who received course credit for participating. 30

participants were assigned to the familiarity condition, 30 to the causal condition and 35 participants
were assigned to the coherence condition.
10.1.2. Stimuli
The structure and stimuli for this experiment closely matched that of Experiment 2. However, in

Experiment 3, the corpora were specially constructed so that all possible combinations of three
motions appeared equally often together, so that joint and transitional probabilities could not be used
to identify groupings (see Fig. 9). Throughout the exposure corpus, no length three subsequences con-
taining repeats of an SME were allowed to occur. This resulted in 24 possible SME triplets. A target
triplet of SMEs was then randomly chosen as the ‘‘cause’’. Whenever this sequence of motions was
performed in the exposure corpus, it was followed by the object playing a musical cartoon sound effect
(participants were able to hear the sounds, unlike in Experiment 2).

The exposure corpus was created by first generating 24 shorter video clips. Each clip was designed
to have a uniform distribution of both individual SMEs and of SME triplets. Specifically, in each clip,
the four unique SMEs appear exactly six times each, and 23 of the 24 possible SME triplets appear
exactly once each. We designed the 24 clips by using a De Bruijn sequence (van Aardenne-
Ehrenfest & de Bruijn, 1951), a cyclical sequence within which each subsequence of length n appears
exactly once as a consecutive sequence (see Appendix B for algorithmic details). These 24 video clips
were shown consecutively in the exposure corpus, but were clearly separated from each other by text
notifying the participant of the beginning and end of each shorter clip. The result was an exposure
3 Additional simulations confirmed that causal inference results were not significantly affected by changing the segmentation
parameters.
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Fig. 9. A portion of one of the Experiment 3 exposure corpora. four SMEs Poke, Look, Feel, Rattle are distributed so that all
possible triplets appear equally often. A target triplet Look, Feel, Poke is chosen to cause a sound.
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corpus composed of 24 short video clips, with each SME appearing 144 times throughout the complete
corpus, and each triplet appearing 20–24 times.

iMovie HD was used to assemble the exposure corpus and add a cartoon sound effect following
every appearance of the target sequence. Two different exposure corpora, each using a distinct set
of four SMEs were created. Look, Poke, Feel, and Rattle were used to create the first exposure cor-
pus, with Look Feel Poke being the target triplet, and Read, Slide, Blow, and Empty were used to
create the second exposure corpus, with Slide Blow Empty being the target triplet.

10.1.3. Procedure
Participants were divided into the same three rating conditions as in Experiment 2. The procedure

was identical to that of Experiment 2, with the difference that after viewing the exposure corpus, par-
ticipants rated all 24 possible SME triplets, and that all participants were told that certain action
sequences caused the bottle to play a sound.

10.2. Results

We analyzed all results using 2 � 2 ANOVAs on exposure corpus (1 or 2) and sequence type (target,
other). No effects of exposure corpus were found. Results are shown in Fig. 10.

Ratings from 28 participants in the familiarity condition were analyzed (data from an additional two
participants who rated all sequences identically as either a 1 or 7 was discarded). There was no effect
of sequence type F(1,26) = 1.58, MSE = 1.74, p > 0.22. Participants rated the target sequence and the
other SME triplets as equally familiar.

Ratings from 30 participants in the causal condition were analyzed. As predicted, there was a sig-
nificant effect of sequence type F(1,28) = 193.97, MSE = 310.439, p < 0.0001, with the target sequence
being rated as much more likely to lead to a musical sound than the other SME triplets. This difference
remains significant when the target sequence is compared only to non-target permutations of the
same motions, t(29) = 10, p < 0.0001, one sample t-test on contrast values.

Ratings from 35 participants in the coherence condition were analyzed. As predicted, there was a
significant effect of sequence type F(1,33) = 19.44, MSE = 47.1, p < 0.0001, with the target sequence
rated as going together significantly better than the other SME triplets. This difference remains signif-
icant when the target sequence is compared only to non-target permutations of the same motions,
t(34) = 4.18, p < 0.001, one sample t-test on contrast values.

Finally, we compared ratings from the causal and coherence conditions using a 2 � 2 ANOVA on
condition and sequence type. There was no effect of condition F(1,63) = 1.04, MSE = 1.94, p = 0.31,
but a significant interaction between condition and sequence type F(1,63) = 32.1, MSE = 68.37,
p < 0.0001. Post-hoc t-tests found that causal ratings were significantly greater than coherence ratings
for the target sequence, t(63) = 2.98, p < 0.01, two sample t-test, while coherence ratings were signif-
icantly greater than causal ratings for the non-target sequences t(63) = 5.95, p < 0.0001.

10.3. Discussion

This experiment is one of the first to demonstrate that people can infer a correctly ordered set of
causal variables from within a longer temporal sequence. In fact, the results of this experiment suggest
that it was a relatively easy task for participants. Participants in the causal condition were nearly at



Fig. 10. Results of Experiment 3a. Error bars show one standard error.
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ceiling in their ratings of how likely sequences were to lead to a musical effect, with the target
sequence having a mean rating only slightly below 7 and the remaining sequences being rated a bit
below 2. Importantly, this was true even when the non-target sequences contained all the correct
motions, but in an incorrect order.

The results of this experiment also provide further support for a relationship between action seg-
mentation and causal inference. Even though there were no statistically grouped actions in this exper-
iment, participants still perceived the target sequence as being more meaningful (going together
better) than the other sequences, suggesting they had nonetheless segmented it out as a coherent
action unit. It is worth noting that the ratings for the coherence question were different than those
for the causal question, suggesting that participants did interpret the question as one of meaningful-
ness, rather than an alternate phrasing of the causality question. Note that this difference is qualita-
tively predicted by the model; An artifact of not only identifying the causal triplet but of segmenting
the corpus, is that other triplets end up in the action vocabulary as well, but without the consistency of
the target triplet. In contrast, other triplets are never identified as causal.

Finally, while not directly relevant to our model predictions, it is interesting to note that, despite
correctly identifying the target sequence as causal, participants did not rate it as more familiar than
the other sequences. Instead, participants appeared to be aware that they had seen all the sequences
an equal number of times, and rated them all as equally familiar. This implies that participants are not
judging the target sequence as more coherent or more likely to be causal due to some sort of low level
saliency effect that causes them to remember this particular sequence more clearly. It also suggests
that participants, at least in this context, interpret the familiarity question as a question about fre-
quency of appearance. Previously, Meyer and Baldwin (2011) found that familiarity responses reflect
both a sequence’s overall frequency of appearance, and the conditional probabilities within the
sequence. In this case, both conditional probabilities and overall frequency were balanced across all
SME triplets, and neither provided a cue to which sequences were more meaningful. These results sug-
gest that participants may be aware that certain sequences are more causal or more coherent, while
also being aware that they have seen other sequences equally often, and that coherence may more clo-
sely correspond to the units our model extracts than familiarity. Therefore, this pattern of results is
compatible with our model predictions if we treat ‘‘how familiar is this sequence’’ as a question about
the frequency of that sequence’s appearance (or perhaps about the conditional probabilities within the
sequence), and ‘‘how coherent or meaningful is this sequence’’ as a more holistic question about the
extraction of that sequence as a meaningful unit, independent of its statistical probabilities.

11. Experiment 3b: Identifying correct causal subsequences

Experiment 3a found that people are able to pick out causal subsequences from within a longer
stream of actions. However, in the previous experiment, we only asked participants to rate actions
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composed of three SMEs each. This potentially leaves open the question of whether, like our model,
participants are really identifying the correct causal subsequence, or whether they might actually pre-
fer a subsequence or supersequence of the causal actions if given the choice. In this experiment, we
explicitly look at whether participants are able to identify causal subsequences of the correct length.
11.1. Method

11.1.1. Participants
Participants were 53 U.C. Berkeley undergraduates who received course credit for participating.
11.1.2. Stimuli
The structure and stimuli for this experiment closely matched those of Experiment 3a. The same

exposure corpora were used as in Experiment 3a. As in Experiment 3a, Look Feel Poke was the target
triplet in the first exposure corpus, and Slide Blow Empty was the target triplet in the second corpus.
In both corpora, the target triplet was always followed by a cartoon sound effect.

