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Artificial intelligence systems use an increasing amount of

computation and data to solve very specific problems. By

contrast, human minds solve a wide range of problems using a

fixed amount of computation and limited experience. We

identify two abilities that we see as crucial to this kind of general

intelligence: meta-reasoning (deciding how to allocate

computational resources) and meta-learning (modeling the

learning environment to make better use of limited data). We

summarize the relevant AI literature and relate the resulting

ideas to recent work in psychology.
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Corresponding author: Griffiths, Thomas L (tomg@princeton.edu)

Current Opinion in Behavioral Sciences 2019, 29:24-30

This review comes from a themed issue on Artificial intelligence

Edited by Matt Botvinick and Sam Gershman

https://doi.org/10.1016/j.cobeha.2019.01.005

2352-1546/Published by Elsevier Ltd.

The current trend in artificial intelligence research is to

focus on solving more ambitious problems using more

computational power and more training data. One recent

analysis, presented in a blog post by OpenAI [1], charted

breakthroughs in AI as a function of time and computa-

tional resources, finding that the path from the first deep

networks producing high performance on image classifi-

cation to recent successes in playing games like Go

involved an exponential increase in computational

resources. No such trend applies to human cognition:

humans have finite computational resources — those that

can be carried around inside our heads — and are limited

to the data that can be obtained in the course of a lifetime.
$ This research was supported by contract number FA9550-18-1-0077 fro
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In this paper, we will argue that the constraints that

characterize human cognition are also intrinsic to devel-

oping key components of what we recognize as intelli-

gence [2]. Since the human mind has only a limited

amount of computational resources, it has to allocate

them in an adaptive manner to solve complex problems

efficiently. Having finite time in which to learn means

that humans have to be able to make the most of each

piece of data available to them, building and then drawing

upon a rich model of the world in which learning takes

place. As a consequence of developing these abilities,

humans become efficient, general-purpose learners — a

strong contrast to current AI systems that require huge

amounts of training data and are highly specialized to

particular tasks.

These two components of human intelligence — efficient

use of computational resources [3,4] and efficient use of

data — relate to two problems that have been studied in

the AI literature: meta-reasoning and meta-learning. In

the next two sections of this paper we review recent

progress in these two areas, highlighting how it relates

to human cognition. In the final section we consider how

this approach can lead to more human-like AI systems:

systems that do more with less.

Meta-reasoning
The term ‘meta-reasoning’ contains within it the solution

to the problem of how to efficiently deploy computational

resources: meta-reasoning is reasoning about reasoning,

which means making intelligent decisions about how to

think [5]. In research on artificial intelligence, meta-

reasoning plays a central role in the definition and design

of rational agents that can operate on performance-lim-

ited hardware and interact with their environment in real-

time [2,6–8,4]. Considering this problem led to the notion

of ‘metalevel rationality’ [7], under which the rationality

of an agent is not assessed by the expected utility of the

actions they take, but by how well the algorithm they

follow in order to select those actions trades off expected

utility with the costs of taking more time and expending

more computation before acting. From this perspective,

rationality is not just about making good decisions and

drawing good inferences, but also about employing effi-

cient cognitive strategies. Subsequent work refined the
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notion of metalevel rationality into the concept of

‘bounded optimality’ that also takes into account the

computational constraints on metareasoning itself [9,7].

Bounded optimality defines an optimal program for an

agent with performance-limited hardware that has to

interact with its environment in real time as the solution

to a constrained optimization problem over the space of

programs that the hardware can execute. Here, the pro-

gram’s performance is measured by the utility of the

sequence of world states that would result from letting

the program run on the agent’s hardware as it interacts

with its environment.

Having defined this criterion for assessing the rationality

of resource-bounded agents, the question arises of how

agents can achieve it. Rational meta-reasoning [6] pro-

vides one solution: formulated in these terms, the prob-

lem of deciding how to think can itself be expressed using

the language of statistical decision theory, and many of

the familiar tools of AI can be applied to it [10,11].

Formally, rational meta-reasoning reduces to the problem

of computing the value of computation (VOC) for each

computation c that could be executed. The VOC is the

difference between the increase in expected utility that

would be gained by executing computation c and the cost

that would be incurred by doing so. In the simplest case,

when at most one step of computation can be performed,

this can be expressed as

VOCðc; bÞ ¼ Epðb0jb;cÞ maxa0E Uða0Þjb0½ � � maxaE UðaÞjb½ �½ �

�costðcÞ

where b is the agent’s current belief, b0 is the refined belief

resulting from executing computation c, and E½UðaÞjb� is

the expected utility of taking action a over the distribu-

tion of outcomes corresponding to belief b.

