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Abstract

What is the optimal way to make a decision given that your
time is limited and your cognitive resources are bounded? To
answer this question, we formalized the bounded optimal de-
cision process as the solution to a meta-level Markov deci-
sion process whose actions are costly computations. We ap-
proximated the optimal solution and evaluated its predictions
against human choice behavior in the Mouselab paradigm,
which is widely used to study decision strategies. Our compu-
tational method rediscovered well-known heuristic strategies
and the conditions under which they are used, as well as novel
heuristics. A Mouselab experiment confirmed our model’s
main predictions. These findings are a proof-of-concept that
optimal cognitive strategies can be automatically derived as the
rational use of finite time and bounded cognitive resources.

Keywords: Decision-Making; Heuristics; Bounded Rational-
ity; Strategy Selection; Rational Metareasoning

Introduction

Some situations require us to decide quickly whereas others
call for careful consideration of all available options and po-
tential consequences. People seem to master this challenge
by choosing adaptively from a toolbox of diverse decision
strategies (Payne, Bettman, & Johnson, 1988; Gigerenzer &
Selten, 2002). This toolbox is assumed to include fast-and-
frugal heuristics (Gigerenzer & Goldstein, 1996) as well as
slower and more effortful strategies. Fast-and-frugal heuris-
tics include Take-The-Best (TTB), which chooses the alterna-
tive that is favored by the most predictive attribute and ignores
all other attributes, satisficing (SAT) (Simon, 1956), which
chooses the first alternative whose expected value exceeds
some threshold, and random choice; slower strategies include
the Weighted-Additive Strategy (WADD), which computes
all gambles’ expected values based on all possible payoffs.
Except for WADD, all of these strategies are heuristics: they
solve some problems very efficiently but err on others.

The systematic errors that result from people’s use of
heuristics are inconsistent with classic notions of rationality
such as logic, probability theory, and expected utility theory
(Tversky & Kahneman, 1974). Making good decisions is re-
markably constrained: decisions have to be made in a finite
amount of time, people’s cognitive resources are limited, and
maximizing expected utility entails intractable computational
problems. This makes expected utility theory an unrealisti-
cally high bar for human rationality. According to a more
realistic normative standard, people should decide in a way
that makes the best possible use of their limited cognitive re-
sources (Griffiths, Lieder, & Goodman, 2015). Previous re-
search has applied this resource-rational approach to numer-

ical estimation (Lieder, Griffiths, & Goodman, 2012), avail-
ability biases (Lieder, Hsu, & Griffiths, 2014), and strategy
selection (Lieder, Plunkett, et al., 2014). However, this ap-
proach has not been applied to the domain in which heuristics
have perhaps been studied in greatest detail: multi-alternative
risky choice. Work on risky choice suggests that people adap-
tively switch between multiple different strategies depend-
ing on how much time is available and whether one of the
outcomes is much more likely than the others (Payne et al.,
1988). Yet, it remains unclear how people’s decision pro-
cesses compare to resource-rational behavior.

To answer these questions, we model the decision process
as a sequence of costly computations and formalize the opti-
mal decision process as the solution to a meta-level Markov
decision process. We combine this theory with an algorithm
for approximating the optimal solution to create a computa-
tional method that can automatically derive optimal cogni-
tive strategies. These rational heuristics can be interpreted
as a fair normative standard for human decision making that
takes into account that people’s time is costly and that their
cognitive resources are bounded. We are optimistic that this
novel approach will lead to new insights about how decision-
makers cope with limited time and bounded computational
resources, and advance the debate about human rationality.

