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Abstract. Learners’ step-by-step solutions can offer insight into their
misunderstandings. Because of the difficulty of automatically interpret-
ing freeform solutions, educational technologies often structure problem
solving into particular patterns. Hypothesizing that structured interfaces
may frustrate some learners, we conducted an experiment comparing two
interfaces for solving equations: one requires users to enter steps in an
efficient sequence and insists each step be mathematically correct before
the user can continue, and the other allows users to enter any steps they
would like. We find that practicing equation solving in either interface
was associated with improved scores on a multiple choice assessment, but
that users who had the freedom to make mistakes were more satisfied
with the interface. In order to make inferences from these more freeform
data, we develop a Bayesian inverse planning algorithm for diagnosing
algebra understanding that interprets individual equation solving steps
and places no restrictions on the ordering or correctness of steps. This al-
gorithms draws inferences and exhibits similar confidence based on data
from either interface. Our work shows that inverse planning can interpret
freeform problem solving, and suggests the need to further investigate
how structured interfaces affect learners’ motivation and engagement.

1 Introduction

Observing students’ solutions to problems can provide valuable insights into
their understanding. The approach that a student takes may reveal gaps in her
knowledge, or the way she executes a particular step may demonstrate a misun-
derstanding or misconception. Often, educational technologies structure problem
solutions in order to provide targeted, step-by-step feedback to learners [8]. This
structuring may include requiring students to get each individual step of a prob-
lem correct before continuing, to complete steps in a fixed order, or to indicate
what action they are taking to go from one step to another.

While this structuring of students’ problem solving may assist in making
automated inferences about students’ understanding and step-by-step feedback
could be beneficial for student learning, it could be frustrating to some learners.
Entering individual actions may be time consuming, making practice less effi-
cient, and could be infeasible for some beginning learners. Rigid structuring of



the ordering of steps or their correctness may lead some users to disengage and
give up more easily, potentially outweighing the benefits of immediate feedback.

We explore the tension between providing structure to push learners towards
correctness and limiting frustration through an experiment comparing user sat-
isfaction and improvement in problem solving across two interfaces. Our experi-
ment focuses on equation solving both because algebra is a core topic in curricula,
and because interfaces for this domain could allow very freeform solving. We find
users are more satisfied with the freeform interface, and we thus explore how to
automatically diagnose understanding based on data from this interface. In the
Bayesian inverse planning algorithm we develop, we use the patterns of equation
transformations, both correct and incorrect, to compute student ability param-
eters for distinct skills. We find that the model’s inferences are equally confident
when interpreting data from either interface. We end by discussing implications
and highlighting future directions as well as limitations of this work.

2 Interfaces for Algebra Tutors

A number of systems with a variety of interfaces exist to help students practice
multistep problem solving. Because we focus on linear equation solving, we con-
centrate here on systems for algebra. Some systems ask students to enter only
a final answer (e.g., ALEKS [6]), preventing feedback on individual steps. In
ASSISTments [15], questions are often structured to ask students first for their
final answer, and then, if the student answers incorrectly, scaffolding is provided
to structure the problem and divide it into smaller parts, each of which must
be answered correctly before the student can continue. Cognitive Tutor Alge-
bra [8] typically structures problem solving into individual steps which students
must complete correctly before continuing, and feedback is targeted at these
individual steps. This tutor improves students’ algebra skills and standardized
test scores [8]. Previous work comparing the typical interface to a handwriting
interface for this tutor, which only provided feedback on students’ final answers,
found that while step-by-step feedback was more beneficial for learning [1], stu-
dents preferred the handwritten interface [2]. Beyond the efficiency of handwrit-
ing, students may also have appreciated being able to show their work without
constraints on step correctness. These studies point to a divide in students’ pref-
erences for particular interfaces, which may affect motivation and engagement,
with learning outcomes. Research on novice programmers has found fewer dif-
ferences in outcomes between learners who received step-by-step feedback versus
less intrusive feedback, although students who received less intrusive feedback
tended to take longer to complete the same number of exercises [5].