The rational agent should pursue the computation with

the highest VOC, or, if no computation has positive VOC,

not pursue any computation at all. The challenge here is

that computing the VOC itself would be extremely costly

if it required executing each computation to determine

the resulting action. Consequently, research has focused

on how to efficiently approximate the VOC or identify

special cases where it can be computed more easily [2,9–

15,6,16,17��,18,19].

We see meta-reasoning as a key component of human

intelligence, with the potential to explain a wide range

of aspects of human cognition and to shed light on the

factors that differentiate human minds from current AI

systems. Previous work on human metacognition (e.g.

[20,50��]) and active learning (e.g. [21,22]) have explored

aspects of human cognition relevant to meta-reasoning —

namely awareness of one’s own internal states such as the
www.sciencedirect.com 
accuracy of a memory or confidence in a judgment, and

reasoning intelligently about how to gather information.

However, meta-reasoning is a far more general phenome-

non, characterizing the process of selecting or discovering

the cognitive processes that will be used to tackle a task.

Part of what makes people smart is their capacity to make

decisions about how they make decisions [23,24]. This

makes decision-making a natural starting point for studying

human meta-reasoning. An extensive literature has sug-

gested that people make decisions by following heuristics

[25].A heuristic in itself couldconstitutea bounded optimal

strategy, finding a good trade-off between accuracy and the

time required to make a decision. However, since human

decisions take place in a variety of environments and the

relative cost of errors and time vary across those environ-

ments, it makes more sense to have a corresponding variety

of heuristics and decide intelligently which strategy to

follow in which situation [26��]. Previous research has

explored human strategy selection, identifying how the

strategies that people use vary based on the task and

suggesting relatively simple schemes for selecting strate-

gies based on ideas from reinforcement learning [27,28].

Formulated as a meta-reasoning problem, strategy selec-

tion becomes a matter of choosing the strategy that has

highest VOC. Lieder and Griffiths [26��] showed that

taking this approach, assuming that people develop simple

internal models of the accuracy and time cost associated

with applying different strategies to different problems,

better captured human performance than previous psycho-

logical models of strategy selection.

Being able to select between existing strategies is only one

aspect of what makes people able to adapt to different

problems. More generally, people need to be able to

efficiently deploy their cognitive resources in situations

that they have never encountered before — to discovernew

strategies. This is a much more challenging meta-reasoning

problem. However, in many situations it is possible to use a

simplified version of the problem to make progress in

strategy discovery. The key observation is that the con-

struction of a strategy often reduces to a sequence of

decisions about which computation to perform next [15].

Each computation reveals some piece of information or

reduces uncertainty to some extent, providing data that can

be used in selecting the next computation. In this case,

strategy discovery reduces to a sequential decision prob-

lem, and can be expressed as a meta-level Markov decision

process (MDP; see Figure 1) [10]. The MDP is a standard

way of formulating reinforcement learning problems, and

as a consequence we can leverage powerful tools from that

literature and apply them to meta-reasoning [13,15].

One application of this approach is deriving optimal

strategies for decision-making in environments where

just gathering information about the options is costly.

For example, a significant amount of research on
Current Opinion in Behavioral Sciences 2019, 29:24–30
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Figure 1

Meta-reasoning. (a) Illustration of a meta-level Markov decision

process. The initial meta-level rewards capture the cost of

computation and the final meta-level reward captures the benefits of

computation by the expected object-level reward for choosing an

action based on the final belief state. (b) Illustration of the Mouselab

paradigm. The Mouselab paradigm externalizes computations by

clicks, belief states by revealed information, and the cost of each

computation by the fee charged for the corresponding click.
decision-making has used the Mouselab task illustrated

in Figure 1(b). In this paradigm people are presented

with a set of gambles to choose between but can only

reveal the properties of those gambles by moving their

computer mouse to particular locations on the screen.

This task is supposed to externalize the process of

attending to different pieces of information when mak-

ing decisions, providing a way for psychologists to iden-

tify the strategies that people are following. Previous

work using this approach has typically focused on strat-

egies identified by the researchers, examining whether

people change their strategies as the parameters of the

task are varied. However, this task can be formulated as a

strategy discovery problem and (approximately) solved

using methods for solving MDPs. This solution provides

a rational explanation for previously proposed heuristics

such as Take-The-Best and Satisficing; but it also pre-

dicts novel combinations and extensions of these hand-

generated heuristics, some of which people were found

to actually use [29,15]. The result is a far richer picture of

the kinds of strategies that can and should be used, and a

more accurate characterization of the strategies that

people actually follow.