We illustrate our approach in multi-alternative risky choice
and test its predictions using the Mouselab paradigm that
is widely used to study decision strategies (Johnson, Payne,
Bettman, & Schkade, 1989). Two known heuristics, TTB
and random choice, emerged from our theory as resource-
rational strategies for low-stakes decisions with high and low
dispersion of their outcome probabilities, respectively. In ad-
dition, our computational method discovered a novel heuristic
that combines TTB with satisficing. Our experiment demon-
strated that people do indeed use the newly discovered heuris-
tic and confirmed our rational model’s predictions of when
people use which strategy: people used simple heuristics
more frequently when the stakes were low, employed fast-
and-frugal heuristics less frequently when all outcomes were
almost equally likely (low dispersion), and invested more
time and effort when the stakes were high. This is the first
demonstration that rational meta-reasoning can be used to au-
tomatically discover decision strategies used by people.

Background

We will formulate our theory using the mathematical frame-
works of Markov decision processes, bounded optimality, and



rational metareasoning, introduced in this section.

Markov Decision Processes

Each sequential decision problem can be modeled as a
Markov Decision Process (MDP)

M= (5,41 .rP), ey

where  is the set of states, 4 is the set of actions, T (s,a,s’)
is the probability that the agent will transition from state s to
state s’ if it takes action a, 0 <y < 1 is the discount factor
on future rewards, r(s,a,s’) is the reward generated by this
transition, and Py is the probability distribution of the initial
state So (Sutton & Barto, 1998). A policy ©: S — A speci-
fies which action to take in each of the states. The expected
sum of discounted rewards that a policy 7 will generate in the
MDP M starting from a state s is known as its value function

Vii(s) =E
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The optimal policy Ty, maximizes the expected sum of dis-
counted rewards, that is

Ty, = argmax £
i

iY'r(Stan(St)7St+l)‘| . (3)
t=0

Bounded optimality and rational metareasoning

People and robots have to make decisions in a limited amount
of time and with bounded cognitive resources. Given that
these resources are scarce, which strategy should a decision-
maker employ to use its resources most effectively? The
theory of bounded optimality and rational metareasoning
(Russell & Wefald, 1991; Russell & Subramanian, 1995) was
developed to answer this question for rational agents with
limited performance hardware. It frames this problem as se-
lecting computations so as to maximize the sum of the re-
wards of resulting decisions minus the costs of the computa-
tions involved.

Concretely, the problem of choosing computations opti-
mally can be formulated as a meta-level MDP (Hay, Russell,
Tolpin, & Shimony, 2012). A meta-level MDP

Myeta = (Q'}a C, Tmeta,rmcta) 4)

is a Markov decision process whose actions C are cognitive
operations, its states B represent the agent’s probabilistic be-
liefs, and the transition function 7Tjye, models how cognitive
operations change the agent’s beliefs. In addition to a set
of computations C that update the agent’s belief, the cog-
nitive operations also include the meta-level action L that
terminates deliberation and translates the current belief into
action. The meta-level state b; encodes the agent’s proba-
bilistic beliefs about the domain it is reasoning about.The
meta-level reward function rpye captures the cost of think-
ing (Shugan, 1980) and the reward r the agent expects to re-
ceive from the environment when it stops deliberating and

takes action. The computations C do not yield any external
reward. Their only effect is to update the agent’s beliefs.
Hence, the meta-level reward for performing a computation
¢ € Cis rmeta(br,¢) = —cost(c). By contrast, terminating de-
liberation and taking action (L) does not update the agent’s
belief. Instead, its value lies in the anticipated reward for tak-
ing action, that is

Fneta (b1, L) = argmax 6™ (a), (5)
where b,<“ ) (@) is the expected reward of taking action a ac-
cording to the belief b;.

Adaptive strategy selection in risky choice

Consistent with rational metareasoning, people flexibly adapt
their decision processes to the structure of the problem they
face. Concretely, Payne et al. (1988) found that people use
fast-and-frugal heuristics, like TTB, more frequently when
they are under time pressure and when one outcome is much
more likely than the others. In this research, participants were
given the choice between gambles g1,---,g,. Each gamble
was defined by the payoffs it assigns to each of four possible
outcome whose probabilities are known (P(0O)). Participants
could inspect a payoff matrix V, ; with one row for each out-
come o and one column for each gamble g. Critically, each
payoff is only revealed when the participant clicks on the cor-
responding cell of the payoff matrix using a mouse; this task
is hence referred to as the Mouselab paradigm (see Figure 1).

