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 2 

 

Short Abstract 

The minds of people, animals, and machines are shaped by the need to quickly solve complex 

problems with bounded computational resources. Psychologists, economists, neuroscientists, and 

linguists have begun to leverage this assumption to develop rational models of cognitive 

strategies and mental representations, and computer scientists have demonstrated that it is 

possible to derive optimal algorithms for performance-limited hardware. We synthesize these 

multi-disciplinary advances into an integrative framework and illustrate how it can be used to 

address classic questions of cognitive psychology, revisit the debate about human rationality, 

improve the human mind, and connect psychology to neuroscience and artificial intelligence. 

Long Abstract 

Modeling human cognition is challenging because there are infinitely many mechanisms that can 

generate any given observation. Some researchers address this by constraining the hypothesis 

space through assumptions about what the human mind can and cannot do, while others 

constrain it through principles of rationality and adaptation. Recent work in economics, 

psychology, neuroscience, and linguistics has begun to integrate both approaches by augmenting 

rational models with cognitive constraints, incorporating rational principles into cognitive 

architectures, and applying optimality principles to understanding neural representations. We 

identify the rational use of limited resources as a unifying principle underlying these diverse 

approaches, expressing it in a new cognitive modeling paradigm called resource-rational 

analysis. The integration of rational principles with realistic cognitive constraints makes 
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resource-rational analysis a promising framework for reverse-engineering cognitive mechanisms 

and representations. It has already shed new light on the debate about human rationality and can 

be leveraged to revisit classic questions of cognitive psychology within a principled 

computational framework. We demonstrate that resource-rational models can reconcile the 

mind’s most impressive cognitive skills with people’s ostensive irrationality. Resource-rational 

analysis also provides a new way to connect psychological theory more deeply with artificial 

intelligence, economics, neuroscience, and linguistics. 

Keywords  

bounded rationality; cognitive biases; cognitive mechanisms; cognitive modeling; 

representations; resource-rationality 
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Introduction 

Cognitive modeling plays an increasingly important role in our endeavor to understand the 

human mind. Building models of people’s cognitive strategies and representations is useful for at 

least three reasons. First, testing our understanding of psychological phenomena by recreating 

them in computer simulations forces precision and helps to identify gaps in explanations. 

Second, computational modeling permits the transfer of insights about human intelligence to the 

creation of artificial intelligence (AI) and vice versa. Third, cognitive modeling of empirical 

phenomena is a way to infer the underlying psychological mechanisms, which is critical to 

predicting human behavior in novel situations. 

 

Unfortunately, inferring cognitive mechanisms and representations from limited experimental 

data is an ill-posed problem, because any behavior could be generated by infinitely many 

candidate mechanisms (Anderson, 1978). Thus, cognitive scientists must have strong inductive 

biases to infer cognitive mechanisms from limited data. Theoretical frameworks, such as 

evolutionary psychology (Buss, 1995), embodied cognition (Wilson, 2002), production systems 

(e.g., Anderson, 1996), dynamical systems theory (Beer, 2000), connectionism (Rummelhart & 

McClelland, 1987), Bayesian models of cognition (Griffiths, Chater, Kemp, Perfors, & 

Tenenbaum, 2010), ecological rationality (Todd & Gigerenzer, 2012), and the free-energy 

principle (Friston, 2012) to name just a few, provide researchers guidance in the search for 

plausible hypotheses. Here, we focus on a particular subset of theoretical frameworks that 

emphasize developing computational models of cognition: cognitive architectures (Langley, 

Laird, & Rogers, 2009), connectionism (Rumelhart & McClelland, 1987), computational 

neuroscience (Dayan & Abbott, 2001), and rational analysis (Anderson, 1990). These 
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frameworks provide complementary functional or architectural constraints on modeling human 

cognition. Cognitive architectures, such as ACT-R (Anderson et al., 2004), connectionism, and 

computational neuroscience constrain the modeler’s hypothesis space based on previous findings 

about the nature, capacities, and limits of the mind’s cognitive architecture. These frameworks 

scaffold explanations of psychological phenomena with assumptions about what the mind can 

and cannot do. But the space of cognitively feasible mechanisms is so vast that most phenomena 

can be explained in many different ways – even within the confines of a cognitive architecture.  

 

As psychologists, we are trying to understand a system far more intelligent than anything we 

have ever created ourselves; it is possible that the ingenious design and sophistication of the 

mind’s cognitive mechanisms are beyond our creative imagination. To address this challenge, 

rational models of cognition draw inspiration from the best examples of intelligent systems in 

computer science and statistics. Perhaps the most influential framework for developing rational 

models of cognition is rational analysis (Anderson, 1990). In contrast to traditional cognitive 

psychology, rational analysis capitalizes on the functional constraints imposed by goals and the 

structures of the environment rather than the structural constraints imposed by cognitive 

architectures. Its inductive bias toward rational explanations is often rooted in the assumption 

that evolution and learning have optimally adapted the human mind to the structure of its 

environment (Anderson, 1990). This assumption is supported by empirical findings that under 

naturalistic conditions people achieve near-optimal performance in perception (Knill & Pouget, 

2004; Knill & Richards, 1996; Körding & Wolpert, 2004), statistical learning (Fiser, Berkes, 

Orbán, & Lengyel, 2010), and motor control (Todorov, 2004; Wolpert & Ghahramani, 2000), as 

well as inductive learning and reasoning (Griffiths & Tenenbaum, 2006, 2009). Valid rational 
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modeling provides solid theoretical justifications and enables researchers to translate 

assumptions about people’s goals and the structure of the environment into substantive, detailed, 

and often surprisingly accurate predictions about human behavior under a wide range of 

circumstances. 

 

That said, the inductive bias of rational theories can be insufficient to identify the correct 

explanation and sometimes points modelers in the wrong direction. Canonical rational theories of 

human behavior have several fundamental problems. First, human judgment and decision-

making systematically violate the axioms of rational modeling frameworks such as expected 

utility theory (Kahneman & Tversky, 1979), logic (Wason, 1968), and probability theory 

(Tversky & Kahneman, 1973, 1974). Furthermore, standard rational models define optimal 

behavior without specifying the underlying cognitive and neural mechanisms that psychologists 

and neuroscientists seek to understand. Rational models of cognition are expressed at what Marr 

(1982) termed the “computational level,” identifying the abstract computational problems that 

human minds must solve and their ideal solutions. In contrast, psychological theories have 

traditionally been expressed at Marr’s “algorithmic level,” focusing on representations and the 

algorithms by which they are transformed. 

 

This suggests that relying either cognitive architectures or rationality alone might be insufficient 

to uncover the cognitive mechanisms that give rise to human intelligence. The strengths and 

weaknesses of these two approaches are complementary — each offers exactly what the other is 

missing. The inductive constraints of modeling human cognition in terms of cognitive 

architectures were, at least to some extent, built from the ground up by studying and measuring 
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the mind’s elementary operations. In contrast, the inductive constraints of rational modeling are 

derived from top-down considerations of the requirements of intelligent action. We believe that 

the architectural constraints of bottom-up approaches to cognitive modeling should be integrated 

with the functional constraints of rational analysis. 

 

The integration of (bottom-up) cognitive constraints and (top-down) rational principles is an 

approach that is starting to be used across several disciplines, and initial results suggest that 

combining the strengths of these approaches results in more powerful models that can account 

for a wider range of cognitive phenomena. Economists have developed mathematical models of 

bounded-rational decision-making to accommodate people’s violations of classic notions of 

rationality (e.g., Gabaix, Laibson, Moloche, & Weinberg, 2006; Dickhaut, Rustichini, & Smith, 

2009; Simon, 1956; C. A. Sims, 2003). Neuroscientists are learning how the brain represents the 

world as a trade-off between accuracy and metabolic cost (e.g., Levy & Baxter, 2002; Niven & 

Laughlin, 2008; Sterling & Laughlin, 2015). Linguists are explaining language as a system for 

efficient communication (e.g., Hawkins, 2004; Kemp & Regier, 2012; Regier, Kay, & Khetarpal, 

2007; Zaslavsky, Kemp, Regier, & Tishby, 2018; Zipf, 1949), and more recently, psychologists 

have also begun to incorporate cognitive constraints into rational models (e.g., Griffiths, Lieder, 

& Goodman, 2015).  

 

In this article, we identify the rational use of limited resources as a common theme connecting 

these developments and providing a unifying framework for explaining the corresponding 

phenomena. We review recent multi-disciplinary progress in integrating rational models with 

cognitive constraints and outline future directions and opportunities. We start by reviewing the 
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historical role of classic notions of rationality in explaining human behavior and some cognitive 

biases that have challenged this role. We present our integrative modeling paradigm — resource 

rationality — as a solution to the problems faced by previous approaches, illustrating how its 

central idea can reconcile rational principles with numerous cognitive biases. We then outline 

how future work might leverage resource-rational analysis to answer classic questions of 

cognitive psychology, revisit the debate about human rationality, and build bridges from 

cognitive modeling to computational neuroscience and AI. 

 A brief history of rationality 

Notions of rationality have a long history and have been influential across multiple scientific 

disciplines, including philosophy (Harman, 2013; Mill, 1882), economics (Friedman & Savage, 

1948, 1952), psychology (Braine, 1978; Chater, Tenenbaum, & Yuille, 2006; Griffiths, et al., 

2010; Newell, Shaw, & Simon, 1958; Oaksford & Chater, 2007), neuroscience (Knill & Pouget, 

2004), sociology (Hedström & Stern, 2008), linguistics (Frank & Goodman, 2012), and political 

science (Lohmann, 2008). Most rational models of the human mind are premised on the classic 

notion of rationality (Sosis & Bishop, 2014), according to which people act to maximize their 

expected utility, reason based on the laws of logic, and handle uncertainty according to 

probability theory. For instance, rational actor models (Friedman & Savage, 1948, 1952) predict 

that decision-makers select the action    that maximizes their expected utility (Von Neumann & 

Morgenstern, 1944), that is 

         
 
∫ ( )   ( | )        ( ) 

where the utility function   measures how good the outcome   is from the decision-maker’s 

perspective and  ( | ) is the conditional probability of its occurrence if action   is taken.
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Psychologists soon began to interpret the classic notions of rationality as hypotheses about 

human thinking and decision-making (e.g., Edwards, 1954; Newell, Shaw, & Simon, 1958) and 

other disciplines also adopted rational principles to predict human behavior. The foundation of 

these models was shaken when a series of experiments suggested that people's judgment and 

decision-making systematically violate the laws of logic (Wason, 1968) probability theory 

(Tversky & Kahneman, 1974), and expected utility theory (Kahneman & Tversky, 1979). These 

systematic deviations are known as cognitive biases. The well-known anchoring bias (Tversky & 

Kahneman, 1974), base-rate neglect and the conjunction fallacy (Kahneman & Tversky, 1972), 

people’s tendency to systematically overestimate the frequency of extreme events (Lichtenstein, 