The meta-reasoning approach to strategy discovery has

potential applications that range far beyond decision-
Current Opinion in Behavioral Sciences 2019, 29:24–30 
making. For example, developing an adaptive planning

strategy — deciding which paths to explore in a multi-

step decision or problem-solving task — can be expressed

in these terms, allowing us to identify optimal planning

algorithms that can be compared against existing cogni-

tive models and human behavior [30�]. The computation

of the VOC at the heart of rational meta-reasoning also has

close parallels with ideas that have been proposed in the

neuroscience literature on cognitive control [31�,32].
More generally, the rational meta-reasoning framework

provides us with a set of tools for exploring how people

identify the strategies or algorithms that guide their

behavior in any cognitive task, from the choices that they

make about how to manage their memory to choices

about where to deploy their attention.

Meta-learning
While meta-reasoning focuses on the efficient use of

cognitive resources, a related challenge is the efficient

use of data. One of the most striking aspects of human

learning is the ability to learn new words or concepts from

limited numbers of examples [33]. This ability contrasts

strongly with traditional machine learning methods,

which typically require many labeled examples in order

to even begin to classify stimuli accurately. Recent work

in machine learning has aimed to narrow this gap, explor-

ing problems of ‘few-shot’ or ‘one-shot’ learning [34].

One of the frameworks that has been most effective in

developing machine learning systems capable of solving

these problems is ‘meta-learning’ [35,36]. In meta-learning,

the learner is not presented with a single task — such as

learning a particular concept — but with many tasks that all

have a similar character. The system aims to leverage

commonalitiesacross these tasks in order not only to become

better at solving each individual task but also to solve future

tasks better and more quickly, effectively ‘learning to learn.’

Recent approaches to meta-learning operate by estimating

a single set of hyperparameters that parameterize a task-

general component, such as a metric space [34], a memory-

augmented neural network [39], or a recurrent neural

network [40,41], that is shared across all tasks. In one

particular approach,gradient-basedmeta-learning, learners

are adapted for better performance on each specific task

using an optimization algorithm such as gradient descent

[42,43]. Meta-learning is implemented by also learning the

parameterization of the learners that adapt to each task.

The goal is to find a set of parameters that work well across

all of the different tasks so that the learners start with a bias

that allows them to perform well despite receiving only a

small amount of task-specific data.

Gradient-based meta-learning is an approach with a long

history [35,44,45] that has flourished due to the recent

success of deep learning systems, which make use of large

artificial neural networks with parameters trained by
www.sciencedirect.com
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Figure 2

Gradient-based meta-learning. (a) The model-agnostic meta-learning

(MAML) [37] algorithm optimizes the parameters u of a set of models

so that when one or a few gradient descent steps are taken from the

initialization at u using a small sample of task data (X, Y) to compute

the negative log-likelihood ‘(X, Y), each model obtains new parameters

f that result in good generalization performance on another sample of

data from the same task as measured by the marginal negative log-

likelihood L. (b) The probabilistic graphical model for which MAML

provides a parameter estimation procedure [38��]. Each task-specific

parameter f is distinct from but influences the estimation of the others

through the parameters of a prior u shared across all f.
gradient descent. In cognitive science, models of cogni-

tion based on artificial neural networks are often pre-

sented as an alternative to Bayesian models, which

explain human judgments as the result of rational statis-

tical inference. It may thus come as a surprise that

gradient-based meta-learning has a close relationship

with one of the key components of Bayesian models of

cognition, hierarchical Bayesian inference.

Hierarchical Bayesian inference captures the idea that

learning should take place at multiple levels of abstrac-

tion. This idea has been widely used in Bayesian models

of cognition. For example, hierarchical Bayesian infer-

ence can be used to learn about the properties of objects

that words tend to label (such as shape) at the same time

as learning the meaning of individual words [46], and to

learn about the kinds of causal relationships that exist at

the same time as learning those relationships [47]. While

Bayesian inference generically indicates how a learner

should combine data with a prior distribution over

hypotheses, a hierarchical Bayesian model learns that

prior distribution through experience.