The adaptiveness of people’s strategy choices in the
Mouselab paradigm suggests that their decision processes are
efficient and effective. But it is difficult to test whether they
are optimal, because it is unclear what it means to decide op-
timally when one’s time is valuable and one’s cognitive re-
sources are limited. To clarify this, the following section de-
velops a normative theory of resource-bounded decision mak-
ing in the Mouselab paradigm.

Boundedly-optimal decision-making

To model the meta-decision problem posed by the Mouse-
lab task, we characterize the decision-maker’s belief state
b, by probability distributions on the expected values
e1 = Evog, ], --en = E[voyg,] of the n available gambles
g1, ,&n- Furthermore, we assume that for each element v, ¢
of the payoff matrix V there is one computation ¢, ¢ that in-
spects the payoff v, , and updates the agent’s belief about the
expected value of the inspected gamble according to Bayesian
inference. Since the entries of the payoff matrix are drawn
from the normal distribution A((¥,62), the resulting posterior
distributions are also Gaussian. Hence, the decision-maker’s
belief state b; can be represented by b, = (b 1,- - -,b; ) with

2
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where b;’f and b;_z,) are the mean and the variance of the
probability distribution on the expected value of gamble g of
the belief state b;.



Given the set O, of the indices (k((,l)7 él)), e (k((f),kg)) of
the ¢ observations made so far, the means and variances char-
acterizing the decision-maker’s beliefs are given by
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(0.8)€0 (0.8)¢0

2
B = Y plo)} ol @®)
(0,8)¢0

The meta-level transition function T(bt,covg,b;_t,_]) encodes
the probability distribution on what the updated means and
variances will be given the observation of a payoff value V,, ,
sampled from A((7,62). The meta-level reward for perform-
ing the computation ¢, , € C encodes that acquiring and pro-
cessing an additional piece of information is costly. We as-
sume that the cost of all such computations is an unknown

constant A. The meta-level reward for terminating delibera-
tion and taking action iS 7meta (br, L) = maxg b,(“ ) (g).
Approximating the optimal meta-level policy:
Bayesian value function approximation

Unfortunately, computing the optimal policy for the meta-
level MDP defined above is intractable. However, it can be
approximated using methods from reinforcement learning.
We initially used the semi-gradient SARSA algorithm (Sutton
& Barto, 1998) with limited success. We therefore developed
anew algorithm that replaces the gradient descent component
of that algorithm by Bayesian linear regression.

Our algorithm learns a linear approximation to the meta-
level Q-function

Ometa(b;c) = Y wi - fi(b,c), ©)
k

whose features f include a constant, features of the belief
state b;, and features of the computation ¢;. The features
of the belief state were the expected value of the maximum
of the gambles’ expected values (IE[maxyEg|b;]) and the
decision-maker’s uncertainty about it (y/Var[maxg Eg|b;]).

The largest posterior mean (max, b;’? ) and its associated

uncertainty (4/ ,u(cz*)

, o~ Where g* = argmax, b,(f;,) ), the second

largest posterior mean and the decision-maker’s uncertainty
about it, and the expected regret IE[regret(g)|b;] that the

decision-maker would experience if they chose based on

their current belief (where regret(g) = max, E, — max, b

1g
for E; ~ N(bt(f;),bt(?) for all gambles i). The features of
the computation Co,g Were its myopic value of computation
(VOC(by,co4); see Russell & Wefald, 1991), the current un-

certainty about the expected value of the inspected gamble

(b,(f;)), the probability of the inspected outcome, the differ-
ence between the largest posterior mean and the posterior
mean of the inspected outcome, a binary variable indicat-
ing whether the computation acquired new information, and
the expected reduction in the expected regret ER(b) minus its
cost (i.e. E[ER(By41)|bs,c] —ER(b;) — A, where B, is the

unknown belief state resulting from performing computation
c in belief state b; and ER(b;) = E[regret(argmax, bt(i,) )|b:])-