A series of 30 test stimuli were created for each exposure corpus. Each test stimulus was an action
composed of between 1 and 5 SMEs. For each corpus, the set of test stimuli was constructed so that it
contained the target action, single and double length subsequences of the target action (e.g., for Slide
Blow Empty these would be Empty and Blow Empty), and quadruplet and quintuplet length superse-
quences of the target action (e.g., Read Slide Blow Empty and Empty Read Slide Blow Empty).
There were also non-target actions of each of these lengths, some of which contained subsequences
of the target action (e.g., Read Blow Empty) and others that did not (e.g., Empty Slide Read). See
Fig. 11 for a complete set of test sequences for one corpus. iMovie HD was used to assemble the test
stimuli, as in Experiments 1 and 2.
Fig. 11. The 30 test stimuli for Experiment 3b, exposure corpus 1. Test stimuli include both subsequences and supersequences
of the target action Slide Blow Empty. These are shown with a dark background. Comparison sequences of equal length are
shown with a light background.
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11.1.3. Procedure
Participants were randomly assigned to view one of the two exposure corpora. All participants

were given viewing instructions identical to those in the causal condition of Experiment 3a. After
viewing the exposure corpus, participants were asked ‘‘If you were trying to cause a musical sound,
how likely would you be to use this action sequence?’’, for all 30 test sequences. As in the causal con-
dition of Experiments 2 and 3a, participants responded by choosing a value on a 1 to 7 Likert scale,
with 1 representing ‘‘not likely’’ and 7 representing ‘‘very likely’’.

11.2. Results

We analyzed results using 2 �2 ANOVAs on exposure corpus (1 or 2) and sequence type (contains
target, other). No effects of exposure corpus were found. Results are shown in Fig. 12.

Ratings from all 53 participants were analyzed. There was a significant effect of sequence type
F(1,51) = 248.61, MSE = 1714.12, p < 0.0001, with sequences containing the target being rated as much
more likely to lead to a musical sound than other sequences.

We compared ratings of each sequence containing the target to the non-target sequences of equiv-
alent length, using one sample t-tests on contrast values. In all cases, the target-containing sequences
were rated as significantly more causal than the non-target sequences of the same length. Triplet
sequences: t(52) = 13.60, p < 0.0001. Quadruplet sequences: t(52) = 14.46, p < 0.0001. Quintuplet
sequences: t(52) = 12.85, p < 0.0001.

We compared ratings of single and double length terminal subsequences of the target to other sin-
gle and double length sequences, using one sample t-tests on contrast values. Subsequences of the tar-
get were rated as significantly more causal than other sequences of equivalent length. Single SME
sequences: t(52) = 3.64, p < 0.001. Double sequences: t(52) = 5.96, p < 0.0001.

Finally, we compared ratings of the target triplet to subsequences and supersequences of the target,
using one sample t-tests on contrast values. Subsequences were rated as significantly less causal that
the target triplet itself. Single SME subsequence of target: t(52) = 15.08, p < 0.0001. Double subse-
quence of target: t(52) = 14.80, p < 0.0001. Finally, the target sequence and supersequences of the tar-
get were rated as equally causal. Quadruplet sequences: t(52) = 1.19, p > 0.24. Quintuplet sequences:
t(52) = �0.32, p > 0.74.

11.3. Discussion

The results of Experiment 3b confirm that people can identify the correct length causal sequence
from within a longer sequence. Participants correctly rated only sequences containing the complete
Fig. 12. Results of Experiment 3b. Error bars show one standard error.
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target triplet as very likely to lead to the effect. They were able to distinguish these causal sequences
from sequences containing only a subset of the necessary sequence, and from sequences containing all
of the same motions, but in an incorrect order.

Once again, there are a number of intriguing results that, while not directly relevant to our model
predictions, are worth noting. First, participants rated subsequences of the causal triplet as less likely
to be causal than the full triplet, but as more likely to be causal than other sequences of equivalent
length, perhaps suggesting that participants recognized these subsequences as necessary but not suf-
ficient for producing the effect. Second, while the jump in causal ratings for the target triplet and its
supersequences confirms that, like our model, participants recognized the triplet sequence length as
both necessary and sufficient for causing the effect, it is interesting to note that participants did not
penalize the supersequences for including superfluous motions. Both results may reflect a bit of ambi-
guity in the question we asked participants. While our model was tasked with inferring only the exact
causal sequence, participants may have wanted to also signal their knowledge that the subsequences
were necessary (though not sufficient), and that the supersequences, while including superfluous
actions, would nonetheless lead to the effect. Both of these results are compatible with our model
results. In fact, interpreting the question as asking how likely this sequence would be to be followed
by the effect, would lead to the same pattern of results seen in the human data. It is important to
emphasize that this pattern of results would not be expected to occur if participants thought that a
supersequence was the causal sequence, with the causal triplet being necessary, but not sufficient.
In that case, the target triplet would be expected to rate higher than non-target triplets, but signifi-
cantly lower than its causal supersequence.
12. Evaluating alternative models

Experiments 1, 2, and 3 together suggest that people can use statistical structure in action
sequences to inform their causal inferences, and can use causal relationships between actions and
external outcomes to help determine action structure. In particular, they demonstrate that people
believe that action sequences with higher internal transition probabilities are good candidate causes,
and that sequences of motions that predict outcomes in the world are likely to group together, inde-
pendent of their transition probabilities.

However, before we can attribute this performance to joint causal and statistical inference, we
must look at whether other simpler heuristics could potentially explain these results as well. Below
we review a number of alternative approaches to segmentation and causal inference and explore
which aspects of the previous experiments they account for. We next present a new experiment to
differentiate these alternative models from our joint inference model.
12.1. Alternative models

12.1.1. Transitional probability model
One alternative segmentation model that has been looked at in the statistical word learning liter-

ature (e.g., Saffran et al., 1996) is a model that operates directly on the conditional probabilities
between syllables, without an explicit generative model of words or sentences (or in our case, of
actions or action sequences). Following Frank, Goldwater, Griffiths, and Tenenbaum (2010) we can
represent such a model by computing the conditional probability of each motion given the preceding
motion from occurrence counts in the corpus
pðmjjmj�1Þ ¼
Cðmj�1;mjÞ

Cðmj�1Þ
ð7Þ
where Cðmj�1;mjÞ is the number of times the motions mj�1;mj have occurred in sequence, and Cðmj�1Þ is
the number of times mj�1 has occurred overall. We can compute this value for all possible pairs of
SMEs in the corpus, and then insert a boundary in the corpus whenever a local minima in transitional
probability occurs.
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In the Experiment 1 and 2 corpora, conditional probabilities are 1 between motions in an action,
and �0.33 between actions. For example, for the sequence PEC USA pðCjEÞ ¼ 1 while pðUjCÞ � 0:33.
By inserting a boundary any time pðmjjmj�1Þ < 1, this approach would correctly segment the corpus
into its component actions. While this model has no causal component, it is perhaps plausible to think
that, in the absence of causal data, people could first use transitional probabilities to segment the
sequence, and then identify the actions they segmented as potential causes afterwards.

However, this conditional probability heuristic would fail in Experiment 3, since in these corpora
the conditional probability between all pairs of SMEs is identical,�0.33, and so conditional probability
would be unable to identify the target sequence. This remains true even if we treat the musical event
as just another statistical occurrence (another ‘‘motion’’) in the sequence. The motion preceding the
effect is not sufficiently predictive on its own, and has a low probability of transitioning to the effect
(�0.11). Therefore, transitional probabilities between motions cannot account for the results of Exper-
iment 3.

12.1.2. Causal inference only model
Another possibility for accounting for the Experiment 3 data is a purely causal inference model,

that does not take the statistical co-occurrences of the actions into account. As mentioned in the dis-
cussion of Experiment 3, people could evaluate the causal strength of various sequences by using the
conditional probability of the effect following that sequence in the corpus.

One disadvantage to this option is that it does not answer the question of how to pick out which
sequences to evaluate (the causal variable problem). One plausible heuristic would be to only consider
sequences up to a certain length, for instance no more than 5 motions long. In the case of 4 possible
motions (as in Experiment 3), this gives us 1364 potential causal sequences to consider. We can then
compute
pðeventjsequenceÞ ¼ Cðsequence; eventÞ
CðsequenceÞ ð8Þ
For each of these sequences. This approach would give us pðeventjsequence ¼ target singleÞ � 0:16,
pðeventjsequence ¼ target doubleÞ � 0:5, pðeventjsequence ¼ target tripletÞ ¼ pðeventjsequence ¼
target quadrupletÞ ¼ pðeventjsequence ¼ target quintupletÞ ¼ 1, and 0 for all other sequences, a
result qualitatively very similar to human performance.