3 Satisfaction with a Freeform vs. Structured Interface

Given the prevalence of step-by-step feedback in existing tutors and previous
work demonstrating a potential preference for more freeform responses, we con-
ducted an experiment to explore how the interface which people used to solve
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Fig. 1. Screenshot of the step-by-step problem solving interface on the website. The
first line in the interface shows the problem the user must solve, and the user adds
lines to show her problem solving steps.

algebraic equations affected their satisfaction with the system and their learning
outcomes. We focused on adult problem solvers who had some algebra experi-
ence, but may not have used their skills recently. The structured interface could
be helpful to these participants by giving them more specific feedback while
solving equations, but might also be frustrating due to limiting their ability to
demonstrate what they do know, as these learners are not complete novices but
are in need of remediation. We hypothesize that this frustration will lead these
participants to give up more quickly and be less satisfied with the system.

3.1 Methods

Participants. 40 participants in the USA were recruited from Amazon’s Me-
chanical Turk (AMT) and compensated $3 for session 1, $5 for session 2, and $7
for session 3. Participants had experience with algebra, either in a secondary or
postsecondary class, and had not completed college math classes beyond algebra.
Stimuli. Participants completed a multiple choice assessment, solved algebra
problems on a website, and responded to surveys about their mathematics back-
ground and the usability of the website. The multiple choice assessment was
based on College Board ACCUPLACER R© tests used for math placement in
many postsecondary institutions[11]; questions were adapted from sample ques-
tions from the College Board[4]. The assessment included 12 elementary algebra
questions (the same length as the Elementary Algebra ACCUPLACER), and 16
college math questions (shortened from 20 questions in the College Math AC-
CUPLACER). Instructions informed participants that if they did not know how
to solve the problem, they could leave the question blank.

On the algebra website we developed, participants are shown the equation to
solve, and with each problem step, they add a line to show their work (Figure
1). In the corrected interface, the current step is checked via a symbolic algebra
system [9] when the add step button is clicked. If the step is mathematically in-
correct, combines multiple steps, or is not the best next action, then a dialog tells
the participant to correct the step before continuing. The dialog distinguishes
among syntactic, mathematical, and action choice errors. Allowed action choices
are calculated by comparing the user’s actions to all possible legal actions. We
allow any action that is close to optimal (see Section 5 for details).



In the freeform interface, the system checks for syntactic errors when the
user submits the entire set of steps for a problem. Rows with syntactic errors
are highlighted. After submitting the problem and either correcting syntactic
errors or moving forward without correction, any steps with mathematical errors
are highlighted and the user is given the opportunity to look at her problem
solving. This occurs to provide similar amounts of feedback to participants in
both conditions. The user chooses when to move on to the next problem.

In the usability survey, all participants completed ten questions on a 5-point
Likert-scale, with participants in the corrected condition completing two addi-
tional questions. The initial ten questions were adapted from existing usability
surveys, such as [10], and focused on perceived learning as well as satisfaction
with features of the website. The corrected -only questions focused on feelings
about having to get each step correct before continuing and whether they found
this feedback helpful. The survey also contained three open-ended questions.
Procedure. Participants completed three sessions, separated by at least one
day. The first session included the multiple choice assessment followed by the
mathematical background survey. In the second session, participants were ran-
domly assigned to one of two conditions and solved 20 problems on the algebra
website. The website included a short tutorial about how to use the interface.
This tutorial was identical across conditions except for explanations of differing
features. In the final session, participants completed the same assessment as in
session one, and then responded to the usability survey.

3.2 Results

Overall, performance improved from pretest to posttest. A repeated measures
ANOVA with factors for condition and pre- versus post-test showed a small
but significant improvement (F (1, 79) = 14.5, p < .001; mean 11.3 correct on
pretest to 12.8 correct at posttest, Cohen’s d = .27); no interaction between
condition and time of test was found (F (1, 79) = 0.66, p = .42). Given the short
nature of the intervention and the far transfer nature of some questions on the
assessment assessment, we would not necessarily expect a large improvement. As
shown in Figure 2a-b, participants in both conditions attempted similar numbers
of problems and gave comparable numbers of correct answers on the website.
However, participants in the corrected condition entered fewer answers, likely
due to being unable to give a correct next step. Note that participants in the
corrected condition could give an answer without the intervening steps, but they
would be warned that they had not entered the correct next step. We counted
these cases as having given an answer (and as correct if the answer was correct).