The weights w are learned by Bayesian linear regression of
the bootstrap estimate Q(b, ¢) of the meta-level value function
onto the features f. The bootstrap estimator is

O(br,c1) = Fmeta(brycr) + W, - f(bry1,¢001),  (10)

where 1, is the posterior mean on the weights w given the ob-
servations from the first 7 trials, and f(b, 1, ¢, 1) is the feature
vector characterizing the subsequent belief state b,;| and the
computation ¢, that will be selected in it.

Given the learned posterior distribution on the feature
weights w, the next computation c is selected by contextual
Thompson sampling (Agrawal & Goyal, 2013). Specifically,
to make the ™ meta-decision, a weight vector W is sampled
from the posterior distribution of the weights given the series
of meta-level states, selected computations, and the resulting
value estimates experienced so far, that is

W~ P(w|(b1,c1,0(b1,¢1)), -, (b1, k-1, 0(bk—1,¢x-1)))-

The sampled weight vector W is then used to predict the
Q-values of each available computation ¢ € C according to
Equation 9. Finally, the computation with the highest pre-
dicted Q-value is selected.

Application to Mouselab experiment

As a proof of concept, we applied our approach to the Mouse-
lab experiment described below. The experiment comprises
50% high-stakes problems and 50% low-stakes problems.
Since participants are informed about the stakes, we learned
two separate policies for high-stakes and low-stakes prob-
lems, respectively. Half of each of those problems had nearly
uniform outcome probabilities (“low dispersion”) and for the
other half one outcome was much more likely than all others
combined (“high dispersion”). The parameters of the simu-
lated environment were exactly equal to those of the experi-
ment described below. Our model assumed that people play
each game as if they receive the payoff of the selected gam-
ble. We estimated the cost per click to be about A = 3 cents.
This value was selected to roughly match the average number
of acquisitions observed in the experiment.

To approximate the optimal meta-decision policy for this
task, we ran our feature-based value function approximation
method for 4000 low-stakes training trials and 4000 high-
stakes training trials, respectively.

Model predictions

The meta-level MDP described above formalizes the costs
and benefits of acquiring and processing additional pieces of
information: acquiring additional information can improve
the decision that will be taken later on but also incurs an
immediate cost. Hence, the optimal solution approximated
by our computational method executes a cognitive operation
or sequence of operations if and only if the resulting im-
provement in decision quality is larger than cost of those



Game 1 of 20 Low-stakes: Minimum value: $0.01, Maximum value: $0.25
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Figure 1: The Mouselab paradigm, showing an example se-
quence of clicks generated by the SAT-TTB strategy, which
was discovered through approximate rational metareasoning.

operations. Intuitively, this means that the decision process
prescribed by our model achieves the optimal tradeoff be-
tween decision quality versus decision time and mental ef-
fort. This tradeoff depends on the stakes of the decision such
that higher stakes usually warrant more deliberation. Like-
wise, since processing probable outcomes is more likely to
improve the quality of the resulting decision than process-
ing improbable outcomes, we expect our model to prioritize
probable outcomes over less probable outcomes—especially
in high-dispersion trials.

Our computational method automatically discovered
strategies that people are known to use in the Mouselab
paradigm as well as a novel strategy that has not been re-
ported yet. Our method rediscovered TTB, WADD, and the
random choice strategy. In addition, it discovered a new hy-
brid strategy that combines TTB with satisficing (SAT-TTB).
Like TTB, SAT-TTB inspects only the payoffs for the most
probable outcome. But unlike TTB and like SAT, SAT-TTB
terminates as soon as it finds a gamble whose payoff for the
most probable outcome is high enough. On average, this
value was about $0.15 when the payoffs ranged from $0.01 to
$0.25 (i.e., low-stakes trials). Figure 1 illustrates this strategy.