Since there is no segmentation component to this model, it makes no prediction for the Experiment
1 and 2 corpora, and cannot account for the human data on its own. However, it is possible that, in the
presence of statistical patterns in the motion and no causal data, people apply a statistical learning
strategy, such as the transitional probability strategy described above, while in the presence of causal
data and no statistical action structure, they apply a simple causal learning strategy such as this one,
without using joint inference in either case.

12.1.3. Sequential structure only model
Another possibility is that our generative model of sequential structure is sufficient on its own,

without needing the additional causal component. We already know that this is the case for segment-
ing the Experiment 1 and 2 corpora, where no causal data is available. For Experiment 3, we can once
again treat events as simply another ‘‘motion’’ in the sequence. In this case, the sequential structure
only model performs as well as our joint inference model, segmenting out all occurrences of the causal
triplet. Once again, if people use a similar approach, they could first use this purely statistical approach
to identify the target sequence, and only subsequently infer that it is more likely to be the cause.

12.2. Joint inferences from conflicting cues

In order to discover whether people in fact perform joint inference, we need a case where our joint
inference model and the alternative sequential inference models described above make distinct pre-
dictions. We can test whether causal structure and action structure are jointly inferred by generating
a new set of corpora, in which statistical and causal cues are both present, and are in conflict. As in the
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Experiment 1 corpora, there are four statistically determined actions, but in these new corpora there is
also a target part-action that consistently leads to the object playing a musical sound.

The corpora used in this next set of simulations were exactly the same as those used in Experiment
1, but with an effect added after every occurrence of the target part-action (see Appendix C).4 As
before, an abstract representation of each unsegmented corpus was used as input to the model, with
a letter standing for each SME.

We first look at the predictions generated by our alternative models that perform causal inference
and action segmentation separately, and compare these to our model’s joint segmentation and causal
inference results, to see whether joint inference produced distinct predictions, and whether those
results were an improvement relative to those generated by the separate inference processes. Finally,
we looked at human performance on these same corpora.
12.2.1. Transitional probability model
As described earlier, we can segment this corpus using the conditional probability of each motion

given the preceding motion, inserting a boundary when this probability drops below some threshold.
If we simply ignore events, then this approach would correctly segment the corpus into its component
actions (as in Experiment 1), but would never extract the target part-action as a coherent unit.

We can instead treat the event as a motion. For instance, if the causal part-action is TFDBL⁄, com-
posed of actions TFD and BLR, then pð�jLÞ � 0:33, pðRjLÞ � 0:66 and pðRj�Þ ¼ 1, with the other condi-
tional probabilities staying the same as before. If we set our segmentation threshold to pðmjjmj�1Þ < 1
as before, we get the segmentation TFD BL ⁄R whenever the part-action occurs and BL R whenever the
action BLR occurs outside this context. This approach never identifies the target part-action, and never
identifies the action containing the effect, e.g., BLR.

Alternatively, if we set the threshold to pðmjjmj�1Þ < 0:66, we will recognize BLR, but still get the
segmentation TFD BL ⁄R whenever the effect occurs, and never identify the target part-action. There-
fore, the conditional probability model would be unable to identify the target part-action as a coherent
unit, or to propose it as a potential causal variable for sequential inference.
12.2.2. Causal inference only model
We can again consider the conditional probability of motion sequences predicting the effect, for all

possible sequences of 5 or fewer motions. This approach would correctly identify the target part-
action as causal pðeventjtargetÞ ¼ 1. It would identify all other actions, part-actions, and non-actions
as equally non-causal, pðeventjotherÞ ¼ 0, and has no mechanism of distinguishing actions from other
non-causal sequences, treating them identically.
12.2.3. Sequential structure only model
We can also look at the results of running our model using only the statistical structure of the

motion sequence, and ignoring the causal information. This is equivalent to running the model on
the Experiment 1 corpora, where there was no causal information present. As before, this model
would correctly identify actions, and, depending on the parameter settings, would also discover
part-actions. However, this model makes no distinction between the target part-action and other
part-actions, and across all parameter values, never segments out the exact causal sequence.

We can again look at what happens in this model if we treat effects as another event in the
sequence. In this case, the model will always come up with segmentations that embed the event.
For instance, if the causal part-action is TFDBL⁄, composed of actions TFD and BLR, this model will
produce either TFDBL⁄R or TFD BL⁄R depending on the parameter settings, but will never produce
e.g., TFDBL⁄ R or TF DBL⁄ R. Therefore, this model has no mechanism for distinguishing the target
part-action from other part-actions.
4 Note that this means that if, for example, the actions are TFD and BLR, and an effect is added so that we see TFDBL⁄R every
time these two actions occur together, then treating the causal sequence as any of TFDBL, FDBL and DBL is equally valid for this
corpus, since they will all always co-occur with the effect.



Fig. 13. Average probability of a sequence appearing in the action vocabulary for Experiment 4 Joint Inference Model. Results
are shown for a range of values of the two causal parameters, p and x. Across all parameter values, actions are more likely than
part-actions, with the target part-action being either intermediate, or equal to actions in probability.
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12.2.4. Joint inference results
We ran our model for the parameter range a0 2 f1;2;5;10;20;50g and p# ¼ 0:99, the parameter

range producing perfect segmentation performance in Experiment 1. Preliminary analysis indicated
that, as in Experiment 1, results were not significantly influenced by the particular choice of a0 within
this range, so we present result collapsed across values of a0. 5 Since the exact values of the causal
parameters p and x had no impact in Experiment 2 within the range tested, we used a slightly coarser
grid to reduce computation time: x 2 f0:5;0:7;0:9;0:99g and p 2 f0:01;0:05;0:1;0:3;0:5g.

Overall, the model succeeded at identifying the true actions, which appeared in the vocabu-
lary with a probability ranging from 0.95 to 1 across parameter values. Similarly, the model
consistently identified the target sequence,6 which appeared in the vocabulary with average prob-
ability ranging from 0.5 to 1 across parameters. Whenever the target sequence appears in the
action vocabulary, the model also correctly identifies it as causal. In contrast, sequences containing
other part-actions appeared in the vocabulary with probability ranging from 0.03 to 0.06. Results
are shown in Fig. 13.

The tendency to consistently segment the original actions versus the target part-action varied
across parameter values, reflecting the tension between the causal and statistical segmentation cues
in the corpus. Lower values of p and x – representing a prior belief in causes being very unlikely, and
relatively ineffectual – caused the model to overlook the causal information in favor of the statistical
structure of the sequence (e.g., TFD BL⁄R or TFD BL⁄ R), leading to actions being more likely, while
higher values of p and x made the causal cue more relevant, leading to the target part-action being
more likely (e.g., TFDBL⁄ R).
12.2.5. Summary
When presented with a corpus where statistical and causal cues to segmentation conflict, our joint

inference model makes distinct segmentation and causal inference judgments, when compared to
models that look only at transitional probabilities, or only at causal relationships. The joint model also
outperforms these models in terms of successfully identifying both the target causal sequence, and the
statistically determined actions used to create the corpus.
5 Collapsing in this way gives us
P

a0
pðhjd;a0Þpða0Þ, so that we are still sampling from the posterior distribution, with a uniform

prior pða0Þ over the sampled values of a0.
6 For these parameters, the model always identifies the longer sequence, such as TFDBL as the causal sequence.



Fig. 14. Results of Experiment 4. Error bars show one standard error.
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13. Experiment 4: Conflicting Causal and Statistical Cues

Here we present people with the same corpora used to test our model and the alternative models
described above, and again have them rate actions, part-actions, and non-actions on their coherence
and causality. If participants preferentially use causal cues when judging causal relations, and statis-
tical action structure when making segmentation judgments, then we would expect the target part-
action to be rated as no more coherent than any other part-action (like the part-actions of Experiment
2) but to be rated as highly causal (like the target sequences of Experiments 3). Similarly, we would
expect actions to be rated as highly coherent (like the actions in Experiment 2), but no more causal
than the other non-target sequences (like the non-target sequences of Experiments 3).