Slovic, Fischhoff, Layman, & Combs, 1978), and overconfidence (Moore & Healy, 2008) are 

just a few examples of the dozens of biases that have been reported over the last four decades 

(Gilovich, Griffin, & Kahneman, 2002). In many cases the interpretation of these empirical 

phenomena as irrational errors has been challenged by subsequent analyses (e.g., Dawes & 

Mulford, 1996; Hertwig, Pachur, & Kurzenhäuser, 2005; Hahn & Warren, 2009; Gigerenzer, 

Fiedler, & Olsson, 2012; Gigerenzer, 2015; Fawcett et al., 2014). But as reviewed below, 

cognitive limitations also appear to play a role in at least some of the reported biases. While 

some of these biases can be described by models such as prospect theory (Kahneman & Tversky, 

1979; Tversky & Kahneman, 1992) such descriptions do not reveal the underlying causes and 

mechanisms. According to Tversky and Kahneman (1974), cognitive biases result from people’s 

use of fast but fallible cognitive strategies known as heuristics. Unfortunately, the number of  

heuristics that have been proposed is so high that it is often difficult to predict which heuristic 

people will use in a novel situation and what the results will be.  
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The undoing of expected utility theory, logic, and probability theory as principles of human 

reasoning and decision-making has not only challenged the idealized concept of “man as rational 

animal” but also taken away mathematically precise, overarching theoretical principles for 

modeling human behavior and cognition. These principles have been replaced by different 

concepts of “bounded rationality” according to which cognitive constraints limit people’s 

performance so that classical notions of rationality become unattainable (Simon, 1955; Tversky 

& Kahneman, 1974). While research in the tradition of Simon (1955) has developed notions of 

rationality that take people’s limited cognitive resources into account (e.g., Gigerenzer & Selten, 

2002), research in the tradition of Tversky and Kahneman (1974) has sought to characterize 

bounded rationality in terms of cognitive biases.  In the latter line of work and its applications, 

the explanatory principle of bounded rationality has often been used rather loosely, that is 

without precisely specifying the underlying cognitive limitations and exactly how they constrain 

cognitive performance (Gilovich et al., 2002). As illustrated in Figure 1, infinitely many 

cognitive mechanisms are consistent with this rather vague use of the term “bounded rationality”. 

This raises questions about which of those mechanisms people use, which of them they should 

use, and how these two sets of mechanisms are related to each other. Answering these questions 

requires a more precise theory of bounded rationality.  

Simon (1955, 1956) famously argued that rational decision strategies must be adapted to both the 

structure of the environment and the mind’s cognitive limitations. He suggested that the pressure 

for adaptation makes it rational to use a heuristic that selects the first option that is good enough 

instead of trying to find the ideal option: satisficing. Simon’s ideas inspired the theory of 

ecological rationality, which maintains that people make adaptive use of simple heuristics that 
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exploit the structure of natural environments (Gigerenzer & Goldstein, 1996; Gigerenzer & 

Selten, 2002; Hertwig & Hoffrage, 2013; Todd & Brighton, 2016; Todd & Gigerenzer, 2012). A 

number of candidate heuristics have been identified over the years (Gigerenzer & Gaissmaier, 

2011; Gigerenzer & Goldstein, 1996; Gigerenzer, Todd, & ABC Research Group, 1999; Hertwig 

& Hoffrage, 2013; Todd & Gigerenzer, 2012) that typically use only a small subset of available 

information and perform much less computation than would be required to compute expected 

utilities (Gigerenzer & Gaissmaier, 2011; Gigerenzer & Goldstein, 1996).  

 

 

Figure 1: Resource rationality and its relationship to optimality and Tversky and Kahneman’s 

concept of bounded rationality. The horizontal dimension corresponds to alternative cognitive 

mechanisms that achieve the same level of performance. Each dot represents a possible mind. 

The gray dots are minds with bounded cognitive resources and the blue dots are minds with 

unlimited computational resources. The thick black line symbolizes the bounds entailed by 

people’s limited cognitive resources. Resource limitations reflect anatomical, physiological, and 

metabolic constraints on neural information processing as discussed below as time constraints, 

but they could also be modelled at a higher level of abstraction (e.g., in terms of processing 

speed or multi-tasking capacity). For the purpose of deriving a resource-rational mechanism 

these constraints are assumed to be fixed.
1
 

                                                 
1
 Some cognitive constraints may change as a consequence of brain development, exhaustion, 

and many other factors. Sufficiently large changes may warrant the resource-rational analysis to 

be redone. 
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In parallel work, Anderson (1990) developed the idea of understanding human cognition as a 

rational adaptation to environmental structure and goals pursued within it, creating a cognitive 

modeling paradigm known as rational analysis (Chater & Oaksford, 1999) that derives models 

of human behavior from structural environmental assumptions according to the six steps 

summarized in Box 1. Rational models developed in this way have provided surprisingly good 

explanations of cognitive biases by identifying how the environment that people’s strategies are 

adapted to differs from the tasks participants are given in the laboratory and how people’s goals 

often differ from what the experimenter intended them to be; examples include the confirmation 

bias (Austerweil & Griffiths, 2011; Oaksford & Chater, 1994), people’s apparent misconceptions 

of randomness (Griffiths & Tenenbaum, 2001; Tenenbaum & Griffiths, 2001), the gambler's 

fallacy (Hahn & Warren, 2009), and several common logical fallacies in argument construction 

(Hahn & Oaksford, 2007). The theoretical frameworks of ecological rationality and rational 

analysis are founded on the assumption that evolution has adapted the human mind to the 

structure of our evolutionary environment (Buss, 1995).  

 

Paralleling rational analysis, some evolutionary ecologists seek to explain animals’ behavior and 

cognition as an optimal adaptation to their environments (Houston & McNamara, 1999; 

McNamara & Weissing, 2010). This approach predicts the outcome of evolution from optimality 

principles, but research on how animals forage for food has identified several cognitive biases in 

their decisions (e.g., Bateson, Healy, & Hurly, 2002; Shafir, Waite, & Smith, 2002; Latty & 

Beekman, 2010). Subsequent work has sought to reconcile these biases with evolutionary fitness 

maximization by incorporating constraints on animals’ information processing capacity and by 
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moving from optimal behavior to optimal decision mechanisms that work well across multiple 

environments (Dukas, 1998a, 1998b; Fawcett, et al., 2014; Johnstone, Dall, & Dukas, 2002). 

 

Research on human cognition faces similar challenges. While it is a central tenet of rational 

analysis to assume only minimal computational limitations (Step 3), the computational 

constraints imposed by people’s limited resources are often substantial (Newell & Simon, 1972; 

Simon, 1982) and computing exact solutions to the problems people purportedly solve is often 

computationally intractable (Van Rooij, 2008). For this reason, rational analysis cannot account 

for cognitive biases resulting from limited resources. A complete theory of bounded rationality 

must go further in accounting for people’s cognitive constraints and limited time.  

 

 

Box 1. The six steps of rational analysis. 

 

Fortunately, AI researchers have already developed a theory of rationality that accounts for 

limited computational resources (Horvitz, Cooper, & Heckerman, 1989; Russell, 1997; Russell 

& Subramanian, 1995). Bounded optimality is a theory for designing optimal programs for 

agents with performance-limited hardware that must interact with their environments in real 

time. A program is bounded-optimal for a given architecture if it enables that architecture to 

perform as well as or better than any other program the architecture could execute instead. This 

1. Precisely specify what are the goals of the cognitive system. 

2. Develop a formal model of the environment to which the system is adapted. 

3. Make the minimal assumptions about computational limitations. 

4. Derive the optimal behavioral function given items 1 through 3. 

5. Examine the empirical literature to see if the predictions of the behavioral 

function are confirmed. 

6. If the predictions are off, then iterate.  
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standard is attainable by its very definition. Recently, this idea that bounded rationality can be 

defined as the solution to a constrained optimization problem has been applied to a particular 

class of resource-bounded agents: people (Griffiths et al., 2015; Lewis, Howes, & Singh, 2014). 

This leads to a precise theory that uniquely identifies how people should think and decide to 

make optimal use of their finite time and bounded cognitive resources (see Figure 1). In the next 

section, we synthesize and refine these approaches into a paradigm for modeling cognitive 

mechanisms and representations that we refer to as resource-rational analysis. 

  

Resource-rational analysis 

While bounded optimality was originally developed as a theoretical foundation for designing 

intelligent agents, it has been successfully adopted for cognitive modeling (Gershman, Horvitz, 

& Tenenbaum, 2015; Griffiths et al., 2015; Lewis et al., 2014). When combined with reasonable 

assumptions about human cognitive capacities and limitations, bounded optimality provides a 

realistic normative standard for cognitive strategies and representations (Griffiths et al., 2015),  

thereby allowing psychologists to derive realistic models of cognitive mechanisms based on the 

assumption that the human mind makes rational use of its limited cognitive resources. Variations 

of this principle are known by various names, including computational rationality (Lewis et al., 

2014), algorithmic rationality (Halpern & Pass, 2015), bounded rational agents (Vul, Goodman, 

Griffiths, & Tenenbaum, 2014), boundedly rational analysis (Icard, 2014), the rational 

minimalist program (Nobandegani, 2017), and the idea of rational models with limited 

processing capacity developed in economics (Caplin & Dean, 2015; Fudenberg, Strack, & 

Strzalecki, 2018; Gabaix et al., 2006; C. A. Sims, 2003; Woodford, 2014) reviewed below. Here, 
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we will refer to this principle as resource-rationality (Griffiths et al., 2015; Lieder, Griffiths, & 

Goodman, 2012) and advocate its use in a cognitive modeling paradigm called resource-rational 

analysis (Griffiths et al., 2015). 

 

Figure 1 illustrates that resource-rationality identifies the best biologically feasible mind out of 

the infinite set of bounded-rational minds. To make the notion of resource-rationality precise, we 

apply the principle of bounded optimality to define a resource-rational mind    for the brain   

interacting with the environment   as 

         
    

  (    |      (  ))[ (  )]     ( ) 

where    is the set of biologically feasible minds,   is the agent’s (unknown) lifetime, its life 

history    (          ) is the sequence of world states the agent has experienced until time  , 

    (  ) is the action that the mind   will choose based on that experience, and the agent’s 

utility function   assigns values to life histories. 