Furthermore, our model makes intuitive predictions about
the contingency of people’s choice processes on stakes and
outcome probabilities. First, our model predicts that people
should use fast-and-frugal heuristics more frequently in high-
dispersion trials. This is intuitively rational because high dis-
persion means that one outcome is much more likely than
all others and fast-and-frugal heuristics ignore all outcomes
except for the most probable one(s). Concretely, our model
generated TTB as the strategy of choice for 100% of the high-
dispersion problems with low-stakes, but for low-dispersion
problems with low-stakes the model considered the random
choice strategy to be optimal in the majority (56%) of cases;
it used the SAT-TTB hybrid strategy for 24% of such trials,
and it indicated the TTB strategy only for the remaining 20%.

Second, our model predicts that people should use simple
heuristics, like TTB, SAT-TTB, and random choice, primar-
ily when the stakes are low. This, too, is intuitively rational
because fast and frugal heuristics tend to be faster but less ac-

curate than more effortful strategies. Our model used these
heuristics for 100% of the low-stakes problems. But for high-
stakes problems, the model never used any of these or other
frugal strategies. Instead, the model typically inspected the
vast majority of all cells (24.8/28 for low-dispersion prob-
lems and 23.7/28 for high-dispersion problems). The few
cells that it did not inspect were mostly the payoffs of less-
likely outcomes of the best gamble when its inspected payoffs
for the most likely outcome(s) were high enough to guarantee
that it would be optimal.

Third, our model predicts that when the stakes are high
people should invest more time and effort (F(1,396) =
9886.8, p < 0.0001) to reap a higher fraction of the highest
possible expected payoff (F(1,339) = 135.24,p < 0.0001).
This, too, is consistent with the rational speed-accuracy trade-
off inherent in our theory. When the stakes were low the
model inspected only 4.3 payoffs on average and reaped only
87% of the possible reward; but when the stakes were high the
model inspected 24.3 of the 28 possible payoffs and reaped
99% of the best expected payoff on average. In 97% of these
trials, the model achieved this near-maximal performance
while being more efficient and more frugal than the WADD
strategy which it employed for only 3% of these problems.

Experimental test of novel predictions

To test the predictions of our model, we conducted a new
Mouselab experiment that manipulated the stakes and disper-
sion of outcome probabilities within subjects in an identical
manner to the model simulations.

Methods

Participants We recruited 200 participants on Amazon
Mechanical Turk. The experiment took about 30min. Partic-
ipants received a base pay of $1.50, and one of their twenty
winnings was selected at random and awarded as a bonus to
motivate them to take each trial seriously (avg. bonus $3.53).

Procedure Participants performed a variation of the
Mouselab task (Payne et al., 1988). Participants played a se-
ries of 20 games divided into two blocks. Figure 1 shows
a screenshot of one game. Every game began with a 4 x 7
grid of occluded payoffs: there were seven gambles to choose
from (columns) and four possible outcomes (rows). The oc-
cluded value in each cell specified how much the gamble indi-
cated by its column would pay if the outcome indicated by its
row occurred. The outcome probabilities were described by
the number of balls of a given color in a bin of 100 balls, from
which the outcome would be drawn. For each trial, partici-
pants were free to inspect any number of cells before select-
ing a gamble, with no time limit. The value of each inspected
cell remained visible onscreen for the duration of the trial.
Upon selecting a gamble, the resulting reward was displayed.

Experimental design The experiment used a 2 x 2 within
subjects design. Each block of ten trials was either low-stakes



or high-stakes, with block order randomly counterbalanced
across participants. In games with low-stakes, the possible
outcomes ranged from $0.01 to $0.25, while in high-stakes
games, outcomes ranged from $0.01 to $9.99. The payoffs
were drawn from a truncated normal distribution with mean
% and standard deviation 0.3 - (Fmax — Fmin). Within
each block, there were five low-dispersion trials and five high-
dispersion, ordered randomly. In low-dispersion trials, the
probability of each of the four outcomes ranged from 0.1 to
0.4, whereas in high-dispersion trials, the probability of the
most likely outcome ranged from 0.85 to 0.97.