The low scores on the assessment and the website demonstrate that AMT
participants were not already proficient with algebra and have gaps in their
knowledge and misunderstandings. Comments from participants suggested that
their scores were not due to lack of effort but due to the difficulty of the task:
“humbling” and “very hard” were common sentiments. Given the need for math-
ematical skills across a range of careers, developing systems that meet the needs
of adult learners and testing effectiveness for these learners is an important goal.
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Fig. 2. (a) Time spent on website by condition. Error bars show one standard error.
(b) Performance on website by condition. “Attempted” problems are those where the
user entered at least one step; correct indicates the final answer was mathematically
correct. (c) Website usability ratings.

Satisfaction with the website varied between conditions. As shown in Figure
2c, participants in the freeform tended to be less frustrated (t(38) = 5.3, p <
.001) and thought that the website was easier to use (t(38) = 2.6, p < .05). They
also more strongly agreed that they would recommend the site to others (t(38) =
2.4, p < .05). Responses to other questions, including ability to understand the
interface and finding feedback helpful, trended towards more satisfaction with
the freeform interface but were similar across conditions.

4 Inverse Planning

Given that the freeform interface is less frustrating, we would like to use data
from this interface to infer understanding. However, most existing models re-
quire that highly structured data and these models do not use the pattern of
action choices to draw conclusions about misunderstandings. We thus developed
a Bayesian inverse planning algorithm to model equation solving, enabling us to
make specific inferences based on data from either interface.

Inverse planning is a type of inverse reinforcement learning in which an
agent’s observed actions are used to make inferences about its goals and un-
derstanding of the world. Previous applications to cognition have focused on
inferring people’s goals based on their action choices [3] and recognizing people’s
beliefs about how their actions affect their environment [14]. Here, we focus on
using inverse planning to diagnose (mis)-understandings, where we assume we
have some space of hypotheses θ representing all possible understandings. This
diagnosis is computed as a posterior distribution over θ given observed prob-
lem solutions d1, . . . , dN : p(θ|d1, . . . , dN ) ∝ p(θ)

∏N
i=1 p(di|θ), where each term

p(di|θ) is the likelihood of the observed data for a single problem.
To calculate the likelihood for a problem, we must model how people choose

actions and how their transitions from one problem solving step to another are
affected by their understanding. We model these choices and transitions using a
Markov decision process (MDP). MDPs are decision-theoretic models for action
planning that are commonly used when multiple, non-deterministic actions must
be taken over time. Formally, MDPs are defined by a tuple 〈S,A, T,R, γ〉. At
each time step t, the process is in some state s ∈ S. The agent chooses an
action a ∈ A, and with probability p(s′|a, s), specified by the transition model



T (s, a, s′), the state transitions to next state s′. The reward model R(s, a, s′)
encodes the incentives. To calculate the likelihood of an observed solution, we
use the Markov assumption that given the present, future states are independent
of past states:

p(s1:M |θ) = p(s1|θ)
M−1∏
i=1

p(si+1|θ, si) ∝
M−1∏
i=1

∑
a∈A

p(si+1|θ, si, a)p(a|θ, si), (1)

where the final state sM is reached by taking a stop action. We sum over actions
due to the fact that in our data, only steps, not actions, are observed. The term
p(si+1|θ, si, a) can be calculated if we assume that the person’s understanding
θ maps to a particular MDP: it is the transition model reflecting the person’s
pattern of moving from one step to another. The term p(a|θ, s) is the policy for
this MDP and is expanded on in the next section as a function of the long term
expected value of taking an action a in a state s, known as the Q-value:

Q(s, a) =
∑
s′

p(s′|θ, s, a)(R(s, a, s′) + γ
∑
a′∈A

p(a′|θ, s′)Q(s′, a′)), (2)

where γ reflects the relative weight of immediate versus future rewards. The pol-
icy and Q-values can be computed simultaneously through value iteration [17].

5 Modeling Equation Solving

To diagnose understanding from observations of solutions to linear equations,
we developed a Bayesian inverse planning algorithm specifically for this domain,
building on preliminary previous work [13]. We define the states, actions, and
hypotheses for linear equation solving, and then address a technical challenge
not present in previous applications of inverse planning to cognition: the state
and action spaces for modeling linear equation solving are infinite.