 

Our theory assumes that the cognitive limitations inherent in the biologically feasible minds    

include a limited set of elementary operations (e.g., counting and memory recall are available but 

applying Bayes’ theorem is not), limited processing speed (each operation takes a certain amount 

of time), and potentially other constraints, such as limited working memory. Critically, the world 

state    is constantly changing as the mind   deliberates. Thus, performing well requires the 

bounded optimal mind    to not only generate good decisions but to do so quickly. Since each 

cognitive operation takes time, bounded optimality often requires computational frugality. 
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Identifying the resource-rational mind defined by Equation 2 would require optimizing over an 

entire lifetime, but if we assume that life can be partitioned into a sequence of episodes, we can 

use this definition to derive the optimal heuristic    that a person should use to make a single 

decision or inference in a particular situation. To achieve this, we decompose the value of having 

applied a heuristic into the utility of the judgment, decision, or belief update that results from it 

and the computational cost of its execution. The latter is critical because the time and cognitive 

resources expended on any decision or inference (current episode) takes away from a person’s 

budget for later ones (future episodes). To capture this, let the random variable     (      ) 

denote the total opportunity cost of investing the cognitive resources   used or blocked by the 

heuristic   for the duration    of its execution, when the agent's cognitive opportunity cost per 

quantum of cognitive resources and unit time is  . The resource-rational heuristic    for a brain 

  to use in the belief state    is then  

  (      )         
     

  (      |      )[ (       )]         |        [    (      )]    ( ) 

where    is the set of heuristics that brain   can execute and    (     ) comprises the initial 

state of the external world (  ) and the person's internal belief state   . As described below, this 

formulation makes it possible to develop automatic methods for deriving simple heuristics  – like 

the ones people use – from first principles.  

 

Resource-rational cognitive mechanisms trade off accuracy against effort in an adaptive, nearly 

optimal manner. This is reminiscent of the proposal that people optimally trade off the time it 

takes to gather information about prices against its financial benefits (Stigler, 1961) but there are 

two critical differences. The most important difference is that while Stigler (1961) defined a 

problem to be solved by the decision-maker, Equation 3 defines a problem to be solved by 
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evolution, cognitive development, and life-long learning. That is, we propose that people never 

have to directly solve the constrained optimization problem defined in Equation 3. Rather, we 

believe that for most of our decisions the problem of finding a good decision mechanism has 

already been solved by evolution (Houston & McNamara, 1999; McNamara & Weissing, 2010; 

Dukas, 1998a), learning, and cognitive development (Siegler & Jenkins, 1989; Shrager & 

Siegler, 1998). In many cases the solution    may be a simple heuristic. Thus, when people 

confront a decision they can usually rely on a simple decision rule without having to discover it 

on the spot. The second critical difference is that while resource-rationality is a principle for 

modeling internal cognitive mechanisms (i.e., heuristics) Stigler’s information economics 

defined models of optimal behavior. Identifying the optimal behavior (subject to the cost of 

collecting information) would, in general, require people to perform optimization under 

constraints in their heads. By contrast, resource-rational analysis will almost invariably favor a 

simple heuristic over optimization under constraints because it penalizes decision mechanisms 

by the cost of the mental effort required to execute them and only considers decision-

mechanisms that are biologically feasible. That is, while Stigler’s information economics 

focused on the cost of collecting information (e.g., how long it takes to visit different shops to 

find out how much they charge for a product), resource-rationality additionally accounts for the 

cost of thinking according to one strategy (e.g., evaluating each product’s utility in all possible 

scenarios in which it might be used) versus another (e.g., just comparing the prices). 

 

Equation 3 assumes that all possible outcomes and their probabilities and consequences are 

known. But the real world is very complex and highly uncertain, and limited experience 

constrains how well people can be adapted to it. Being equipped with a different heuristic for 
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each and every situation would be prohibitively expensive (Houston & McNamara, 1999) – not 

least because of the difficulty of selecting between them (Milli, Lieder, & Griffiths, 2017, 2019). 

To accommodate these bounds on human rationality, we relax the optimality criterion in 

Equation 3 from optimality with respect to true environment   to optimality with respect to the 

information   that has been obtained about the environment through direct experience, indirect 

experience, and evolutionary adaptation. We can therefore define the boundedly resource-

rational heuristic given the limited information   as  

  (      )         
     

  | [  (      |      )[ (       )]          |        [    (      )]]   ( )  

Since the mechanisms of adaptation are also bounded, we should not expect people’s heuristics 

to be perfectly resource-rational. Instead, even a resource-rational mind might have to rely on 

heuristics for choosing heuristics to approximate the prescriptions of Equation 4. Recent work is 

beginning to illuminate what the mechanisms of strategy selection and adaptation might be 

(Lieder & Griffiths, 2017) but more research is needed to identify how and how closely the mind 

approximates resource-rational thinking and decision-making. 

 

It is too early to know how resource-rational people really are, but we are optimistic that 

resource-rational analysis can be a useful methodology for answering interesting questions about 

cognitive mechanisms – in the same way in which Bayesian modeling is useful methodology for 

elucidating what the mind does and why it does what it does (Griffiths, Kemp, & Tenenbaum, 

2008; Griffiths, et al., 2010). In other words, resource-rationality is not a fully-fleshed out theory 

of cognition, designed as a new standard of normativity against which human judgments can be 

assessed, but a methodological device that allows researchers to translate their assumptions about 
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cognitive constraints and functional requirements into precise mathematical models of cognitive 

processes and representations. 

   

Resource-rationality serves as a unifying theme for many recent models and theories of 

perception, decision-making, memory, reasoning, attention, and cognitive control that we will 

review below. While rational analysis makes only minimal assumptions about cognitive 

constraints, it has been argued that there are many cases where cognitive limitations impose 

substantial constraints (Simon, 1956, 1982). Resource-rational analysis (Griffiths et al., 2015) 

thus extends rational analysis to also consider which cognitive operations are available to people 

and their time and cost demands. This means including the structure and resources of the mind 

itself in the definition of the environment to which cognitive mechanisms are supposedly 

adapted. Resource-rational analysis thereby follows Simon’s advice that “we must be prepared to 

accept the possibility that what we call ‘the environment’ may lie, in part, within the skin of the 

biological organism” (Simon, 1955). 

 

Resource-rational analysis is a five-step process (see Box 2) that leverages the formal theory of 

bounded optimality introduced above to derive rational process models of cognitive abilities 

from formal definitions of their function and abstract assumptions about the mind's 

computational architecture. This function-first approach starts at the computational level of 

analysis (Marr, 1982). When the function of the studied cognitive capacity has been formalized, 

resource-rational analysis postulates an abstract computational architecture —a set of elementary 

operations and their costs — with which the mind might solve it. Next, resource-rational analysis 

derives the optimal algorithm for solving the problem identified at the computational level with 
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the abstract computational architecture described in Equation 3, thereby pushing the principles of 

rational analysis toward Marr’s algorithmic level (see Figure 2). The resulting process model can 

be used to simulate people's responses and reaction times in an experiment. Next, the model's 

predictions are tested against empirical data. The results can be used to refine the theory’s 

assumptions about the computational architecture and the problem to be solved. The process of 

resource-rational analysis can then be repeated under these refined assumptions to derive a more 

accurate process model. Refining the model’s assumptions may include moving from an abstract 

computational architecture to increasingly more realistic models of the mind’s cognitive 

architecture or the brain’s biophysical limits. As the assumptions about the computational 

architecture become increasingly more realistic and the model’s predictions become more 

accurate, the corresponding rational process model should become increasingly more similar to 

the psychological/neurocomputational mechanisms that generate people’s responses. The process 

of resource-rational analysis ends when either the model’s predictions are accurate enough or all 

relevant cognitive constraints have been incorporated sensibly. This process makes resource-

rational analysis a methodology for reverse-engineering cognitive mechanisms (Griffiths, Lieder, 

& Goodman, 2015).  

Resource-rational analysis can be seen as an extension of rational-analysis from predicting 

behavior from the structure of the external environment to predicting cognitive mechanisms from 

internal cognitive resources and the external environment. These advances allow us to translate 

our growing understanding of the brain’s computational architecture into more realistic models 

of psychological processes and mental representations. Fundamentally, it provides a tool for 

replacing the traditional method of developing cognitive process models – in which a theorist 

imagines ways in which different processes might combine to capture behavior – with a means 
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of automatically deriving hypotheses about cognitive processes from the problem people have to 

solve and the resources they have available to do so. 

 

 

Box 2. The five steps of resource-rational analysis. Note that a resource-rational 

analysis may stop in Step 5 even when human performance substantially deviates 

from the resource-rational predictions as long as reasonable attempts have been made 

to model the constraints accurately based on the available empirical evidence. 

Furthermore, refining the assumed computational architecture can also include 

modeling how the brain might approximate the postulated algorithm. 

 

Deriving resource-rational models of cognitive mechanisms from assumptions about their 

function and the cognitive architecture available to realize them (Step 2) is the centerpiece of 

resource-rational analysis (Griffiths et al., 2015). This process often involves manual derivations 

(e.g., Lieder et al, 2012; Lieder, Griffiths, & Hsu, 2018) or parametrizing cognitive mechanisms 

and optimizing the values of those parameters (Lewis et al., 2014), but it is also possible to 

develop computational methods that discover complex resource-rational cognitive strategies 

automatically (Callaway, Gul, Krueger, Griffiths, & Lieder, 2018; Callaway, Lieder, Das, 

Krueger, Gul, & Griffiths, 2017; Lieder, Krueger, & Griffiths, 2017). 

 

1. Start with a computational-level (i.e., functional) description of an aspect of 

cognition formulated as a problem and its solution.  

2. Posit which class of algorithms the mind’s computational architecture might 

use to approximately solve this problem, a cost in computational resources used 

by these algorithms, and the utility of more accurately approximating the correct 

solution.  

3. Find the algorithm in this class that optimally trades off resources and 

approximation accuracy (Equation 2).  

4. Evaluate the predictions of the resulting rational process model against 

empirical data.  

5. Refine the computational-level theory (Step 1) or assumed computational 

architecture and its constraints (Step 2) to address significant discrepancies, 

derive a refined resource-rational model, and then reiterate or stop if the model’s 

assumptions are already sufficiently realistic.  
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Resource-rational analysis combines the strengths of rational approaches to cognitive modeling 

with insights from the literature on cognitive biases and capacity limitations. We argue below 

that this enables resource-rational analysis to leverage mathematically precise unifying principles 

to develop psychologically realistic process models that explain and predict a wide range of 

seemingly unrelated cognitive and behavioral phenomena.  

 

 

Figure 2. Rational process models can be used to connect the computational level of analysis to 

the algorithmic level of analysis. The principle of resource-rationality allows us to derive rational 

process models from assumptions about a system’s function and its cognitive constraints. 

 

Modeling capacity limits to explain cognitive biases: case studies in decision-making 

In this section, we review research suggesting that the principle of resource-rationality can 

explain many of the biases in decision-making that led to the downfall of expected utility theory. 
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Later, we will argue that the same conclusion also holds for other areas of human cognition. 

Extant work has augmented rational models with different kinds of cognitive limitations and 

costs, including costly information acquisition and limited attention, limited representational 

capacity, neural noise, finite time, and limited computational resources. The following sections 

review resource-rational analyses of the implications of each of these cognitive limitations in 

turn, showing that each can account for a number of cognitive biases that expected utility cannot. 

This brief review illustrates that resource-rationality is an integrative framework for connecting 

theories from economics, psychology, and neuroscience. 