Strategy identification We identified six different decision
strategies, in humans and in simulations, using the follow-
ing definitions: TTB was defined as inspecting all cells in the
row corresponding to the most probable outcome and nothing
else. SAT occurs when one gamble’s payoffs are inspected
for all four outcomes, potentially followed by the inspection
of all outcomes of another gamble, and so on, but leaving
at least one gamble unexamined. The hybrid strategy, SAT-
TTB, was defined as inspecting the payoffs of 1 to 6 gambles
for the most probable outcome and not inspecting payoffs for
any other outcome. TTB2 was defined as inspecting all four-
teen cells of the two most probable outcomes, and nothing
else. WADD was defined as inspecting all 28 cells column by
column.Random decisions mean zero samples were taken.

Results

Our process tracing data confirmed that people do indeed
use the SAT-TTB strategy discovered by our model. Table
1 shows the frequency of various decision strategies, for each
of the four different types of trials. Out of 4000 trials across
all participants, TTB was the most common strategy overall,
accounting for 25.3% of all trials. SAT-TTB was the sec-
ond most common strategy among those we examined: par-
ticipants employed this strategy on 10.7% of all trials. In
8.0% of trials participants chose randomly without making
any observations—mostly during low-stakes games. Interest-
ingly, we also observed a second novel strategy that we call
Take-The-Best-Two (TTB2). This strategy inspects all gam-
bles’ payoffs for the two most probable outcomes, and was
used in 6.3% of trials. The WADD strategy occurred in 4.5%
of trials. Finally, the SAT strategy was used in 3.1% of games.

Consistent with our model’s first prediction, people used
TTB more frequently when the dispersion was high (x?(1) =
897.9,p < 0.0001). Consistent with our model’s second pre-
diction, participants used simple heuristics more frequently
when the stakes were low: the frequency of the random
choice—the simplest heuristic—increased significantly from
4.2% on high-stakes problems to 19.9% on low-stakes prob-
lems (%>(1) = 88.2, p < 0.0001), and so did the frequency of
the second simplest heuristic, SAT-TTB (x?(1) = 86.3,p <
0.0001), and the third simplest heuristic, TTB (x*(1) =
20.0,p < 0.0001). The frequency of SAT also increased
from high- to low-stakes games (x*(1) = 3.4, p < 0.05, one-

Frequency

Strategy |Total[HS-HD[HS-LD|LS-HD|LS-LD
TTB 1012]392 64 449 107
SAT-TTB|412 |68 54 140 150
Random [320 [41 42 111 126
TTB2 251 [34 94 25 98
WADD [178 |33 84 19 42
SAT 89 |14 22 23 30

HS-HD = High-stakes, high-dispersion HS-LD = High-stakes, low-dispersion
LS-HD = Low-stakes, high-dispersion LS-LD = Low-stakes, low-dispersion

Table 1: Frequency of strategy types for each type of trial.

tailed). Finally, consistent with our model’s third prediction,
the frequency of the most effortful and most accurate strategy,
WADD, increased with the stakes (xz(l) =19.3,p < 0.0001).

Together, the strategies reported in Table 1 account for only
about half (48.6%) of all trials.To test our model’s predictions
on all of the trials, we quantified people’s decision style by
four metrics introduced by Payne et al. (1988): the number of
inspected cells (acquisitions), the proportion of those inspec-
tions that pertained to the most probable outcome (prioritiza-
tion), the degree to which subsequent acquisitions inspected
the payoffs of different gambles for the same outcome ver-

sus the payoffs of the same gamble for different outcomes
"'same outcome ~’same gamble) and

(outcome-based processing: same outcome same gamble

the average ratio of the expected value of the chosen gamble
over the expected value of the optimal choice (relative per-
formance). To further test our model’s predictions, we ran a
2-way mixed-effects ANOVA for each of these four metrics.