However, if participants are using both sets of cues across inference tasks, then we would expect to
see a compromise between the two in their ratings. In particular, we might expect that the target part-
action would be rated not only as highly causal, but also as highly coherent (like the target sequences
of Experiment 3), and similarly that actions might still be judged more causal than non-actions and
part-actions (as in Experiment 2), even when the true causal sequence can be fully determined.

13.1. Method

13.1.1. Participants
Participants were 171 U.C. Berkeley undergraduates who received course credit for participating.

89 participants were assigned the causal condition and 82 participants were assigned to the coherence
condition.

13.1.2. Stimuli
The structure and stimuli for this experiment closely matched those of Experiment 2. The second

set of exposure corpora from Experiment 1 were used, with the same actions and non-actions as in
Experiments 1 and 2, except that they were edited so that the target part-action in each corpus
was always followed by a cartoon sound effect. In this experiment, the part-action Empty Rattle

Clean was the target part-action in the first exposure corpus, and Drink Blow Look was the target
part-action in the second corpus.

For the rating portion of this experiment, we created eight part-action comparison stimuli for each
corpus – the four original part-action stimuli from Experiment 2, along with four additional part-
actions. In both corpora, one of these part-actions was the target part-action. iMovie HD was used
to assemble the test stimuli, as in the preceding experiments.

13.1.3. Procedure
Participants were randomly assigned to view one of the two exposure corpora, and were also ran-

domly assigned to one of two follow-up question conditions. The instructions for the two conditions
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were identical to the causal condition and the coherence condition of Experiment 3a respectively. As
in Experiments 3a and 3b, all participants were told that certain action sequences caused the bottle to
play a musical sound.

Following the exposure corpus, participants in both conditions were presented with all 12 actions,
non-actions, and part-actions individually, and asked to rate them by choosing a value on a 1–7 Likert
scale. As in the previous experiments, in the causal condition participants were asked ‘‘How likely is
this sequence to make the bottle play a musical sound?’’, with 1 representing ‘‘not likely’’ and 7 rep-
resenting ‘‘most likely’’, while in the coherence condition participants were asked the question ‘‘How
well does this action sequence go together?’’.

13.2. Results

Results are shown in Fig. 14. Ratings from 86 participants in the causal condition were analyzed (data
from an additional three participants who rated all sequences identically as either a 1 or 7 was dis-
carded) using 2 � 4 ANOVAs on exposure corpus (1 or 2) and sequence type (action, non-action,
part-action, target). No effects of exposure corpus were found. As predicted, there was an overall signif-
icant effect of sequence type F(3,252) = 111.04 MSE = 185.44, p < 0.0001. The target part-action was
rated as significantly more likely to cause a musical effect than actions t(85) = �10.69, p < 0.0001,
one sample t-test on contrast values, part-actions t(85) = �12.16, p < 0.0001, one sample t-test on
contrast values, and non-actions t(85) = �11.33, p < 0.0001, one sample t-test on contrast values.

Additionally, we looked at differences in ratings between the different types of non-target
sequences. While all non-target sequences were rated as significantly less causal than the target
sequence, actions were rated as significantly more likely to cause a musical effect than part-actions
t(85) = 4.29, p < 0.0001, one sample t-test on contrast values, and than non-actions t(85) = 2.93,
p < 0.01. There was no significant difference between ratings of part-actions and non-actions,
t(85) = 0.58, p = 0.57, one sample t-test on contrast values.

Ratings from 82 participants in the coherence condition were analyzed (data from an additional two
participants who rated all sequences identically as either a 1 or 7 was discarded) using 2 �4 ANOVAs
on exposure corpus (1 or 2) and sequence type (action, non-action, part-action, target). No effects of
exposure corpus were found. As predicted, there was an overall significant effect of sequence type
F(3,234) = 17.39, MSE = 28.18, p < 0.0001. Replicating the results of Experiment 2, actions were rated
as going together significantly better than part-actions t(79) = 7.39, p < 0.0001, one sample t-test on
contrast values, or non-actions t(79) = 6.635, p < 0.0001, one sample t-test on contrast values. There
was also a significant difference between part-action and non-action ratings t(79) = 3.97, p < 0.001.

Additionally, the target part-action was rated as significantly more coherent than the non-target
part-actions t(79) = �2.24, p < 0.05, and significantly more coherent than non-actions t(79) = �4.16,
p < 0.0001. There was no significant difference in coherence ratings for the target part-action when
compared to actions, t(79) = 1.01, p = 0.32, one sample t-test on contrast values.

Finally, we compared the two rating conditions directly, using a 2 � 4 ANOVAs on condition (causal
or coherence) and sequence type (action, non-action, part-action, target). As expected, there were sig-
nificant main effects of sequence type F(3,492) = 84.78, MSE = 139.49, p < 0.0001, and condition,
F(1,164) = 29.16, MSE = 108.90, p < 0.0001, as well as a significant interaction between type and con-
dition, F(3,492) = 41.60, MSE = 68.44, p < 0.0001. Causal ratings were significantly higher for the target
sequence than coherence ratings t(164) = 3.17, p < 0.01, while the reverse was true for actions, part-
actions, and non-actions t(164) P 4.50, p < 0.0001.

13.3. Discussion

The results of Experiment 4 suggest that people take both causal relationships and statistical struc-
ture into account when interpreting continuous human behavior, correctly identifying the part-action
as the most likely cause, but continuing to rate actions as more likely to also be causal when compared
to other part-actions and non-actions. Similarly, they judged the causal part-action to be very cohe-
sive, even though it violated the statistical regularities of the action sequence, suggesting that its cau-
sal properties led to it being considered a coherent unit of human action.
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These results are consistent with our model results, and not consistent with the results of the alter-
native models we tested. In particular, if people are making separate causal and segmentation infer-
ences, then the causal-only model predicts that the target part-action should be identified as causal,
and that all other sequences should be rated equally non-causal, as under this model there is no more
evidence for actions being causal than any other sequence type. Similarly, both our conditional prob-
ability and sequential structure only models would predict that the target part-action should not be
rated as particularly coherent, since there is no more statistical evidence for it being in the action
vocabulary than any other part-action sequence. Finally, if people were not making a specifically cau-
sal inference, but were just treating the effect as another event in the sequence, they should not treat
the target part-action as different from other part-actions in either condition.

14. General discussion

In this work, we presented a Bayesian analysis of how statistical and causal cues to action segmen-
tation should optimally be combined, as well as four experiments investigating human action segmen-
tation and causal inference. We found that both adults and our model are sensitive to statistical
regularities and causal structure in continuous action, and are able to combine these sources of infor-
mation in order to correctly infer both causal relationships and segmentation boundaries. These
results suggest that people jointly parse fluid motion into meaningful actions and infer the causal rel-
evance of those actions, with both domains being learned simultaneously and mutually, rather than
one being learned and then the other. In the following sections, we discuss the implications of these
results, as well as limitations of the current work and future directions for research.

14.1. Implications

We used a non-parametric Bayesian model, adapted from work on statistical language processing
to infer the segmentation and causal structure of the same sequences our human participants saw. The
model represents our assumption that the same underlying process generates human actions and cau-
sal motion sequences, implicitly capturing that actions are being chosen intentionally, often to bring
about causal outcomes. Our model results demonstrate that, at least in principle, action segmentation
is learnable and may partly rely on domain general statistical learning mechanisms. The parallels in
both human and computational model performance between word segmentation and action segmen-
tation tasks similarly supports the possibility of a more general statistical learning ability at work in
both domains. Our model also makes distinct segmentation and causal inference predictions when
compared to models that look only at transitional probabilities, or only at causal relationships. Finally,
these studies are the first to demonstrate that boundary judgments correspond to post hoc sequence
discrimination measures, suggesting that online segmentation and subsequent extraction of meaning-
ful units arise from the same underlying processes.

Taken together, these four studies suggest that among the cues people use to segment action are
both statistical cues such as transitional probabilities, and causal structure, and that action structure
and causal structure are learned jointly rather than being layered one on top of the other. Adults, at
least, can combine statistical regularities and causal structure to divide observed human behavior into
meaningful actions. Adults can also use their inferred segmentation to help them identify likely causal
actions. In particular, Experiments 3 and 4 demonstrate that people can identify the correct causal
subsequence from within a longer set of fluid motion, a critical step in extracting higher-level goal
directed units of behavior. In fact, these experiments are some of the first to demonstrate that people
can carry out causal variable discovery within a continuous temporal stream of events. The fact that
people rate artificially constructed actions as more coherent and meaningful than other motion
sequences suggests that this is not an isolated statistical learning ability, but an integral part of action
understanding. Finally, the results of Experiment 4 demonstrate that when statistical and causal cues
are both present in the action stream, both of them influence people’s judgments of action segmenta-
tion and of causal relationships.