 

Costly information acquisition and limited attention 

People tend to have inconsistent preferences and often fail to choose the best available option 

even when all of the necessary information is available (Kahneman & Tversky, 1979).  Previous 

research has found that many of these violations of expected utility theory might result from the 

fact that acquiring information is costly (Bogacz, Brown, Moehlis, Holmes, & Cohen, 2006; 

Gabaix et al., 2006; Lieder et al., 2017b; Reis, 2006; Sanjurjo, 2017; C. A. Sims, 2003; 

Verrecchia, 1982). This cost could include an explicit price that people must pay to purchase 

information (e.g., Verrechia, 1982), the opportunity cost of the decision-maker’s time (e.g., 

Bogacz, et al., 2006; Gabaix et al., 2006) and cognitive resources (Shenhav et al., 2017), the 

mental effort of paying attention (C. A. Sims, 2003), and the cost of overriding one’s automatic 

response tendencies (Kool & Botvinick, 2013). Regardless of the source of the cost, we can 

define resource-rational decision-making as using a mechanism achieving the best possible 

tradeoff between the expected utility and cost of the resulting decision (see Equation 4). 
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Rather than trying to evaluate all of their options people tend to select the first alternative they 

encounter that they consider good enough. For instance, when given the choice between seven 

different gambles a person striving to win at least $5 may choose the second one without even 

looking at gambles 3—7 because all of its payoffs range from $5.50 to $9.75. This heuristic is 

known as Satisficing (Simon, 1956). Satisficing can be interpreted as the solution to an optimal 

stopping problem, and Caplin, Dean, and Martin (2011) showed that satisficing with an adaptive 

aspiration level is a bounded-optimal decision strategy for certain decision problems where 

information is costly. This analysis can be cast in exactly the form of Equation 3, where the 

utility of the final outcome trades off against the cost of gathering additional information.  

 

Curiously, people also fail to consider all alternatives even when information can be gathered 

free of charge. This might be because people’s attentional resources are limited. The theory of 

rational inattention (C. A. Sims, 2003, 2006) explains several biases in economic decisions, 

including the inertia, randomness, and abruptness of people’s reactions to new financial 

information, by postulating that people allocate their limited attention optimally. For instance, 

the limited attention of consumers may prevent them from becoming more frugal as the balance 

of their bank account drops, even though that information is freely available to them. 

Furthermore, the rational inattention model can also explain the seemingly irrational 

phenomenon that adding an additional alternative can increase the probability that the decision-

maker will choose one of the already available options (Matějka & McKay, 2015).  

 

The rational inattention model discounts all information equally, but people tend to focus on a 

small number of relevant variables while neglecting others completely. To capture this, Gabaix 
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(2014) derived which of the thousands of potentially relevant variables a bounded-optimal 

decision-maker should attend to depending on their variability, their effect on the utilities of 

alternative choices, and the cost of attention. The resulting sparse max model generally attends 

only to a small subset of the variables, specifies how much attention each of them should receive, 

replaces unobserved variables by their default values, adjusts the default values of partially 

attended variables toward their true values, and then chooses the action that is best according to 

its simplified model of the world. The sparse max model can be interpreted as an instantiation of 

Equation 4, and  Gabaix (2014) and Gabaix, Laibson, Moloche, and Weinberg (2006) showed 

that the model’s predictions capture how people gather information and predicts their choices 

better than expected utility theory. In subsequent work, Gabaix extended the sparse max model 

to sequential decision problems (Gabaix, 2016) to provide a unifying explanation for many 

seemingly unrelated biases and economic phenomena (Gabaix, 2017).  

 

People tend to consider only a small number of possible outcomes – often focusing on the worst-

case and the best-case scenarios. This can skew their decisions towards irrational risk aversion 

(e.g., fear of air travel) or irrational risk seeking (e.g., playing the lottery). This may be a 

consequence of people rationally allocating their limited attention to the most important 

eventualities. In fact, Lieder et al. (2018b) derived that a bounded-optimal decision-maker should 

prioritize potential outcomes according to the product of their probability and how much their 

utility depends on the chosen action – thus overweighting scenarios that are extremely good or 

extremely bad. This model was able to provide a unifying explanation for numerous biases in 

decisions from experience, frequency estimation, memory recall, and decisions from description. 
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A refined version of this model can additionally explain how the payoffs’ may affect people’s 

risk preferences (Nobandegani, Castanheira, Otto, & Shultz, 2018). 

 

Noisy evidence and limited time. Noisy information processing is believed to be the root cause 

of many biases in decision-making (Hilbert, 2012). Making good decisions often requires 

integrating many pieces of weak or noisy evidence over time. However, time is limited and 

valuable, which creates pressure to decide quickly. The principle of resource-rationality has been 

applied to understand how people trade off speed against accuracy to make the best possible use 

of their limited time in the face of noisy evidence. Speed-accuracy trade-offs have been most 

thoroughly explored in perceptual decision-making experiments where people are incentivized to 

maximize their reward rate (points/second) across a series of self-paced perceptual judgments 

(e.g., “Are there more dots moving to the right or to the left?”). Such decisions are commonly 

modelled using variants of the drift-diffusion model (Ratcliff, 1978), which has three 

components: evidence generation, evidence accumulation, and choice. The principle of resource-

rationality (Equation 3) has been applied to derive optimal mechanisms for generating evidence 

and deciding when to stop accumulating it. 

 

Deciding when to stop. Research on judgment and decision-making has often concluded that 

people think too little and decide too quickly, but a quantitative evaluation of human 

performance in perceptual decision-making against a bounded optimal model suggests the 

opposite (Holmes & Cohen, 2014). Bogacz et al. (2006) showed that the drift-diffusion model 

achieves the best possible accuracy at a required speed and achieves a required accuracy as 

quickly as possible. The drift diffusion model sums the difference between the evidence in favor 
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of option A and the evidence in favor of option B over time, stopping evidence accumulation 

when the strength of the accumulated evidence exceeds a threshold. Bogacz et al. (2006) derived 

the decision threshold that maximizes the decision-maker’s reward rate. Comparing to this 

optimal speed-accuracy trade-off people gather too much information before committing to a 

decision (Holmes & Cohen, 2014). While Bogacz et al. (2006) focused on perceptual decision-

making, subsequent work has derived optimal decision thresholds for value-based choice 

(Fudenberg et al., 2018; Gabaix & Laibson, 2005; Tajima, Drugowitsch, & Pouget, 2016). 

 

When repeatedly choosing between two stochastically rewarded actions people (and other 

animals) usually fail to learn to always choose the option that is more likely to be rewarded; 

instead, they randomly select each option with a frequency that is roughly equal to the 

probability that it will be rewarded (Herrnstein, 1961). To make sense of this, Vul et al. (2014) 

derived how many mental simulations a bounded agent should perform for each of its decisions 

to maximize its reward rate across the entirety of its choices. The optimal number of mental 

simulations turned out to be very small and depends on the ratio of the time needed to execute an 

action over the time required to simulate it. Concretely, it is bounded-optimal to decide based on 

only a single sample — which is equivalent to probability matching — when it takes at most 

three times as long to execute the action as to simulate it. But when the stakes of the decision 

increase relative to the agent’s opportunity cost, then the optimal number of simulations 

increases as well. This prediction is qualitatively consistent with studies finding that choice 

behavior gradually changes from probability matching to maximization as monetary incentives 

increase (Shanks, Tunney, & McCarthy, 2002; Vulkan, 2000).   
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Effortful evidence generation. In everyday life, people often must actively generate the 

evidence for and against each alternative. Resource-rational models postulating that people 

optimally tradeoff the quality of their decisions against the cost of evidence generation can 

accurately capture how much effort decision-makers invest under various circumstances 

(Dickhaut et al., 2009) and the inversely U-shaped relationship between decision-time and 

decision-quality (Woodford, 2014, 2016).  

 

Computational complexity and limited computational resources 

Many models assume that human decision-making is approximately resource-rational subject to 

the constraints imposed by unreliable evidence and neural noise (e.g., Stocker, Simoncelli, & 

Hughes, 2006; Howes, Warren, Farmer, El-Deredy, & Lewis, 2016; Khaw, Li, & Woodford, 

2017). However, Beck, Ma, Pitkow, Latham, and Pouget (2012) argue that the relatively small 

levels of neural noise measured neurophysiologically cannot account for the much greater levels 

of variability and suboptimality in human performance. They propose that instead of making 

optimal use of noisy representations, the brain uses approximations that entail systematic biases 

(Beck et al., 2012). From the perspective of bounded optimality, approximations are necessary 

because the computational complexity of decision-making in the real world far exceeds cognitive 

capacity (Bossaerts & Murawski, 2017; Bossaerts, Yadav, & Murawski, 2018). People cope with 

this computational complexity through efficient heuristics and habits. In the next section, we 

argue that resource-rationality can provide a unifying explanation for each of these phenomena. 
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Resource-rational heuristics 

More reasoning and more information do not automatically lead to better decisions. To the 

contrary, simple heuristics that make clever use of the most important information can 

outperform complex decision-procedures that use large amounts of data and computation less 

cleverly (Gigerenzer & Gaissmaier, 2011). This highlights that resource-rationality critically 

depends on which information is considered and how it is used. 

 

To solve complex decision problems, people generally take multiple steps in reasoning. 

Choosing those cognitive operations well is challenging because the benefit of each operation 

depends on which operations will follow: In principle, choosing the best first cognitive operation 

requires planning multiple cognitive operations ahead. Gabaix et al. (2005, 2006) proposed that 

people simplify this intractable meta-decision-making problem by choosing each cognitive 

operation according to a myopic cost-benefit analysis that pits the immediate improvement in 

decision quality expected from each decision operation against its cognitive cost (see Equation 

3). Gabaix et al. (2006) found that this model correctly predicted people’s suboptimal 

information search behavior in a simple bandit task and explained how people choose between 

many alternatives with multiple attributes better than previous models. 

 

Recent work has developed a non-myopic approach to deriving resource-rational heuristics 

(Callaway, Gul, Krueger, Griffiths, & Lieder, 2018; Lieder, Callaway, Gul, Krueger, & Griffiths, 

2017; Lieder et al., 2017b). Callaway et al. (2018) computed the optimal cognitive strategy for 

planning based on the opportunity cost of thinking imposed by people’s limited time and finite 
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processing speed by solving Equation 3 exactly and found that the resource-rational heuristic 

predicted people’s planning process substantially better than the myopic model of Gabaix et al. 

(2006) and previously proposed heuristic models of planning. They also found that people’s 

planning operations achieved about 86% of the best possible trade-off between decision quality 

and time cost and agreed with the bounded-optimal strategy about 55% of the time. This 

quantitative analysis offers a more nuanced and presumably more accurate assessment of human 

rationality than qualitative assessments according to which people are either “rational” or 

“irrational.” Furthermore, this resource-rational analysis correctly predicted how people’s 

planning strategies differ across environments and that their aspiration levels decrease as people 

gather more information.  