There isclearlya looseanalogybetweenhierarchicalBayesian

inference and any approach to meta-learning: a meta-learning

algorithmtriestoestablishaninductivebiasfornewtasksfrom

old tasks, equivalent to ‘learning a prior.’ Grant et al. [38��]
showed that this analogy is, in fact, exact for a prominent form

of gradient-based meta-learning, model-agnostic meta-learn-

ing (MAML; see Figure 2) [37�]. The key idea is that the few

steps of gradient descent performed by the task-specific

learners results in an approximation to the Bayesian estimate

of the parameter values for that task with a prior that depends

on the initial parameterization, so learning the initial param-

eterization is equivalent to learning a prior.

Since much of the previous literature on learning-to-learn

in cognitive science has focused on hierarchical Bayesian

models, this connection provides a way to translate insights

from modeling human learning into contemporary machine

learning systems. It also opens the door to defining models

using the rich and expressive language of probabilistic

generative models that are able to take advantage of the

large-scale learning algorithms used in deep learning. As a

consequence, it may be possible to develop models that are

able tocapture theprocessof learningto learnata resolution

and scale that comes closer to that of human cognition.

Towards general intelligence
Meta-reasoning and meta-learning individually capture

key components of human intelligence, but it may be by

combining them that we come closest to identifying what

is necessary to achieve the kind of general intelligence

that currently eludes AI systems. While meta-learning has

begun to explore problems that involve learning to per-

form many different tasks in parallel, those tasks remain

relatively similar to one another. By contrast, what
www.sciencedirect.com 
characterizes human environments is the need to perform

many different tasks that are genuinely different from one

another: the same system drives cars, plays chess, loads

the dishwasher, looks after small children, creates art, and

writes scientific papers. In order to make AI systems that

demonstrate the same kind of general intelligence, we

need to think about how to train a single system on sets of

tasks that display the same diversity.

Part of what allows humans to solve this broad range of

problems is the capacity to intelligently reuse elements of

their cognitive and motor skills when they encounter a

new problem [48]. To translate this into the language of

deep learning, we are making intelligent decisions about

how to deploy learned neural modules dynamically, flu-

idly constructing new network architectures out of old

components. This approach has elements of both meta-

reasoning and meta-learning: we learn to perform well

across different tasks by efficiently allocating cognitive

resources. Recent work exploring this approach has

shown that it can be used to automatically construct

neural network architectures for novel problems in a

way that supports far broader generalization than tradi-

tional neural network learning algorithms [49�].

Figure 3 shows how reasoning about what modules to

deploy to solve a problem supports a distinctive form of
Current Opinion in Behavioral Sciences 2019, 29:24–30



28 Artificial intelligence

Figure 3

Compositional recursive learner. (a) In the standard supervised learning problem, the learner receives supervision for mapping an instance x from one

distribution rx to its corresponding instance y in another distribution ry. (b) In the extrapolation problem, the learner receives only supervision for certain

mappings but not for others. For example, suppose that during training the learner receives supervision for learning to translate English to French and

to translate French to Spanish. A compositional recursive learner attempts to distill out primitive modules that transform English to French ( f1) and

French to Spanish ( f2) and compose them to extrapolate to English-to-Spanish problems. (c) The compositional recursive learner consists of a

controller p, an evaluator, and a set of reusable computational modules fk. Its goal is to transform its input x0 into a target representation ry by

composing together learned modules. At step j, the controller observes the internal state xj and the target representation ry and selects a module

fk. The evaluator applies fk to transform xj into a new internal state xj+1. When p selects HALT, a loss is computed by comparing the current internal

state with the desired output. The loss is backpropagated through the modules, and the controller is trained with policy optimization algorithms.
generalization. The key idea is that such a system can

solve problems that are composed of previously solved

subproblems, in the formal sense of function composition.

For example, a system that has learned to translate

English to French and French to Spanish can automati-

cally translate English to Spanish by first translating to
Current Opinion in Behavioral Sciences 2019, 29:24–30 
French. This supports long-range generalization beyond

the tasks that the system has been trained upon — much

like what we see in human behavior.

We anticipate that learning how to do more with less will

become an increasingly important aspect of AI as
www.sciencedirect.com
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researchers begin to hit the limits of their computational

and data resources, and that hitting those limits will

paradoxically result in systems that more closely resemble

human cognition. This convergence could be accelerated

by including computational constraints into the definition

of the benchmark problems that drive the development of

machine learning and artificial intelligence.
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