We do not suggest that statistical cues are the only, or even the primary, way in which adults
extract meaning from observed behavior (just as other cues are available in language, like prosody,
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grammatical structure, and of course meaning), but that it is a cue, and one that may be available, and
especially important, early on. In particular, while goals and intentions may be important to extracting
meaningful actions (e.g., Zacks, 2004; Zacks et al., 2009), they may often be opaque (e.g., to a young
infant; when watching novel behavior). In these cases, statistical cues might be another option avail-
able to help break into the system.

As noted earlier in the paper, it has been theorized that statistical cues often arise naturally from
goal-directed action. In fact, there has been some prior work showing that when higher level goals and
intentions are removed from a video of everyday action (e.g., by playing the videos backwards Hard
et al., 2006), adults are still able to segment these videos. In fact, work by Hard et al. (2006) suggests
that their boundary judgments are relatively unaffected by their judgments of the intentionality of
these sequences. Our studies provide evidence for a mechanism – tracking of low-level statistical pat-
terns between motions – by which this segmentation could be accomplished.

Thus, an initially purely statistical parsing could lead to the discovery of intentionally meaningful
segments, useful for developing an understanding of others’ behavior in terms of goal-directed action.
In fact, it has been hypothesized that just this type of statistical parsing could play an important role in
social-learning in infants and non-human animals, allowing them to extract useful sequences to imi-
tate, or to predict the actor’s future behavior, without needing to fully understand their underlying
intentions (Byrne, 1999).

There is of course evidence for other low level-cues aiding segmentation, such as changes in the
overall image, or motion cues such as acceleration and deceleration of body parts, or changes in tra-
jectory (e.g., Hard et al., 2011, 2006; Newtson et al., 1977; Reynolds et al., 2007). These accounts are
not incompatible – image features and body pose may in fact be some of the features over which peo-
ple track statistical relationships (e.g., Buchsbaum et al., 2011; Reynolds et al., 2007).

However, there is reason to be particularly interested in the role of statistical information in par-
ticular, as there is a large body of evidence that infants (and adults) are able to pick up on just these
sorts of distributional cues, and that this ability is extremely general and wide ranging (e.g., Aslin et al.,
1998; Fiser & Aslin, 2002; Kirkham et al., 2002; Saffran et al., 1996; Saffran, Johnson, Aslin, & Newport,
1999). In fact, infants are not only capable of tracking statistical relationships over time-series such as
actions and words, but even show some understanding of simultaneously observed population-level
statistics over collections of objects (e.g., Denison & Xu, 2010; Denison & Xu, 2014; Xu & Denison,
2009; Xu & Garcia, 2008).

Similarly, the ability to track statistical relationships between variables in general, and conditional
probability relationships in particular, lies at the heart of many accounts of human causal inference
(e.g., Cheng, 1997; Gopnik et al., 2004; Griffiths & Tenenbaum, 2005; Shanks, 1995). That is, to reason
about predictive relationships between objects in the environment in a causal manner, people must be
able to detect those predictive relationships in the first place. There is evidence that at least this sta-
tistical aspect of causal reasoning begins emerging along roughly the same timeline as other statistical
learning abilities (Sobel & Kirkham, 2006, 2007).

Therefore, both our modeling and experimental results provide support for the idea that this early-
emerging, general statistical learning ability not only plays a role in extracting meaningful action units
and identifying causal variables and causal relationships, but that it unites these two inference pro-
cesses at a fundamental level. The qualitative fit of our joint inference model to human results, relative
to alternative models, indicates that even without explicit higher-level goal structure present, infer-
ences about causal relationships and action parsing do not proceed independently. This is consistent
with evidence that infants and young children are biased to perceive causal events as inherently agen-
tive (Bonawitz et al., 2010; Meltzoff, Waismeyer, & Gopnik, 2012; Muentener, Bonawitz, Horowitz, &
Schulz, 2012; Muentener & Carey, 2010; Saxe, Tenenbaum, & Carey, 2005; Saxe, Tzelnic, & Carey,
2007), and may even assume that simple causal events (e.g., launching) are the result of agency, or
an unseen human actor (Muentener & Carey, 2010; Saxe et al., 2005; Saxe et al., 2007).

14.2. Limitations and future work

While these results are suggestive, there are number of outstanding questions and areas for future
research. First, as an ideal observer model, our model makes claims about the kinds of information
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people may use to make segmentation judgments, but does not provide a process-level account of
how people might be carrying out these inferences. In particular, our model uses a batch algorithm,
meaning that the entire corpus is stored in memory, and then segmented as a whole. In contrast, peo-
ple are able to provide boundary judgments in real time, as a sequence of actions is viewed (e.g.,
Newtson, 1973; Zacks, Tversky et al., 2001), and are of course subject to working memory constraints.
In fact, a variety of work suggests that event segmentation both informs and results from working-
and long-term memory representations (for a partial review see Kurby & Zacks, 2008). Frank et al.
(2010) added memory constraints to the Goldwater et al. (2009) word segmentation model, and found
that this increased the qualitative fit to human performance. A similar approach could be taken with
our model in future work.

While the results of Experiment 1 suggest that statistical structure plays a role in online event per-
ception, they are not definitive, since participants viewed an exposure corpus before providing online
boundary judgments. Our current model is agnostic as to whether statistical cues are used immedi-
ately during the initial viewing, or only subsequently, to extract meaningful structure from what
was observed. It is possible that our participants are first learning the actions (using statistics), and
then using the recognized actions to find boundaries. This is an interesting mechanistic question
beyond the scope of the current paper.

One possible mechanism for modeling process-level approximations to Bayesian inference is a par-
ticle filter (Doucet, de Freitas, & Gordon, 2001; Sanborn, Griffiths, & Navarro, 2010). Particle filters are
a sequential algorithm for approximating a posterior distribution, using a discrete set of samples (par-
ticles) that are updated over time, as data is observed. They provide a natural mechanism for capturing
both online processing constraints and working-memory limits in a Bayesian framework. This
approach has been successfully applied to modeling process-level effects (e.g., causal order effects,
garden path sentences) in human causal inference (Abbott & Griffiths, 2011) and language processing
(Levy, Reali, & Griffiths, 2009), among other areas. A similar approach could be used to approximate
our ideal observer model, and look for evidence of online versus post hoc statistical segmentation
by people.

This approach could also make contact with existing process-level accounts of event segmentation.
For instance, Zacks and colleagues (e.g., Reynolds et al., 2007; Zacks, Kurby, Eisenberg, & Haroutunian,
2011; Zacks, Speer, Swallow, Braver, & Reynolds, 2007), argue that increases in prediction error corre-
spond with boundary judgments in an action sequence, and trigger the segmentation and processing
of the preceding event for long-term memory storage. Similarly, in a particle filter, large prediction
errors can result in large weight changes or resampling of hypotheses, potentially providing a mech-
anism that is both consistent with our Bayesian computational-level account, and with an algorith-
mic-level account in which prediction error plays a significant role.

In addition, our current model used fixed parameter values, broadly chosen to match the structure
of our stimuli. While a wide range of parameters values led to good model performance, equal to or
superior to human performance (as we would expect for an ideal observer model), only a smaller sub-
set led to perfect segmentation. It is currently an open question whether a similarly broad parameter
range would lead to accurate segmentation of more naturalistic videos, or whether different types of
action (e.g., a skilled surgeon conducting a specialist operation versus someone making a cup of coffee)
would necessitate very different statistical assumptions. In addition, the model leaves open the ques-
tion of how people might learn or calibrate their expectations about action sequences, and how much
experience this learning process requires. While our current model used fixed parameter values, it
could be extended to a hierarchical Bayesian model (e.g., Heller, Sanborn, & Chater, 2009; Kemp,
Perfors, & Tenenbaum, 2007), where both the segmentation and segmentation parameters are simul-
taneously inferred.