Each equation is mapped to a state, and actions correspond to the way a
person changes the equation when solving. The state is represented as the set
of terms on each side of the equation, ignoring their ordering. We consider six
general types of actions, corresponding to possible equation transformations:

1. move: Move a specific term from one side of the equation to another.
2. divide: Divide both sides by the coefficient of a specific term.
3. multiply: Multiply both sides by a specific constant.
4. combine: Combine two specific terms on the same side of the equation.
5. distribute: Multiply out a specific complex term like 3(x + 6) to get 3x + 18 or

transforming −3(x+ 6) to −(3x+ 18).
6. stop: Stop solving the current problem.

The first five actions represent typical equation solving behavior; below, we de-
scribe how errors in these actions are modeled. The final action is taken by a
student who believes she has finished solving the problem or is giving up.

The reward model includes a positive reward for choosing stop in a state
x = c or c = x, where x is the variable and c is a constant, and a negative
reward for choosing stop in any other state. A small negative reward is also
incurred for each action: using fewer steps is preferable to using more steps.



5.1 Defining the hypothesis space

We define the hypothesis state θ as a vector representing six different student
ability parameters. Four parameters are related to specific actions and are based
on mal-rules from prior work [12, 16]. The sign error parameter refers to moving
a term to the other side without changing the sign (2x+ 3 = 6 → 2x = 6 + 3).
The reciprocal error parameter refers to multiplying rather than dividing by
a coefficient (5x = 1 → x = 5). The distributive error parameter refers to
multiplying only the first term in parentheses by a value (4(x + 3) → 4x + 3).
Each parameter is a value in [0, 1] that reflects the probability of producing the
error for the relevant action. These first three dimensions of θ thus govern the
transition model of an MDP. Representing erroneous rules as probabilities allows
us to account for prior data showing inconsistent application of mal-rules [12].
The fourth action parameter indicates whether only like terms may be combined
(only constants or only variables). This is implemented by including versions of
the combine terms action for non-like terms only if this parameter is zero.

Two additional parameters affect each action choice and transformation. The
arithmetic error parameter is the probability of making an arithmetic error in
each operation in a transformation. Like the first three dimensions of θ, this
parameter affects transition probabilities. It allows us to distinguish between
misunderstandings about the rules of algebra and difficulties with arithmetic.
The final parameter relates to solving efficiency. Following prior work modeling
human action planning [3, 14], we assume a noisily optimal Boltzmann policy
p(a|s) ∝ exp(θβQ(s, a)), where θβ controls the noisiness of the policy. Larger θβ
indicates more probability on the actions with highest expected value. Inferring
θβ allows us to detect how efficiently an individual is choosing actions.

5.2 Computing the diagnosis

The diagnosis of understanding is expressed as a posterior distribution over θ.
Because θ is continuous, we approximate the posterior using Metropolis Hast-
ings [7]. We place a Beta(1, 3) prior on the four probability parameters in θ,
favoring values closer to normative algebra solving. The prior was not tuned.

Metropolis Hastings calculates the likelihood of the data using sampled values
of θ. To calculate the transition model and policy for a specific θ, we must
compute the Q-values for the corresponding MDP. We approximate the solution
because the state and action spaces are infinite. First, we discretize the actions
by creating generic versions of each action that indicate what types of terms
(constant, variable, or complex) are acted on but ignore the coefficients. To
discretize the state space, we aggregate states into a finite set of possibilities,
and then solve Q(s, a) using the aggregated states and discretized actions, such
that all equations mapping to the same state have the same Q-values [17].3

3 Q-values are also used to find optimal actions in the corrected interface. Assuming
no errors and letting θβ = 5, we calculate a close to optimal policy. Actions were
accepted if they had probability within ε = 0.05 of the highest probability.
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Fig. 3. (a) Diagnosis from a participant who used the corrected interface. (b) Dis-
tribution of the standard deviations of the sampled distributions, by condition. (c)
Proportion of steps where inverse planning found at least one valid action sequence.