 

This line of work led to a new computational method that can automatically derive resource-

rational cognitive strategies from a mathematical model of their function and assumptions about 

available cognitive resources and their costs. This method is very general and can be applied 

across different cognitive domains. In an application to multi-alternative risky choice (Lieder et 

al., 2017b), this method rediscovered previously proposed heuristics, such as Take-the-Best 

(Gigerenzer & Goldstein, 1996), and elucidated the conditions under which they are bounded-

optimal. Furthermore, it also led to the discovery of a previously unknown heuristic that 

combines elements of satisficing and Take-The-Best (SAT-TTB; see Figure 3). A follow-up 

experiment confirmed that people do use that strategy specifically for the kinds of decision 

problems for which it is bounded-optimal. These examples illustrate that bounded-optimal 

mechanisms for complex decision problems generally involve approximations that introduce 
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systematic biases, supporting the view that many cognitive biases could reflect people’s rational 

use of limited cognitive resources. 

 

Figure 3: Illustration of the resource-rational SAT-TTB heuristic for multi-alternative risky 

choice in the Mouselab paradigm where participants choose between bets (red boxes) based on 

their initially concealed payoffs (gray boxes) for different events (rows) that occur with known 

probabilities (leftmost column). These payoffs can be uncovered by clicking on corresponding 

cells of the payoff matrix. The SAT-TTB strategy collects information about the alternatives’ 

payoffs for the most probable outcome (here a brown ball being drawn from the urn) until it 

encounters a payoff that is high enough (here $0.22). As soon as it finds a single payoff that 

exceeds its aspiration level, it stops collecting information and chooses the corresponding 

alternative. The automatic strategy discovery method by Lieder, Krueger, and Griffiths (2017) 

derived this strategy as the resource-rational heuristic for low-stakes decisions where one 

outcome is much more probable than all others. 

Habits 

In sharp contrast to the prescription of expected utility theory that actions should be chosen 

based on their expected consequences, people often act habitually without deliberating about 

consequences (Dolan & Dayan, 2013). The contrast between the enormous computational 

complexity of expected utility maximization (Bossaerts, Yadav, & Murawski, 2018; Bossaerts & 

Murawski, 2017) and people’s limited computational resources and finite time suggests that 

habits may be necessary for bounded-optimal decision-making. Reusing previously successful 

action sequences allows people to save substantial amounts of time-consuming and error-prone 
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computation; therefore, the principle of resource-rationality in Equation 3 can be applied to 

determine under which circumstances it is rational to rely on habits.  

 

When habits and goal-directed decision-making compete for behavioral control the brain appears 

to arbitrate between them in a manner consistent with a rational cost-benefit analysis (Daw, Niv, 

& Dayan, 2005; Keramati, Dezfouli, & Piray, 2011). More recent work has applied the idea of 

bounded optimality to derive how the habitual and goal-directed decision systems might 

collaborate (Huys et al., 2015; Keramati, Smittenaar, Dolan, & Dayan, 2016). Keramati et al. 

(2016) found that people adaptively integrate planning and habits according to how much time is 

available. Similarly, Huys et al. (2015) postulated that people decompose sequential decision 

problems into sub-problems to optimally trade off planning cost savings attained by reusing 

previous action sequences against the resulting decrease in decision quality.  

 

Overall, the examples reviewed in this section highlight that the principle of resource-rationality 

(Equation 3) provides a unifying framework for a wide range of successful models of seemingly 

unrelated phenomena and cognitive biases. Resource-rationality might thus be able to fill the 

theoretical vacuum that was left behind by the undoing of expected utility theory. While this 

section focused on decision-making, the following sections illustrate that the resource-rational 

framework applies across all domains of cognition and perception.  

Revisiting classic questions of cognitive psychology 

The standard methodology for developing computational models of cognition is to start with a 

set of component cognitive processes — similarity, attention, and activation — and consider how 
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to assemble them into a structure reproducing human behavior. Resource-rationality represents a 

different approach to cognitive modeling: while the components may be the same, they are put 

together by finding the optimal solution to a computational problem. This brings advances in AI 

and ideas from computational-level theories of cognition to bear on cognitive psychology’s 

classic questions about mental representations, cognitive strategies, capacity limits, and the 

mind’s cognitive architecture.  

 

Resource-rationality complements the traditional bottom-up approach driven by empirical 

phenomena with a top-down approach that starts from the computational level of analysis. It 

leverages computational-level theories to address the problem that cognitive strategies and 

representations are rarely identifiable from the available behavioral data alone (Anderson, 1978) 

by considering only those mechanisms and representations that realize their function in a 

resource-rational manner. In addition to helping us uncover cognitive mechanisms, resource-

rational analysis also explains why they exist and why they work the way they do. Rational 

analysis forges a valuable connection between computer science and psychology. Resource-

rational analysis strengthens this connection while establishing an additional bridge from 

psychological constructs to the neural mechanisms implementing them. This connection allows 

psychological theories to be constrained by our rapidly expanding understanding of the brain.  

 

Below we discuss how resource-rational analysis can shed light on cognitive mechanisms, 

mental representations, and cognitive architectures, how it links cognitive psychology to other 

disciplines, and how it contributes to the debate about human rationality. 
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Reverse-engineering cognitive mechanisms and mental representations 

Resource-rational analysis is a methodology for reverse-engineering the mechanisms and 

representations of human cognition. This section illustrates the potential of this approach with 

examples from modeling memory, attention, reasoning, and cognitive control. 

 

Memory. Anderson and Milson’s (1989) highly influential rational analysis of memory can be 

interpreted as the first application of the principle of bounded optimality in cognitive 

psychology. Their model combines an optimal memory storage mechanism with a resource-

rational stopping rule that trades off the cost of continued memory search against its expected 

benefits (see Equation 3). The storage mechanism presorts memories optimally by exploiting 

how the probability that a previously encountered piece of information will be needed again 

depends on the frequency, recency, and pattern of its previous occurrences (Anderson & 

Schooler, 1991), The resulting  model correctly predicted the effects of frequency, recency, and 

spacing of practice on the accuracy and speed of memory recall. While Anderson’s rational 

analysis of memory made only minimal assumptions about its computational constraints, this 

could be seen as the first iteration of a resource-rational analysis that will be continued by future 

work.  

 

More recent research has applied resource-rational analysis to working memory, where 

computational constraints play a significantly larger role than in long-term memory. For 

instance, Howes, Duggan, Kalidindi, Tseng, and Lewis (2016) found that bounded optimality 

can predict how many items a person chooses to commit to memory from the cost of 

misremembering, their working memory capacity, and how long it takes to look up forgotten 
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information. Furthermore, resource-rationality predicts that working memory should encode 

information in representations that optimally trade off efficiency with the cost of error (C. R. 

Sims, 2016; C. R. Sims, Jacobs, & Knill, 2012). This optimal encoding, in turn, depends on the 

statistics of the input distribution and the nature of the task. This allows the model to correctly 

predict how the precision of working memory representations depends the number of items to be 

remembered and the variability of their features. Over time working memory also have to 

dynamically reallocate its limited capacity across multiple memory traces depending on their 

current strength and importance (Suchow, 2014). Suchow and Griffiths (2016) found that the 

optimal solution to this problem captured three directed remembering phenomena from the 

literature on visual working memory. 

 

Attention. The allocation of attention allows us to cope with a world filled with vastly more 

information than we can possibly process. Applying resource-rational analysis to problems 

where the amount of incoming data exceeds the cognitive system’s processing capacity might 

thus be a promising approach to discovering candidate mechanisms of attention. Above we have 

reviewed a number of bounded optimal models of the effect of limited attention on decision-

making (Caplin & Dean, 2015; Caplin, Dean, & Leahy, 2017; Gabaix, 2014, 2016, 2017; Lieder 

, 2018; C. A. Sims, 2003, 2006), so this section briefly reviews resource-rational models of 

visual attention.  

 

The function of visual attention can be formalized as a decision-problem in the framework of 

partially observable Markov decision processes (POMDPs; Gottlieb, Oudeyer, Lopes, & 

Baranes, 2013) or meta-level Markov decision processes (Lieder, Shenhav, Musslick, & 
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Griffiths, 2017). Such decision-theoretic models make it possible to derive optimal attentional 

mechanisms. For instance, Lewis et al. (2014) and Butko and Movellan (2008) developed 

bounded optimal models of how long people look at a given stimulus and where they will look 

next, respectively, and the resource-rational model by Lieder et al. (2017c) captures how visual 

attention is shaped by learning. 

 

Finally, resource-rational analysis can also elucidate how people distribute their limited 

attentional resources among multiple internal representations and how much attention they invest 

in total (Van den Berg & Ma, 2017). Among other phenomena, the rational deployment of 

limited attentional resources can explain how people’s visual search performance deteriorates 

with the number of items they must inspect in parallel. To explain such phenomena the model by 

van den Berg and Ma (2017) assumes that the total amount of attentional resources people invest 

is chosen according to a rational cost-benefit analysis that evaluates the expected benefits of 

allocating more attentional resources against their neural costs (see Equation 3).  

 

Reasoning. Studies reporting that people appear to make systematic errors in simple reasoning 

tasks (e.g., Tversky & Kahneman, 1974, Wason, 1968 have painted a bleak picture of the human 

mind that is in stark contrast to impressive human performance in complex problems of vision, 

intuitive physics, and social cognition. Taking into account the cognitive constraints that require 

people to approximate Bayesian reasoning might resolve this apparent contradiction (Sanborn & 

Chater, 2016), and resource-rational analyses of how people overcome the computational 

challenges of reasoning might uncover their heuristics (e.g., Lieder et al., 2018a; 2018b). 
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One fundamental reasoning challenge is the frame problem (Fodor, 1987; Glymour, 1987): 

Given that everything could be related to everything, how do people decide which subset of their 

knowledge to take into account for reasoning about a question of interest? The resource-rational 

framework can be applied to derive which variables should be considered and which should be 

ignored depending on the problem to be solved, the resources available, and their costs. In an 

analysis of this problem, Icard and Goodman (2015) showed that it is often resource-rational to 

ignore all but the one to three most relevant variables. Their analysis explained why people 

neglect alternative causes more frequently in predictive reasoning (“What will happen if …”) 

than in diagnostic reasoning (“Why did this happen?”). Nobandegani and Psaromiligkos (2017) 

extended Icard and Goodman’s analysis of the frame problem toward a process model of how 

people simultaneously retrieve relevant causal factors from memory and reason over the mental 

model constructed thus far. Future work should extend this approach to studying alternative ways 

in which people simplify the mental model they use for reasoning and how they select this 

simplification depending on the inference they are trying to draw and their reasoning strategy. 

 

Recently, the frame problem has also been studied in the context of decision-making (Gabaix, 

2014, 2016). Gabaix’s characterization of a resource-rational solution to this problem predicts 

many systematic errors in human reasoning, including base-rate neglect, insensitivity to sample 

size, overconfidence, projection bias (the tendency to underappreciate how different the future 

will be from the present), and misconceptions of regression to the mean (Gabaix, 2017). 