Nonetheless, our current results provide us with reason to be optimistic that expectations about
the statistical structure of a broad range of intentional actions might be learned quite quickly. Our
participants were able to produce accurate boundary judgments and causal inferences after just
23 min of exposure, including just 90 viewings of each action, and 30 viewings of each part-action,
despite the action combinations and statistical relationships in our corpus being deliberately arbitrary,
so that only statistical cues in the corpus and not prior knowledge, could be used to segment the
sequence.
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By contrast, when viewing everyday intentional actions, even if the particular activity being viewed
is novel (e.g., assembling a saxophone, as in Zacks, Tversky et al. (2001)), adults have had years of
experience observing similar intentional behaviors, during which they might learn more general sta-
tistical patterns (e.g., reaching precedes grasping), and even infants have likely had hundreds of hours
of such observations. Given adults’ success in our experiments after such a relatively short exposure, it
is plausible to think that these patterns might be learned quite early on.

Our discussion of statistical cues has focused on sequential probabilities, rather than joint proba-
bilities, of sequences. Experiments 3a and 3b demonstrated that people differentiate the true causal
sequence from rearrangements of its component motions that appear with equal frequency, suggest-
ing that the temporal order of these sequences is in fact important. Similarly, in Experiment 4, the cau-
sal part-action is rated as more coherent than the other part-actions, despite having the same joint
probability.

In Experiments 1 and 2, we did not equate the joint probability of actions and part-actions, leaving
open the possibility that, in these experiments, it was the joint rather than transitional probabilities of
these sequences that people tracked. However, in work by Meyer and Baldwin (2011) and Stahl et al.
(2014), the transitional (sequential) probabilities for actions were higher than for part-actions, while
their joint probabilities were in some cases the same. These experiments found that both adults
and infants remained able to discriminate actions from part-actions, though individual differences
were evident in both cases. Exploring the extent to which people remain able to track these types
of statistical patterns as the stimuli increase in complexity and variability remains an important
question.

Like the computational model of word segmentation it extends, our model assumes that the lowest
level of segmentation is already known (or pre-labeled). That is, that there is some sort of motion
primitive (equivalent to a syllable in speech), that can already be recognized as a coherent unit. Since
studies demonstrating human action segmentation have suggested that statistical patterns or features
in human motion may correlate with segment boundaries at even the lowest level (e.g., Hard et al.,
2006; Zacks, Braver et al., 2001, 2001), we would like to see whether action boundaries can be auto-
matically detected directly from video, without pre-existing knowledge of low-level motion elements.
A version of our model operating over low-level image features rather than discrete SMEs could help
address this question.

Similarly, although the videos in the current studies featured a live actor carrying out natural
object-directed motions, other aspects of the videos remain artificial by design – in order to focus
on the statistical relationships between the small motion elements, other cues such as motion changes
(e.g., pauses, acceleration, deceleration), and the higher level goal structure of the actor were not pres-
ent. Similarly, alternative cues to causality, such as observable physical or mechanical information or
other perceptual cues (e.g., Michottean collision or launching events), were not included.

The actor was also observed in a somewhat simplified environment, interacting with only one
object, which had just one causal property. Since we know that people can also successfully segment
more naturalistic scenes (e.g., Zacks, Braver et al., 2001, 2010) with multiple objects, goals and sub-
goals, and causal outcomes, one interesting direction to explore in future work is the extent to which
joint statistical and causal inference contributes to our understanding of these more complex every-
day scenes, and how low-level statistical information interacts with these other sources.

Just as it is important to explore how low-level motion cues might contribute to action segmenta-
tion in a bottom-up fashion, we would also like to understand how higher-level social information
might contribute to action parsing. How might knowledge of an actor’s goals and intentions influence
segmentation? This is an especially interesting question in the context of hierarchical goal structures.
Recent work suggests that people (e.g., Hard et al., 2006; Meyer, Baldwin, & Sage, 2011; Zacks &
Tversky, 2001; Zacks, Tversky et al., 2001), and perhaps other apes (Byrne, 1999, 2003; Byrne &
Russon, 1998 but also see Conway & Christiansen, 2001), naturally organize events into increasingly
abstract hierarchical relationships, based on the underlying goals of the actors.

Once again, there are intuitive parallels to the language domain, where syllables are composed into
words, which are in turn composed into phrases and sentences. An intriguing possibility is to see
whether probabilistic models of phrase structure (e.g., Johnson, Griffiths, & Goldwater, 2007) could
also be adapted to the action domain. Similarly, exploring whether there are garden path effects in
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action parsing akin to those that can occur in language (e.g., Levy, 2011) could help us better under-
stand how action structure and goal structure are inferred.

Finally, while there are many obvious parallels between language processing and action processing,
there are important differences as well. While it has sometimes been argued that language is a form of
intentional action (Austin, 1962; Grice, 1957; Searle, 1969), the intent is fundamentally communica-
tive, rather than instrumental, unlike most goal-directed action. It is not clear whether this leads to
fundamentally different patterns of organization, especially at higher hierarchical levels. In addition
to statistical structure, each domain has associated domain-specific knowledge and cues that play a
large role in their interpretation, such as communicative pragmatics for language (Grice, 1957,
1989), and instrumental goals for action (e.g., Gergely & Csibra, 2003; Sommerville, Woodward, &
Needham, 2005; Woodward, 1998).

In the context of our model, one important difference is that syllable meanings are tied solely to
their segmentation into words – a sand witch and a sandwich have distinct non-overlapping meanings
despite containing the identical syllables. By contrast, in some cases, the causal effects of motions do
not have to be tied solely to the intentions underlying them – turning on the oven and then inserting a
cake will cause the cake to bake, whether performed as a single coherent sequence or as two separate
acts (or even by two separate actors). Our model does not currently capture this distinction, instead
assuming that, just as the grouping of syllables can change their meaning, the grouping of motions
can change their causal outcomes. It remains an open question to what extent this distinction influ-
ences action segmentation, both in terms of the natural statistics of action (people could perform cau-
sal motions separately from each other, but how often do they actually?), and in terms of people’s
causal inferences and assumptions when observing action.

14.3. Conclusion

In the real world, causal variables do not come pre-identified or occur in isolation, but instead are
imbedded within a continuous temporal stream of events. Whether watching someone opening a door
or making an object play music, a challenge faced by both human learners and machine learning algo-
rithms is identifying subsequences that correspond to the appropriate variables for causal inference.
Combining motion statistics with causal information may be one way for human (and non-human)
learners to begin accomplishing this task.
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Appendix A. Action segmentation model details

We created a Bayesian rational learner model that jointly infers action segmentation and causal
structure, using statistical regularities and temporal cues to causal relationships in an action stream.
We use the nonparametric Bayesian model first used by Goldwater et al. (2009) as a model of action
sequence generation, and also extend this model to incorporate causal information. Like the original
word segmentation model, our model is based on a Dirichlet process (Ferguson, 1973), with actions
composed of individual small motion elements taking the place of words composed of syllables. We
model the generative process for creating a sequence of human actions as successively selecting
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actions to add to the stream, with the conditional probability of generating a particular action given by
the Chinese Restaurant Process (Aldous, 1985), an easy to implement non-parametric process that is
equivalent to the Dirichlet Process.

A.1. Generative model for action sequences

An action sequence A is composed of a series of individual actions ai which are in turn composed of
individual motions mj. To create the sequence A, we draw each action ai from G, a distribution over all
possible actions, where each action in G has an associated selection probability.
ai j G � G ðA1Þ
We in turn draw our distribution over actions G from a Dirichlet Process distribution, defined by the
concentration parameter a0 and the base distribution P0.
Gja0; P0 � DPða0; P0Þ ðA2Þ
We can think of P0 as a distribution from which possible actions ai are added to G. In our model, the
probability of including an item in G is simply the product of the action’s component motion
probabilities, with an added assumption that action length is geometrically distributed (the longer
the action, the less likely it is to be added to G):
P0ðai ¼ wÞ ¼ p#ð1� p#Þ
nw�1

Ynw

j¼1

pðmi;jÞ ðA3Þ
where nw is the length of ai ¼ w in motions, p# and ð1� p#Þ are the probability of ending or not ending
the action after each motion, and pðmi;jÞ is the probability of the individual motions that make up ai.
We currently assume a uniform probability over all motions. Once an action ai is drawn from P0 it is
added to G and assigned a probability in G determined by a0.