6 Modeling Human Problem Solving Data

We applied Bayesian inverse planning to diagnose the understanding of each par-
ticipant in our experiment. Figure 3a shows a graph of the posterior distributions
for a single participant in the corrected condition. The somewhat low planning
parameter is likely due to the fact that the participant gave up on several prob-
lems without reaching an answer. The participant had difficulty with problems
involving the distributive property, reflected by the high estimated value for the
distributive error parameter. The relatively large spread of the posterior for this
parameter suggests that the algorithm has low confidence in an exact value.
Since inverse planning computes the diagnosis as a distribution, we can easily
see the confidence of the algorithm in particular parameter values.

We explored whether the algorithm’s diagnoses were as confident based on the
freeform data as from the corrected data. While interpreting freeform data is a
natural fit for this algorithm, these data are also likely to exhibit ambiguity. Since
this interface does not force particular action choices and allows mathematical
errors, there may be cases where more than one action or error could account
for a step, and people may combine actions.

To measure how confident the diagnoses were for different conditions, we
calculated the standard deviation of the sampled values for each participant. As
shown in Figure 3b, the distribution of these standard deviations are generally
similar across conditions except for the planning parameter: for most parameters,
the lack of constraints in the freeform interface did not decrease confidence.
For the planning parameter, we believe the difference in confidence is due to
participants in the corrected condition giving up more frequently. This lead to
lower inferred planning parameters on average. Since variance in sampled values
tends to increase with the parameter’s magnitude, we would expect that this
difference in values would result in less absolute confidence for this parameter
in the freeform condition. This difference also highlights the fact that one might



want to separate choices about when to stop solving from suboptimal choices
among other actions, which could be incorporated via a two part choice function.

Another measure of the algorithm’s performance is its ability to interpret
steps as actions in the model. Figure 3c shows the proportion of two-step se-
quences for which at least one action had non-zero probability; this includes all
attempts at steps, including steps that participants entered in the corrected con-
dition that were incorrect or the wrong action. When each step transition must
be interpreted as a single action, many more steps in the corrected condition can
be interpreted than in the freeform condition. We hypothesized that participants
may combine multiple actions in a single step; this could be due to a mismatch
between our definition of an individual step and participants beliefs about what
defines a step. To address this, we extended the algorithm to sum over sequences
of actions rather than only single actions in Equation 1; this may increase noise,
as there is more ambiguity, but allows for broader coverage. We only sum over
sequences of actions in cases where no single action has non-zero probability. As
Figure 2c shows, this results in similar coverage across conditions.

7 Discussion

Our results demonstrate that Bayesian inverse planning can interpret equation
solving regardless of which interface is used. However, people who used the
freeform interface were less frustrated and more able to reach solutions. Sev-
eral participants commented that they wanted to solve problems “their way”;
the freeform interface comes much closer than the corrected interface to realizing
this goal, and inverse planning provides a powerful tool for understanding actions
with minimal structuring. While it may be beneficial to eventually guide learners
towards more efficient actions, forcing this sequence immediately, especially for
those with partial understanding, could be frustrating.

Our results have several limitations. AMT participants may have different
motivations than typical algebra students. However, we believe these partici-
pants still provide valuable evidence about the usability of the interfaces and
have varying algebra skills, similar to other adult learners. Comments from sev-
eral participants indicated they wanted to learn more algebra or appreciated
practicing old skills, suggesting some interest in the topic. An additional lim-
itation is our choice of interfaces. Specifically, some tutoring systems are less
constrained than our corrected interface, requiring only that steps be mathe-
matically correct but not that they be in a normative order. Our constraint on
order represents minimal ambiguity for inverse planning, providing a best case
scenario for the algorithm to which we can compare, and the fact that we allowed
slightly suboptimal actions means that some action choice was still permitted.

This work demonstrates that inverse planning can interpret equation solving
data, providing a way to allow more freeform solutions without sacrificing auto-
mated knowledge tracking. In the future, we plan to more closely examine the
accuracy of inverse planning for knowledge diagnosis; this study provides some
evidence of its effectiveness, but a more thorough investigation is needed. Addi-



tionally, we plan to explore the use of inverse planning for customizing feedback,
and to compare the effectiveness of the immediate and specific corrected inter-
face feedback to holistic, conceptual feedback. Investigation of a blend of struc-
tured and freeform interfaces may also suggest ways to maintain engagement
and motivation while still guiding learners towards normative solving. While
many questions remain, the technical innovations of inverse planning provide a
foundation for addressing these issues.
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