 

Resource-rational analysis has also already shed light on two additional questions about human 

reasoning: “How do we decide how much to think?” and “From where do hypotheses come?” 
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Previous research on reasoning suggested that people generally think too little, a view that 

emerged from findings such as the anchoring bias (Tversky & Kahneman, 1974), according to 

which people’s numerical estimates are biased toward their initial guesses (Epley & Gilovich, 

2004). Contrary to the traditional interpretation that people think too little, a resource-rational 

analysis of numerical estimation suggested that many anchoring biases are consistent with people 

choosing the number of adjustments they make to their initial guess in accordance with the 

optimal speed-accuracy trade-off defined in Equation 3 (Lieder et al., 2018a, 2018b). Drawing 

inspiration from computer science and statistics, this resource-rational analysis yielded a general 

reasoning mechanism that iteratively proposes adjustments to an initial idea; the proposed 

adjustments are probabilistically accepted or rejected in such a way that the resulting train of 

thought eventually converges to the Bayes-optimal inference. 

 

The idea that people generate hypotheses in this way can explain a wide range of biases in 

probabilistic reasoning (Dasgupta et al., 2017) and has since been successfully applied to model 

how people reason about causal structures (Bramley, Dayan, Griffiths, & Lagnado, 2017), 

medical diagnoses, and natural scenes (Dasgupta, Schulz, & Gershman, 2017a; Dasgupta, 

Schulz, Goodman, & Gershman, 2017b, 2017c).  A subsequent resource-rational analysis 

revealed that once people have generated a hypothesis in this way they memorize it and later 

retrieve it to more efficiently reason about related questions in the future (Dasgupta et al., 2017b; 

Dasgupta et al., 2017c).  

 

Goals, executive functions, and mental effort. Goals and goal-directed behavior and cognition 

are essential features of the human mind (Carver & Scheier, 2001). Yet, from the perspective of 
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expected utility theory (Equation 1), there is no reason why people should have goals in the first 

place. An unboundedly optimal agent would simply maximize its expected utility by scoring all 

outcomes its actions might have according to its graded utility function. In contrast, people often 

think only about which subgoal to pursue next and how to achieve it (Newell & Simon, 1972). 

This is suboptimal from the perspective of expected utility theory, even though it seems 

intuitively rational for people to be goal-directed, and empirical studies have found that setting 

goals and planning how to achieve them is highly beneficial (Locke & Latham, 2002). The 

resource-rationality framework can reconcile this tension by pointing out that goal-directed 

planning affords many computational simplifications that make good decision-making tractable. 

For instance, planning backward from the goal — as in means-ends analysis (Newell & Simon, 

1972) — allows decision-makers to save substantial amounts of computation by ignoring the 

vast majority of all possible states and action sequences. Future work will apply resource-

rationality to provide a normative justification for the existence of goals and develop an optimal 

theory of goal-setting. 

 

Our executive functions adapt and organize how we think and decide to the goals we are 

currently pursuing; without them, our thoughts would be incoherent and our behavior 

disorganized, and we would be unable to achieve even our most basic objectives. Executive 

functions are effectively the mechanisms through which goals enable us to reason and act 

effectively in the face of complexity that exceeds our cognitive capacities. To achieve resource-

rationality, cognitive control should be allocated in accordance with a rational cost-benefit 

analysis that weights improved performance against the time, effort, and cognitive resource costs 

needed to achieve it (Shenhav, Botvinick, & Cohen, 2013; Shenhav et al., 2017; see Equation 3).  
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Encouragingly, resource-rationality has already shed light on how control is allocated between 

alternative cognitive mechanisms (Lieder & Griffiths, 2017; Shenhav et al., 2013) and decision 

systems (Boureau, Sokol-Hessner, & Daw, 2015; Daw et al., 2005; Keramati et al., 2011). 

Furthermore, it can explain how much mental effort people exert (Dickhaut et al., 2009; Shenhav 

et al., 2017), whether and how intensely competing automatic processes will be inhibited (Lieder 

et al., 2017c; Shenhav et al., 2013), how people can flexibly switch between alternative strategies 

(Lieder & Griffiths, 2017; Payne, Bettman, & Johnson, 1993), and people’s occasional lapses of 

self-control (Boureau et al., 2015).  

 

Mental Representations. How does the mind encode information and how does it structure our 

knowledge about the world around us? While the principle of bounded optimality was originally 

formulated for programs and has been predominantly applied to model cognitive strategies, it can 

also be applied to model mental representations. There are already several successful 

applications of bounded optimality to modeling perceptual representations, representations in 

visual working memory, representations of decision variables, task representations, and the way 

we use language to represent the world. In our discussion of the frame problem and decision-

making with limited attentional resources, we already saw that bounded optimality can shed light 

on which features and variables should and shouldn’t be included in mental representations 

(Gabaix, 2014, 2016; Icard & Goodman, 2015). Here, we focus on how the attended features of 

the environment should be represented.  

 

From a Bayesian perspective people should leverage their prior knowledge about the statistics of 

the world to resolve perceptual uncertainty. For instance, people should resolve their uncertainty 
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about the exact orientation of a line in favor of the more common orientation and thus be more 

likely to perceive an almost vertical line to be closer to vertical than farther from vertical. But 

curiously it is just the opposite. Wei and Stocker (2015, 2017) showed that the optimal allocation 

of limited representational resources across different stimulus features can explain this puzzling 

perceptual bias that distorts our perception of the world away from what we should expect to see. 

This illustrates that apparently irrational perceptual illusions can arise from bounded-optimal 

information processing. Polania et al. (2018) found that the same principles also predict how the 

biases and variability in how people judge the value of consumer products and choose among 

them depends on the products’ value.  

 

Resource-rational analysis can also elucidate the format of mental representations. For instance, 

Bhui and Gershman (2017) derived that the brain should represent utilities and probabilities by 

their smoothed rank (e.g., representing “$500” as “more expensive than about 75% of the 

products in this category”). This representation explains why people’s preferences often violate 

the prescriptions of expected utility theory (Stewart, 2009; Stewart, Chater, & Brown, 2006). 

 

While the model by Bhui and Gershman (2017) specifies the representation of numeric 

quantities, information theoretic models developed by Chris R. Sims and colleagues implicitly 

define resource-rational perceptual representations that are optimized for making good decisions 

in the face of capacity constraints and noise. Specifically, they use rate-distortion theory to show 

that perception and working memory should encode information in representations that optimally 

trade off their efficiency versus the cost of error to explain the limitations of human performance 

in absolute identification (where the task is to report to which of   taught categories each 
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stimulus belongs) and visual working memory (C. R. Sims et al., 2012; C. R. Sims, 2016). This 

approach emphasizes that representations are shaped by the behavioral consequences of 

perceptual errors; for instance, consistent with error management theory (Haselton & Nettle, 

2006), our representations should reflect that it is much costlier to misperceive a poisonous 

mushroom as edible than to confuse two edible mushrooms. 

 

Similar information-theoretic principles have also been applied in the domain of language 

(Hawkins, 2004; Kemp & Regier, 2012; Regier et al., 2007; Zaslavsky et al., 2018; Zipf, 1949). 

According to Zipf’s principle of least effort speakers aim to communicate their message with as 

little effort as possible while still being understood by the listener (Zipf, 1949). This principle 

has been successfully applied to explain why the frequency of a word is inversely proportional to 

its rank (Zipf, 1949) and why some words are shorter than others (Mahowald, Fedorenko, 

Piantadosi, & Gibson, 2013; Piantadosi, Tily, & Gibson, 2011; Zipf, 1949). Similar effort-

accuracy tradeoffs can also explain how people represent colors (Regier et al., 2007; Zaslavsky 

et al., 2018) and kinship relations (Kemp & Regier, 2012) and could potentially be invoked to 

understand chunking (Gobet et al., 2001) as a bounded-optimal mechanism for representing 

information in memory to reduce the cost of memory maintenance while increasing recall 

performance. 

 

Future resource-rational analyses might elucidate many additional representations. For instance, 

the principle of resource-rationality could be applied to derive hierarchical action representations 

(Bacon, Harb, & Precup, 2017; Botvinick, 2008; Solway et al., 2014) that achieve the best 

possible trade-off between planning efficiency and reduced behavioral flexibility. 
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Cognitive architectures and capacity limits 

Resource-rational models can also be used to revisit some of cognitive psychology’s 

foundational debates about the nature of the mind’s cognitive architecture, its potential 

subsystems (which might, among others, include declarative memory, procedural memory, the 

visual system, and the central executive), and their capacity constraints (e.g., Lewis et al., 2014; 

C. R. Sims et al., 2012; C. R. Sims, 2016; van den Berg et al, 2017). Resource-rational analysis 

has already led to a fundamental rethinking of the limits of working memory (C. R. Sims, et al. 

2012; C. R. Sims, 2016; Van den Berg & Ma, 2017), attention (Van den Berg & Ma, 2017), and 

cognitive control (Howes, Lewis, & Vera, 2009; Musslick et al., 2016; Segev et al., 2018), and it 

is beginning to elucidate why the mind appears to be structured into a small number of 

subsystems (Milli, et al., 2017, 2019). 

 

C. R. Sims et al. (2012) used resource-rational modeling to translate alternative assumptions 

about the capacity limits of visual working memory into quantitative predictions. Testing these 

predictions against empirical data suggested that visual working capacity is not limited to a fixed 

number of items but can be flexibly divided to store either a small number of items with high 

fidelity or a larger number of items with lower fidelity. This approach also suggested that 

people’s working memory capacity may be higher than currently assumed because people’s 

performance in working memory tasks may be limited by unnatural stimulus statistics (Orhan, 

Sims, Jacobs, & Knill, 2014). Taking this approach even further, van den Berg and Ma (2017) 

have recently challenged the engrained assumption that working memory always distributes a 

fixed amount of representational resources among the encoded items by showing that the effect 
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of working memory load on performance is better explained by a mechanism that adjusts the 

total amount of working memory resources according to a rational cost-benefit analysis. 

 

Another classic debate in cognitive psychology concerned the question of serial processing (e.g., 

Sternberg, 1966) versus parallel information processing (Atkinson, Holmgren, & Juola, 1969) in 

perception, short-term memory, attention (Eckstein, 1998; Treisman & Gelade, 1980; Wolfe, 

1994) and multitasking (Fischer & Plessow, 2015). Recent applications of bounded optimality 

revealed that resource-constrained parallel processing can produce effects that look like serial 

processing (Howes et al., 2009, Musslick et al., 2016, Musslick et al., 2017, Segev et al., 2018).  

While some have argued that the capacity limits in multitasking arise from a single, capacity-

limited, serial-processing mechanism (Anderson et al., 2004; Pashler & Sutherland, 1998), recent 

resource-rational analyses (Feng, Schwemmer, Gershman, & Cohen, 2014; Musslick et al., 2016) 

supports the alternative view that capacity limits for multitasking reflect parallel processes 

competing for limited local resources (Allport, Antonis, & Reynolds, 1972; Meyer & Kieras, 

1997a, 1997b; Navon & Gopher, 1979). The bottleneck that the neural pathways of different 

functions compete for shared representations may itself a consequence of the rational use of 

limited resources because shared representations support faster learning through generalization 

(Musslick et al., 2017; Segev et al., 2018).  