We assume that like action length, action sequence length is also geometrically distributed:
PðAÞ ¼ p$ and ð1� p$Þ
n�1
Yn

i¼1

pðaiÞ ðA4Þ
where n is the length of A in actions, p$ð1� p$Þ are the probability of ending or not ending the action
sequence after a given action, and pðaiÞ is as described above.

A.2. Generative model for events

The action sequence A also contains effects e, which can occur between motions. Some actions
are causal actions, and are followed by effects with high probability. Each unique action type aw

has an associated binary variable cw 2 0;1f g that determines whether or not the action is causal
with
cw � BernoulliðpwÞ ðA5Þ
Currently, we use a fixed value of p for all actions, but pw may in turn be drawn from a Beta distribu-
tion in future versions of the model. If cw ¼ 1 then action type w is causal, otherwise it is not. If an
action ai ¼ w is causal, then it is followed by an effect with probability xw. Again, we currently use
a fixed value for x. We use a small fixed value � for the probability of an effect occurring anywhere
in the sequence other than after a causal action.

Putting this all together, for each action ai that is added to the sequence A (as described in the pre-
vious section), effects are added after each of ai’s motions with the following probabilities:
pðei;j ¼ 1jai ¼ w;mi;j; cw ¼ 1Þ ¼ xw; j ¼ nw

�; 0 6 j < nw

�
pðei;j ¼ 1jai ¼ w;mi;j; cw ¼ 0Þ ¼ �

ðA6Þ
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where nw is the length in motions of ai ¼ w. In other words, the probability of inserting an
effect after an internal motion is always a small constant, �, across all actions, while the
probability of inserting an effect at the end of an action is � for non-causal actions and xw

for causal actions.

A.3. Chinese restaurant process

Rather than explicitly drawing G from the Dirichlet Process, and then drawing the actions ai from G
in order to create the action sequence A, we would like to integrate across all possible distributions
over actions. This gives us the conditional probability of the next action in the sequence ai, given all
the previous actions a�i ¼ a1; . . . ; ai�1
pðaija�i;a0; P0Þ ¼
Z

pðaijGÞpðGja�i;a0; P0ÞdG ðA7Þ
It turns out that this conditional probability is equivalent to a simple construction known as the Chi-
nese Restaurant Process (CRP). Here we use the CRP to formulate our generative model.

In the CRP customers enter a restaurant, and are seated at tables, each of which has an associated
label. In this case, the associated labels represent actions. When the ith customer enters the restau-
rant, they sit at a table zi, which is either a new table or an already occupied table. The label at the
table they sit at determines what the ith action in our sequence will be. The probability of the ith cus-
tomer sitting at table zi ¼ k is:
pðzi ¼ kjz1; :::; zi�1Þ ¼
nk

n�iþa0
; 0 6 k 6 K

a0
n�iþa0

; k ¼ K þ 1

(
ðA8Þ
where n�i ¼ i� 1 is the number of previously seated people, nk is the number of customers already at
table k, and k is the number of previously occupied tables. In other words, the probability of the ith
customer sitting at an already occupied table (i.e., choosing an action that has already appeared pre-
viously in the sequence A) depends on the proportion of customers already at that table, while the
probability of them starting a new table depends on a0.

Whenever a customer starts a new table, an action ak must be associated with this table. This
action is drawn from the distribution P0, described above. Since multiple tables may be labeled
with the same action, the probability that the next action in the sequence will have a particular
value ai ¼ w is:
pðai ¼ wja�iÞ ¼
nw

n�i þ a0
þ a0P0ðai ¼ wÞ

n�i þ a0
ðA9Þ
where nw is the number of times action w has appeared in the previous a�i actions (the number of cus-
tomers already seated at tables labeled with action w). In other words, the probability of a particular
action ai ¼ w being selected is based on the number of times it has already been selected (the prob-
ability of the ith customer sitting at an existing table labeled with this action) and the probability of
generating it anew (the probability of the customer sitting at a new table that is then assigned the
label ak ¼ w).

A.4. Generative process

We can now put together our complete generative model for creating a sequence of actions
and effects. Our model parameters are sequence parameters p#; p$ and a0, and causal parameters
p, x and �.

1. Select an action ai ¼ w and add it to sequence A (this is equivalent to seating the ith customer in the
Chinese restaurant process)
(a) Pick a table zi for the ith customer. If it is a new table, draw a label zi from P0

(b) Add the label at table zi to the action sequence
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2. Decide whether to insert any events after any of the motions mi;j composing ai ¼ w
(a) For each of the nw � 1 internal motions in ai insert an event with probability �
(b) If w is a new action, draw cw

(c) Add an event after the last motion in ai ¼ w with probability x if cw ¼ 1 and with probability �
otherwise

3. With probability p$ repeat steps 1–2, otherwise terminate sequence A

A.5. Inference

Given an unsegmented action sequence, how do we find the boundaries between actions (find the
correct segmented sequence)? For a given segmentation hypothesis h:
pðhjdÞ / pðdjhÞpðhÞ ðA10Þ
We want to infer the posterior distribution pðhjdÞ. A segmentation hypothesis h consists of
whether or not there is an action boundary b after each motion mj in the sequence. We can
estimate p(hjd) by iteratively considering one possible boundary at a time, while holding all other
segment boundaries constant, a process known as Gibbs sampling. In deciding whether or not
there should be an action boundary after motion mj only two hypotheses need to be evaluated:
h1 : bj ¼ false and h2 : bj ¼ true. Since the segmentations defined by both h1 and h2 will contain
the same actions except for at the potential boundary point, only this difference in their probabil-
ities needs to be considered. We will call the segmentation boundaries that are the same in both
hypotheses h�. We will also refer to the single action generated under h1 as w1 and to the two
actions generated under h2 as w2 and w3. Going back to our generative model and the CRP, we
can see that:
pðh1jh�;dÞ / pðw1jh�; dÞ ¼ pðan ¼ w1ja�nÞ ðA11Þ
where n is the total number of actions under h1 and a�n ¼ a1; . . . ; an�1 is the action sequence given by
the segmentation h�. this is because the CRP is exchangeable, which means we can treat w1 as if it were
the last action added to the sequence (the last person walking into the restaurant):
pðan ¼ w1ja�nÞ ¼
nw1

n� þ a0
þ a0P0ðan ¼ w1Þ

n� þ a0
ðA12Þ
where n� is the number of actions under h� (number of previously seated people) and nw1 is the num-
ber of times w1 appears in h� (the number of people already seated at tables labeled with w1).

Similarly, the probability of h2 is
pðh2jh�;dÞ / pðan ¼ w2ja�nÞpðanþ1 ¼ w3jan ¼ w2;a�nÞ ðA13Þ
As in h1, the probability of w2 is simply:
pðan ¼ w2ja�nÞ ¼
nw2

n� þ a0
þ a0P0ðan ¼ w2Þ

n� þ a0
ðA14Þ
The probability of w3 is a little different, since it depends on w2 as well as h�
pðanþ1 ¼ w3ja�n; an ¼ w2Þ ¼
nw3 þ Iðw2 ¼ w3Þ

n� þ 1þ a0
þ a0P0ðanþ1 ¼ w3Þ

n� þ 1þ a0
ðA15Þ
where nw3 is the number of times w3 appears in h� and Iðw2 ¼ w3Þ ¼ 1 if w2 and w3 are the same
(in other words nw3 þ Iðw2 ¼ w3Þ is the number of customers already seated at tables labeled with
w3). Also, n� þ 1 is the number of actions in h� þw2 (the number of previously seated customers,
before w3).