As shown in Figure 2, the effects of the stakes and out-
come probabilities on the four metrics confirmed the model’s
predictions. Our model’s first prediction that high dispersion
promotes the use of fast-and-frugal heuristics was confirmed
by a decrease in the number of acquisitions (F(1,3798) =
78.24,p < 0.0001) in conjunction with an increases in
outcome-based processing (F(1,3432) = 68.31, p < 0.0001)
and prioritization ((F(1,3478) = 280.1,p < 0.0001)). The
increase in prioritization was especially striking: while only
40.4% of participants’ clicks inspected the most probable
outcome when dispersion was low, they focused 70.6% of
their acquisitions on the most probable outcome when dis-
persion was high. Our model’s second prediction that the
higher stakes should decrease people’s reliance on fast-and-
frugal heuristics was confirmed by a significant increases
in the number of acquisitions (F(1,3798) = 281.47,p <
0.0001) which was accompanied by a decrease in prioritiza-
tion (F(1,3478) = 62.42, p < 0.0001) and an increase in rel-
ative performance (F(1,3798) =47.62, p < 0.0001). Consis-
tent with the model’s third prediction, the average outcome-
based processing metric was lower for high stakes but this ef-
fect was not statistically significant (F(1,3432) =2.45,p =
0.06, one-tailed). Our model’s third prediction that high-
stakes increases time, effort, and performance, was con-
firmed by a significant increases in the number of acquisitions
(F(1,3798) = 281.47,p < 0.0001) and relative performance
(F(1,3798) = 47.62, p < 0.0001) with high stakes.
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Figure 2: People’s decision style by stakes and dispersion of

the outcome probabilities.

Despite these qualitative agreements, there were quantita-
tive differences. Most notably, our model predicted a more
pronounced effect of the stakes on the number of acquisitions
than we observed in people (419.6 vs. +3.4); the smaller
effect in people might reflect their concave utility function.

Discussion

In summary, our resource-rational theory of multi-alternative
risky choice predicted some of the main strategies people use
in the Mouselab paradigm and the conditions under which
they are selected. In addition to automatically discovering
known strategies and contingencies, our computational ap-
proach also discovered a novel, previously unknown heuris-
tic that integrates TTB with satisficing (SAT-TTB), and our
experiment confirmed that people do indeed use SAT-TTB on
a non-negligible fraction of problems—especially when the
stakes are low.

Tajima, Drugowitsch, and Pouget (2016) solved meta-level
MDPs to derive boundedly optimal drift-diffusion models.
The strategy discovery method presented here generalizes this
approach to more complex decision mechanisms that can pro-
cess and generate evidence in many different ways.

One limitation of the current work is that we do not know
how closely our algorithm approximated the optimal pol-
icy, and it is possible that a more accurate approximation
would yield somewhat different predictions. Future work
will systematically evaluate the accuracy of our approxima-
tion method on smaller problems for which the optimal meta-
level policy can be computed exactly. Another limitation of
the present work is that the cost of computation had to be fit to
the participants’ responses. Future work will control the cost
per click and measure it independently. This will enable a di-
rect comparison of the time and effort people invest against
the optimal amount of deliberation. However, a thorough an-
swer to this question will require a more detailed model of
people’s cognitive architecture including a model of working
memory. Another direction for future work is to characterize

the decision strategies the model employed on the vast major-
ity of high-stakes problems where it did not use WADD.

Our proof-of-concept study suggests that formulating the
problem of making optimal use of finite time and limited
cognitive resources as a meta-level MDP is a promising ap-
proach to discovering cognitive strategies. This approach can
be leveraged to develop more realistic normative standards
of human rationality. This might enable future work to sys-
tematically evaluate the extent to which people are resource-
rational. In the long term, our approach could be used to im-
prove human reasoning and decision-making by discovering
rational heuristics and teaching them to people.
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