 

More generally, this illustrates that applying the principle of bounded optimality to the design of 

cognitive systems can explain why certain cognitive limitations exist at all. It is conceivable that 

other cognitive limits also arise from a rational trade-off between the capacity to learn highly 
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specialized, maximally performant cognitive mechanisms and the amount of time and experience 

that this would require. 

 

Finally, the resource-rational approach can also be used to derive optimal cognitive architectures 

(Milli, et al., 2017, 2019) – thereby generating principled hypotheses about how which and how 

many cognitive systems the mind should be equipped with. Empirically testing the predictions of 

such models, revising their assumptions accordingly, re-deriving the optimal cognitive 

architecture, and then repeating this process until the predictions are sufficiently accurate extends 

resource-rational analysis from reverse-engineering cognitive mechanisms to reverse-

engineering cognitive architectures. Milli et al. (2017, 2019) found that this methodology can 

provide a resource-rational justification for the apparent prevalence of the coexistence of fast but 

error-prone sub-systems with slow but accurate sub-systems in human reasoning (Evans, 2008; 

Stanovich, 2011), judgment (Kahneman & Frederick, 2002, 2005), and decision-making (Dolan 

& Dayan, 2013). 

 

Connecting psychology to AI and neuroscience  

Neuroscience, psychology, economics, and AI investigate intelligence and decision-making at 

different levels of abstraction. Neuroscience takes the brain’s anatomical, physiological, and 

biophysical constraints very seriously. Psychology works with abstract models of the mind that 

ignore many of the brain’s computational constraints. And economics and AI research simplify 

and idealize these models of the mind even further. Resource-rational analysis connects these 

different levels of abstraction by taking an abstract model of the mind of the kind that might be 

developed in economics and AI research and augments it with increasingly more realistic 
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psychological and/or neurobiological constraints. In doing so, resource-rational analysis 

establishes new bridges between these various disciplines (see Figure 4). 

 

Connecting levels of analysis: Case studies from perception and efficient coding. The 

iterative refinements that resource-rational analysis makes to its assumptions about the mind’s 

cognitive architecture (see Box 2) generally proceed from the most abstract and most 

unconstrained model of the underlying neurocognitive architecture (see Figure 4). Resource-

rational analysis builds bridges from the computational level of analysis to the algorithmic level 

and then the implementational level. In this way, models of cognitive strategies and 

representations can be informed by both theories of AI and biophysical constraints on 

computation and representation.  

 

The application of resource-rationality to Marr’s implementation level and its connection to the 

algorithmic level has been most thoroughly explored in the domain of perception. Bounded-

optimal models of perception generally assume that the brain receives too much sensory input to 

represent all of it accurately and that the accuracy of a neural representation is limited by how 

much neural resources have been allocated to it. Bounded optimality has been applied to both the 

allocation of neural resources (Ganguli & Simoncelli, 2014; Wei & Stocker, 2015, 2017) and the 

use of the resulting noisy representations (Stocker et al., 2006).  
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Figure 4: Resource-rational analysis connects levels of analysis. 

 

The principles of resource-rationality can also be applied to understand how neural mechanisms 

of perception are shaped by metabolic and biophysical constraints. For instance, action potentials 

are so metabolically expensive that only about 1% of all neurons in the brain can sustain 

substantial activity in parallel (Lennie, 2003). This limit imposes serious constraints on how the 

brain can represent and process information, and many aspects of morphology, physiology, and 

the wiring of neural circuits can be understood as adaptation to the evolutionary pressure to 

achieve a near-optimal trade-off between computational efficacy and metabolic cost (Levy & 

Baxter, 2002; Niven & Laughlin, 2008; Sterling & Laughlin, 2015). This principle can be 

applied to derive neural codes that encode as much information as possible with as little neural 

activity as necessary (Levy & Baxter, 1996; Olshausen & Field, 1996, 1997,2004; Wang, Wei, 
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Stocker, & Lee, 2016). Another success story where bounded optimality assisted in connecting 

the algorithmic level of analysis to the implementation level are the neural inhibition models of 

optimal perceptual decision-making  (Bogacz et al., 2006; Van Ravenzwaaij, Van der Maas, & 

Wagenmakers, 2012). Finally, the effects of metabolic constraints are not restricted to details of 

the neural implementation but propagate all the way up to high-level cognition by necessitating 

cognitive mechanisms like selective attention (Lennie, 2003). 

 

Transfer of ideas between computer science and cognitive science. Another key advantage of 

bounded optimality is that it provides a common language for computer science, psychology, and 

neuroscience researchers to exchange ideas across disciplinary boundaries. There are already 

many examples of cognitive models inspired by ideas from computer science in general and 

optimal algorithms in particular (Anderson, 1990; Gershman et al., 2015; Griffiths et al., 2012, 

2015; Sanborn, Griffiths, & Navarro, 2010). Some key AI advances have been inspired by 

neuroscience and psychology (Hassabis, Kumaran, Summerfield, & Botvinick, 2017), 

reinforcement learning and deep learning being prime examples.  

 

Under the assumption that the brain is approximately bounded-optimal, the endeavor to uncover 

people’s cognitive strategies and representations becomes a pursuit of optimal algorithms and 

data structures for problems such as inference, learning, control, and decision-making. 

Discovering such algorithms is the long-standing goal of AI. Computational efficiency has 

always been a key objective in computer science, and research in AI, robotics, and machine 

learning is increasingly tackling the hard problems of perception, learning, motor control, and 

reasoning that people solve daily. Thus, AI research on bounded optimality can be expected to 
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provide continued inspiration for uncovering how the mind works. One way to encourage more 

AI research on bounded optimality could be to introduce new benchmark tasks that explicitly 

limit the computational resources used to solve the problem to a biologically plausible level. 

 

Conversely, as the paradigm of bounded optimality orients psychology and neuroscience toward 

the computational mechanisms through which the brain achieves its tremendous computational 

efficiency, the resulting insights will likely to continue to inspire advances in AI (Lake, Ullman, 

Tenenbaum, & Gershman, 2017; Nobandegani, 2017). 

 

Rationality revisited 

Research is now revisiting the debate about human rationality with resource-rationality as a more 

realistic normative standard. The results are beginning to suggest that heuristic mechanisms that 

are commonly interpreted as evidence against human rationality might not be irrational after all. 

Instead, they might reflect the optimal use of finite time and limited computational resources. For 

instance, the tendency to over-estimate the frequency of extremely good and extremely bad 

events and to overweight them in decision-making might reflect a bounded optimal decision 

mechanism that prioritizes the most important eventualities (Lieder et al., 2018a). Similarly, 

people’s estimates of numerical quantities often being biased toward potentially irrelevant values 

that were brought to their attention right before they were asked to make their estimate might 

reflect a rational speed-accuracy trade-off that terminates the process of adjusting the initial 

estimate when the expected improvement in accuracy drops below the expected time cost of 

adjustment (Lieder et al., 2018b). Additional cognitive biases that have been shown to be 

compatible with bounded optimal cognitive mechanisms include the intransitivity of people’s 
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preferences (Tsetsos et al., 2016), contextual preference reversals (Howes et al., 2016), risk 

aversion (Khaw et al., 2017), wishful thinking (Neuman, Rafferty, & Griffiths, 2014), sub- and 

super-additive biases in probability judgments (Dasgupta, et al., 2017a, 2017b), perceptual biases 

(Stocker et al., 2006; Wei & Stocker, 2015, 2017), hyperbolic discounting, base rate neglect, the 

law of small numbers, and many more, including the probability distortions described by 

prospect theory (Gabaix, 2017). 

 

These findings collectively suggest that the interpretation of cognitive biases as a sign of human 

irrationality must be reconsidered — it is too early to conclude that people are fundamentally 

irrational (Ariely, 2009; Marcus, 2009; Sutherland, 2013). Instead, a valid answer to the question 

of human rationality will require thorough evaluations of human cognition against the 

predictions of resource-rationality (Equation 4). This perspective also suggests that we should 

redefine the term “cognitive bias” as a violation of resource-rationality rather than a violation of 

logic, probability theory, or expected utility theory. 

 

As reviewed above, resource-rational analysis can rationalize some cognitive biases as a 

consequence of certain capacity limits. But for people’s heuristics to be considered truly 

resource-rational, it is not enough for them to be optimal with respect to some hypothetical 

cognitive constraints; to be resource-rational people’s heuristics have to be optimal with respect 

to their actual cognitive constraints. This makes independently measuring people’s cognitive 

constraints an important direction for future work. If people’s heuristics turned out to be optimal 

relative to their cognitive limitations, then one might subsequently ask “Is it rational for people’s 

cognitive capacities to be so limited or should evolution have equipped us with better brains?”. 
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This question could be addressed by performing cost-benefit analyses similar to those defined in 

Equation 4 to determine to which extent evolution has succeeded to design resource-rational 

neural hardware (Sterling & Laughlin, 2015). If we were able to derive what people’s cognitive 

capacities should be, this would provide a very principled starting point for resource-rational 

analysis. 

 

Implications for improving the human mind. In addition to its contributions to understanding 

the human mind, resource-rationality also provides guidance for how to improve it. These 

prescriptions are fundamentally different from the standard approach of debiasing (Larrick, 

2004) that aims to reduce or eliminate people’s deviations from the rules of logic, probability 

theory, and expected utility theory – usually by educating people about these rational principles 

or their implications. Instead, the resource-rational perspective suggests that people should be 

taught simple heuristics that make optimal use of their limited cognitive resources. Recent 

technical advances (Lieder, Krueger, & Griffiths, 2017; Callaway, Gul, Krueger, Griffiths, & 

Lieder, 2018) make it possible to discover and teach resource-rational heuristics automatically 

(Lieder, Callaway, Krueger, Das, Griffiths, Gul, 2018). Teaching optimal heuristics is most 

appropriate when people perform substantially worse than the resource-rational strategy. In other 

situations, people’s heuristics might already make optimal use of their cognitive resources but 

the computational complexity of the problem might exceed their cognitive capacities. In cases 

like this, one might either restructure the environment to simplify the computational problems it 

poses or augment cognitive capacity. One example of the former is reframing probabilistic 

reasoning problems in terms of natural frequencies rather than conditional probabilities 

(Gigerenzer & Hoffrage, 1995; Sedlmeier & Gigerenzer, 2001). Alternatively, resource 
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constraints could be addressed through cognitive training or cognitive prostheses like navigation 

systems or decision-support systems (e.g., Lieder, Chen, & Griffiths, in revision).  

 

Resource-rational analysis can also help us decide which interventions are most appropriate for 

improving performance. For instance, a resource-rational analysis of a person's scores on a series 

of tests could reveal that their performance is primarily limited by verbal working memory, in 

which case working memory training might be effective. In other situations, people’s inferences 

or decisions might indeed be rational under reasonable assumptions about the structure of the 

environment that are violated by the current situation. In these cases, the prescription might be to 

align the presentation of such problems with the implicit assumptions of the strategies that 

people use to solve them. 