Finally, since h2 hypothesizes an action sequence one action longer than h1 we need to consider the
probability of having a sequence of this increased length. Putting all of this together
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pðh2jh�;dÞ / ð1� p$Þ �
nw2 þ a0P0ðan ¼ w2Þ

n� þ a0
� nw3 þ Iðw2 ¼ w3Þ þ a0P0ðanþ1 ¼ w3Þ

nþ a0
ðA16Þ
A.6. Using information from events in the action sequence

If the action sequence we’re trying to segment also contains events, we can use this information to
aid our segmentation. In particular, whether or not there is an event ej at the segmentation boundary
being considered, or an event ek at the following boundary, impacts our probability estimates for h1

and h2:
pðh1jh�;dÞ / pðan ¼ w1ja�nÞ � pðejjan ¼ w1Þ � pðekjan ¼ w1; cw1Þpðh2jh�;dÞ / pðan ¼ w2ja�nÞ
�pðejjan ¼ w2; cw2Þ � pðekjanþ1 ¼ w3; cw3Þ

ðA17Þ
where cwi is the causal variable for wi. Since h1 predicts no boundary at position j,
pðejjan ¼ w1Þ ¼
�; ej ¼ 1

1� �; ej ¼ 0

�
ðA18Þ
ek is the boundary following w1. If we have already sampled the value of cw1 then:
pðekjan ¼ w1; cw1 ¼ 1Þ ¼
x; ek ¼ 1

1�x; ek ¼ 0

�

pðekjan ¼ w1; cw1 ¼ 0Þ ¼
�; ek ¼ 1

1� �; ek ¼ 0

� ðA19Þ
If we have not yet sampled a value for cw1 then we marginalize over cw1, in which case:
pðekj an ¼ w1Þ ¼
�ð1� pÞ þxp; ek ¼ 1

ð1� �Þð1� pÞ þ ð1�xÞp; ek ¼ 0

�
ðA20Þ
We perform similar computations for h2, except that in this case ej and ek occur at the ends of
actions w2 and w3, and so are computed like ek above. The probabilities when cw2 and cw3 have not
yet been sampled are identical to when cw1 has not yet been sampled.

A.7. Inferring which actions are causal

Just as we can use the causal variables c to help infer the action segmentation, we can use the
action segmentation to help infer the causal variable values. In this case our hypothesis h consists
of values cw for all action types appearing in the segmentation. Just as we can estimate the action seg-
mentation by iteratively considering one boundary at a time, we can estimate the values for c by look-
ing at one action type aw at a time, and estimating cw, while holding the remaining c values constant.
In this case h1 is the hypothesis that cw ¼ 1 (aw is causal) and h2 is the hypothesis that cw ¼ 0 (aw is not
causal).
pðh1jh�;dÞ / pðcw ¼ 1jaw; ewÞ
pðh2jh�;dÞ / pðcw ¼ 0jaw; ewÞ

ðA21Þ
where aw is all occurrences of action w in the sequence, and ew is all effects (or lack thereof) following
these occurrences. In this case
pðcwjaw; ewÞ / pðewjaw; cwÞ � pðcwÞ ¼ pðcwÞ
Yn

i¼0

pðeijcw; aiÞ ðA22Þ
Putting this all together
pðh1jh�;dÞ / pðcw ¼ 1jaw; ewÞ / p �xnewþ � ð1�xÞnew�

pðh2jh�;dÞ / pðcw ¼ 0jaw; ewÞ / ð1� pÞ � �newþ � ð1� �Þnew�
ðA23Þ
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where neþw is the number of times action w is followed by an event and ne�w is the number of times it is
not followed by an event.
A.8. Gibbs sampling

To summarize, our algorithm for discovering the best segmentation of an unsegmented action
sequence is:

1. For each motion mj in the action sequence, decide whether there should be a boundary after this
motion

(a) Hold the rest of the segmentation, and the causal variables, constant
(b) Calculate the probability of h1 = no boundary and h2 = boundary
(c) Decide probabilistically between h1 and h2

2. For each action type aw appearing in the segmentation, sample a causal variable cw

(a) Hold the segmentation constant
(b) Calculate the probability of h1 = causal and h2 = not causal
(c) Decide probabilistically between h1 and h2.

3. Iterate 1 and 2 until the segmentation converges and/or a pre-determined stopping point is
reached.

A.8.1. Simulated annealing
The Gibbs sampling procedure described above has a number of advantages. It is relatively simple

to implement, and once the sampler converges it produces samples from the true posterior distribu-
tion. However, changes are made locally, one boundary at a time. Searching through the hypothesis
space may therefore require passing through many low probability segmentations in order to reach
higher probability hypotheses, causing convergence to be slow.

To address this issue, we used an approach known as simulated annealing (Kirkpatrick, Gelatt, &
Vecchi, 1983). This approach broadens exploration of the hypothesis space early on in sampling by
making the relative probabilities of the different hypotheses more uniform. Using the metaphor of
‘‘slow cooling’’, annealing uses a temperature parameter c to gradually adjust the probability of moving
to a particular hypothesis. c starts at a high value, and is slowly reduced to 1 over the course of
sampling.

Using simulated annealing, we sample our boundary probabilities using pðh1jh�; dÞ
1
c and

pðh2jh�; dÞ
1
c . Notice that when c = 1 this is just regular Gibbs sampling. When c > 1 the relative prob-

abilities of the two hypotheses are more uniform, making transitions to lower probability segmenta-
tions more likely.

Following Goldwater et al. (2009), for our simulations, we ran each sampler for 20,000 iterations,
annealing in 10 increments of 2000 iterations each, with 1

c = (0.1,0.2, . . . ,0.9,1). For each simulation, we
ran three randomly seeded samplers, each initialized from a random segmentation of the input corpus,
and averaged results from 10 samples drawn from the last 1000 iterations of each sampler, to estimate
the posterior distributions and evaluate the model. This allowed for an additional burn-in period of
1000 samples with c = 1.
Appendix B. De Bruijn sequence

For an alphabet A of size k, a De Bruijn sequence B(k,n) is a cyclical sequence within which each
subsequence of length n appears exactly once as a consecutive sequence. The sequence is constructed
by first creating a De Bruijn graph, where every sequence of size n � 1 appears as a node, and
outgoing edges represent a sequence of n items – the n � 1 items of the node the edge is leaving,
and the item labeling the edge itself. See Fig. B1 for an example graph. The sequence is then created



Fig. B1. Example De Bruijn Graph (image created by Michael Hardy). If you traverse the graph in a Eulerian cycle, passing
through every edge exactly once, then every four-digit sequence occurs exactly once, creating a B(2,4) De Bruijn sequence.

D. Buchsbaum et al. / Cognitive Psychology 76 (2015) 30–77 71
by traversing the graph in a Eulerian cycle – a path through the graph that traverses each edge exactly
once.

To create the exposure corpora for Experiment 3, we used a B(4,3) De Bruijn sequence (creating
length three sequences from a length four alphabet), modifying the process slightly, by only allowing
edges in the graph that would not cause the resulting sequence of three items to contain a repeated
item (in other words, each two-item node has exactly two outgoing edges). There are a number of
algorithms for finding the shortest path through a graph that traverses each edge at least once (which
will always be the Eulerian cycle if it exists). In this work we used the approach presented by
Thimbleby (2003).
Appendix C. Example corpora

Here we show some examples of the unsegmented corpora used as input for our computational
simulations, as well as examples of potential segmentations. Fig. C1, shows an example of one of
Fig. C1. Example unsegmented corpus for Experiments 1 and 2 (line breaks are for display, and were not present in the input).



Fig. C2. Example true segmentation for Experiments 1 and 2.

Fig. C3. Group segmentation produced by above-chance participants in Experiment 1b.
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the unsegmented corpora used in Experiments 1 and 2, while Fig. C2 shows the correct segmentation
for this corpus, which puts boundaries between all of the actions, and nowhere else. Fig. C3 shows the
group segmentation produced by above-chance participants in Experiment 1b. Figs. C4 and C5
similarly show examples of an unsegmented and segmented corpus for Experiments 3a and 3b. Recall
that in these experiments there was causal structure present in the corpus, but no statistical structure,
so that a ‘‘correct’’ segmentation identifies all occurrences of the causal triplet (with additional
boundaries being considered neither correct nor incorrect). Finally, Fig. C6 shows an example
of an unsegmented corpus used in Experiment 4. Notice that it is the same as the example corpus
from Experiment 1, except that an effect follows each occurrence of the part-action TFDBL.
Fig. C7 shows an example of a segmentation that compromises between the causal and statistical
cues in this corpus, identifying the causal part-action as well as the actions used to create the
corpus.



Fig. C4. Example unsegmented corpus for Experiments 3a and 3b.

Fig. C5. Example true segmentation for Experiments 3a and 3b.
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Fig. C7. Example compromise segmentation for Experiment 4.

Fig. C6. Example unsegmented corpus for Experiment 4 (line breaks are for display, and were not present in the input).
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