 

Challenges of Resource-Rational Analysis 

 

Having illustrated the potential of resource-rational analysis, we now turn to its limitations and 

challenges: scenarios where the prerequisites of resource-rational analysis may not hold, people’s 

apparent irrationality, knowing what the cognitive constraints are, testing resource-rational 

models empirically, and applying resource-rational analysis to the real-world. 

 

Resource-rational analysis is predicated on the assumption that cognitive mechanisms are well-

adapted to their function and the cognitive constraints under which they operate. Adaptation can 

be achieved through evolution or learning. For evolutionary arguments to hold, the evolutionary 

environment must have exerted sufficiently strong adaptive pressures over sufficiently long 

https://doi.org/10.1017/S0140525X1900061X
Downloaded from https://www.cambridge.org/core. Princeton Univ, on 07 Aug 2019 at 18:09:11, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/S0140525X1900061X
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


 53 

periods of time and the assumptions about the evolutionary environment must be accurate. And 

adaptation through learning requires a sufficient amount of relevant experience. Cases where 

these assumptions are violated or difficult to specify are challenging for resource-rational 

analysis. This includes people’s performance during the process of adaptation to a new 

environment and infrequent situations where people’s performance has no critical ramifications. 

Resource-rational analysis is especially difficult to apply when the environment or cognitive 

constraints are unknown. Furthermore, adaptive pressures constrain cognitive mechanisms only 

to the extent that performance is  sensitive to changes in the mechanism. Thus, if there is wide 

range of different mechanisms that perform almost equally well, then the outcome of adaptation 

need not be resource-rational. 

  

Everyday observations of seemingly irrational beliefs and behaviors and empirical 

demonstrations of cognitive biases constantly challenge the view that people are resource-

rational. As reviewed above, people’s decision-mechanisms appear to be surprisingly resource-

rational. But even when people believe they understand something deeply their intuitive theories 

are often shallow and fragmented (Rozenblit & Keil, 2002). This apparent contradiction 

dissolves in scenarios where irrational beliefs do not manifest in perilous decisions with costly 

consequences. The adaptive pressures that mold decision mechanisms into a resource-rational 

shape do not apply to how people learn and reason about X (e.g., astronomy or philosophy) if 

their beliefs about X have little effect on the decisions determining their evolutionary fitness and 

the rewards they learn from (cf. Eq. 2). In such cases, having questionable beliefs about X is not 

inconsistent with being (approximately) resource-rational. To the contrary, to be resource-
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rational the mechanisms of cognitive capacities that are far removed from important decisions 

should be extremely efficient even at the expense of their accuracy. 

 

Identifying and quantifying the resource constraints on cognitive mechanisms and 

representations can be very challenging. Ideally, such assumptions should be grounded in 

independent measurements of cognitive capacities, such as processing speed or working memory 

capacity, or biological constraints, such as nerve conduction velocity, metabolic constraints on 

the amount of simultaneous neural activity, or the maximum rate at which a neuron can fire. 

Only when such constraints have been established empirically, can we interpret the resulting 

resource-rational heuristic as a normative standard for human reasoning or decision-making. But 

in practice cognitive constraints often have to be estimated through parameter fitting and model 

comparison. 

 

Encouraging modelers to revise their assumptions about cognitive constraints in the face of data 

(i.e., Step 5 in Box 2) is a double-edged sword. It can be useful to generate hypotheses about the 

mind’s capacity limitations and to find good explanations of otherwise puzzling phenomena. But 

postulating cognitive constraints carelessly without good theoretical and empirical reasons could 

also produce bad models that overfit observations of idiosyncratic or genuinely irrational 

behaviors with wrong assumptions. To guard against this one should ideally base all assumptions 

about the constraints on independent empirical measurements. Assumptions about biological 

constraints can be derived from physiological measurements and assumptions about cognitive 

constraints can, at least in principle, be derived from psychometric tests that isolate the capacity 

of interest and ensure that people are motivated to perform as well as possible. When the 

https://doi.org/10.1017/S0140525X1900061X
Downloaded from https://www.cambridge.org/core. Princeton Univ, on 07 Aug 2019 at 18:09:11, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/S0140525X1900061X
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


 55 

unavailability of such measurements makes it necessary to resort to assumptions and parameter 

estimation, then the resulting resource-rational model should not be evaluated by its fit to the 

modelled data set but by its ability to predict other phenomena that it was not designed to 

capture, and the model’s assumptions about resource constraints should be empirically tested in 

subsequent research. The fact that capacity constraints are real, measurable properties of the 

brain makes resource-rational models falsifiable. But we acknowledge that, to date, measuring 

cognitive constraints remains challenging and often requires additional assumptions. The 

resulting uncertainty about people’s cognitive constraints can make it challenging to falsify 

resource-rational models in practice. This makes measuring cognitive capacities, such as the 

speed with which various elementary cognitive operations can be performed, an important 

direction for future work.   

 

Applying rational principles to modeling higher-level cognition is controversial because many 

researchers believe that the heuristics resource-rational analysis is meant to uncover are arbitrary 

and irrational (Gilovich, Griffin, & Kahneman, 2002; Marcus, 2009; Ariely, 2009) and call for 

different organizing principles (e.g., Kahneman, 2003) such as evolutionary history (e.g., Buss, 

1995; Marcus, 2009; Todd & Gigerenzer, 2012). We have argued that evolutionary adaptation 

might have molded the mind into a roughly resource-rational shape. But since evolution does not 

necessarily produce optimally adapted phenotypes some argue that heuristics are kluges that can 

only be understood as accidents of evolutionary history (Marcus, 2009). Our framework partially 

accounts for evolutionary history by considering that cognitive mechanisms may be adapted to a 

mixture of different environments (Equation 4) – potentially including a series of past 

evolutionary environments. Other researchers may argue that mathematical theories of brain 
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function, such as the free-energy principle (Friston, 2010), provide a more appropriate theoretical 

framework for understanding the mechanisms of perception, learning, and decision-making than 

our notion of resource-rationality. Finally, it is conceivable that theoretical constraints will 

become less important to cognitive modeling as we get more data and increasingly more refined 

methodologies for measuring the neurocognitive mechanisms of reasoning and decision-making . 

But in our view, resource-rational analysis is a very promising methodology. and time will tell 

under which conditions its methodological assumptions are useful. 

 

So far, resource-rational modeling and automatic methods for discovering and teaching rational 

heuristics have only been applied to laboratory paradigms whose structure is simple and fully 

known. It will be challenging to scale these approaches to decision-making in the real world 

where the sets of options and possible outcomes are much larger and often unknown. Equation 4 

provides a theoretical framework for incorporating such uncertainties into the design of 

heuristics that are robust to errors in our models of the environment. This robustness is achieved 

by optimizing the heuristic’s average performance across all environments that are consistent 

with our limited knowledge (weighted by their likelihood), and recently developed methods for 

discovering optimal heuristics (Callaway, Gul, Krueger, Griffiths, & Lieder, 2018; Callaway, 

Gul, Krueger, Griffiths, & Lieder, in prep.) can already handle this formulation of uncertainty 

about the environment. Future work should also continue to measure the structure of natural 

decision environments because the heuristics our methods discover will only be as good as our 

models of the problems they are meant to solve. Good models of people’s cognitive constraints 

and robustness to their imperfections are equally critical – especially for improving human 

performance. For instance, a memory strategy optimized for a working memory span of 7 items, 
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might be disastrous for a person who can hold only 4 items in memory. Future work will 

therefore incorporate uncertainty about people’s cognitive capacities into the definition of 

rational heuristics in the same way as Equation 4 incorporates uncertainty about the environment. 

The ultimate criterion for the rationality of automatically discovered heuristic will be how well 

people perform when they use them in the real world. 

Conclusion 

Resource-rational analysis is an emerging paradigm for modeling human cognition that leverages 

bounded optimality to simultaneously explain both people’s seemingly irrational cognitive biases 

and their remarkable capacity to solve almost effortlessly complex problems that continue to 

elude AI. This approach integrates the strengths of rational theories with the psychological 

realism of descriptive models of cognitive mechanisms and representations. The studies 

reviewed above illustrate that resource-rationality provides a unifying principle for answering 

fundamental questions about perception, decision-making, memory, attention, reasoning, and 

cognitive control. This unifying framework can be used to build bridges between psychology, 

neuroscience, AI, and economics. Furthermore, resource-rationality also allows us to answer 

teleological questions about the nature of the mind, such as why we represent and think about the 

world the way we do, what the purpose of goals is, and why the mind is divided into a small 

number of modular subsystems. Finally, by enabling the development of quantitative 

benchmarks of bounded rationality, resource-rational analysis sheds new light on the debate 

about human rationality and opens new avenues to improving the mind. 
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Although the idea that the mind strives to maximize utility under cognitive constraints has been 

around for a long time, the systematic, quantitative methodology of resource-rational analysis is 

a recent development and much more work remains to be done to strengthen its foundation and 

establish it as a new paradigm for cognitive modeling. Resource-rational models could be made 

substantially stronger by grounding them in increasingly realistic assumptions about the brain’s 

computational architecture and capacity limits. To achieve this, future work should integrate 

resource-rational analysis with previous work on cognitive architectures and establish a solid 

empirical foundation for its assumptions about capacity limits and computational costs. 

Measuring the bounds on human cognition will permit rigorously testing the methodological 

assumption that people make rational use of their limited cognitive resources. This line of 

research will help establish to what extent resource-rational models are psychologically 

plausible. At best, resource-rationality could become a principled methodology for discovering 

people’s cognitive mechanisms and representations from the biophysical limits on neural 

information processing. At worst, resource-rationality could turn out to be a convenient template 

for slightly less unrealistic as-if explanations than standard models based on Bayesian inference 

and expected utility theory. 

 

Recent work suggests that the assumption of resource-rationality becomes increasingly accurate 

as people continue to learn about and adapt to a new environment (e.g., Lieder & Griffiths, 

2017). Learning how to make rational use of limited resources may be an essential component of 

cognitive development and a necessity for adapting to evolving environments. We therefore 

believe that a complete theory of resource-rationality needs to include a bounded-optimal 
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mechanism for learning to become resource-rational. We are currently investigating this learning 

mechanism by studying how people learn how to think and decide.  

 

We hope that resource-rational analysis will mature into a widely used paradigm for elucidating 

the mechanisms of human cognition with mathematical precision. In addition to its contributions 

to reverse-engineering cognitive mechanisms, bounded optimality might also advance 

psychological research much the way classic notions of rationality gave rise to the blooming 

field of judgment and decision-making: by providing a normative standard against which human 

performance can be compared to characterize in which ways people’s heuristics deviate from 

resource-rational strategies. However, since bounded optimality provides a much more realistic 

normative standard than did expected utility theory, logic, and probability theory, we might find 

that our minds are much more rational than we thought. We still have a long way to go but, in 

our view, resource-rationality is a promising framework for modeling the human mind with 

mathematical precision. 
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