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Abstract

Modern convolutional neural networks (CNNs) are able to
achieve human-level object classification accuracy on specific
tasks, and currently outperform competing models in explain-
ing complex human visual representations. However, the cate-
gorization problem is posed differently for these networks than
for humans: the accuracy of these networks is evaluated by
their ability to identify single labels assigned to each image.
These labels often cut arbitrarily across natural psychologi-
cal taxonomies (e.g., dogs are separated into breeds, but never
jointly categorized as “dogs”), and bias the resulting represen-
tations. By contrast, it is common for children to hear both
dog and Dalmatian to describe the same stimulus, helping to
group perceptually disparate objects (e.g., breeds) into a com-
mon mental class. In this work, we train CNN classifiers with
multiple labels for each image that correspond to different lev-
els of abstraction, and use this framework to reproduce classic
patterns that appear in human generalization behavior.

Category Learning in Children and Al

One of the challenges for a child learning a language is iden-
tifying what level in a hierarchical taxonomy a word — cate-
gory label — refers to. After hearing the word “dog” upon ob-
serving a Dalmatian called Sebastian, a child needs to learn
whether the category label “dog” refers to only Sebastian, all
the Dalmatians, different breeds of dogs, etc. Psychologists
have extensively studied this problem. A classic line of psy-
chological research examined what level of abstraction (e.g.,
dogs vs. Dalmatians) conveys the most information; this level
is called the basic level (Rosch, 1973; Rosch, Mervis, Gray,
M, & Boyes-Braem, 1976). Another line of research has in-
vestigated whether people have an innate or a learned basic-
level bias, i.e., a tendency to generalize a new category la-
bel to the members of the basic level of the taxonomy (e.g.,
Golinkoff, Mervis, & Hirsh-Pasek, 1994; Markman, 1991).

Artificial intelligence (Al) systems need to address a simi-
lar problem. Given an image of a dog, an Al system needs to
find the best label to describe that image. In computer vision,
this problem is often formulated as an image classification
task where the training data consists of images paired with
single labels from a limited set of categories; a model needs
to learn to predict the correct label for new images. Deep
convolutional neural networks have been very successful at
both achieving state-of-art accuracy in the image classifica-
tion task (LeCun, Bengio, & Hinton, 2015) as well as learn-
ing representations that best explain human psychological
and neural representations for natural images (e.g., Agrawal,
Stansbury, Malik, & Gallant, 2014; Mur et al., 2013; Peter-
son, Abbott, & Griffiths, 2016).

However, this problem formulation is different from what
children experience. Multiple labels (e.g., Dalmatian and

dog) are commonly used to refer to the same entity in the
world children encounter. This explicit use of multiple cat-
egory labels can help children learn a better representation
of the taxonomic relations between categories — the implicit
hierarchical structure underlying the world. Different breeds
of dogs form a category not only because of their perceptual
similarity but also because they are referred to by the same la-
bel “dog”, implicitly defining a higher level in the taxonomy.
Moreover, forming a hierarchical representation can in turn
help children better generalize to new items; for example, a
new breed of dog, such as a poodle, will be categorized as a
dog because of its similarity on crucial dimensions (e.g., long
snout) to the members of that category.

In this work, we investigate whether using such human-
like supervision (labels from different levels of a hierarchy
for a given entity) can help deep neural networks learn bet-
ter visual representations. We explore the consequences of
this multi-level classification by training a near state-of-the-
art image classifier (Szegedy, Vanhoucke, loffe, Shlens, &
Wojna, 2015) on a dataset that provides multiple labels for
images, each corresponding to a different level of the hierar-
chical taxonomy. In particular, we focus on two sets of labels:
basic and subordinate (in the hierarchical taxonomy, subordi-
nate labels, such as “Dalmatian”, are categories that are below
the basic level, such as “dog”).

To examine the learned representations, we perform three
sets of experiments. First, we explore whether the represen-
tations learned by each model capture the similarity relations
observed in a hierarchical taxonomy. For example, we expect
that different breeds of dogs will be better clustered together.
We observe that training with basic-level labels results in both
better grouping of similar examples and learning of hierarchi-
cal structure. Dendrograms reveal stark differences in hierar-
chical representations learned from basic as opposed to sub-
ordinate labels, resulting in interesting high-level groups not
present in the original representations. Second, we show that
the representations learned by training with basic-level labels
match the performance of more commonly used subordinate-
level label training schemes in explaining human similarity
judgments, indicating that simpler classification tasks are suf-
ficient to capture rich structure in human mental representa-
tions. Finally, we show that training with both label sets re-
sults in a better match to a classic effect of basic-level gen-
eralization bias observed in people using a simple model that
restricts generalization with the number of consistent exam-
ples, an effect not previously replicated with a fully learned
representation.



Background
Exploring Levels of Generalization

Cognitive scientists have extensively studied the problem of
finding the correct level of generalization for a given label.
The seminal work of Rosch (1973) emphasizes the impor-
tance of basic-level objects because they are categorized first
during perception and named early during word learning. Re-
search on child word learning suggests that children have a
bias in generalizing a new label to the the basic-level cate-
gory members (e.g., Golinkoff et al., 1994; Markman, 1991).

Xu and Tenenbaum (2007) further examined the basic-
level bias by studying how children and adults generalize a
new word after observing a few examples. They found that
after observing examples from a subordinate level (e.g., three
Dalmatians) labeled with a new word such as “dax”, the par-
ticipants often include dogs other than Dalmatians (e.g., poo-
dles) in the category “dax” but exclude animals other than
dogs (e.g., cats). Previous models have successfully predicted
the generalization patterns observed in this experiment; how-
ever, they require the use of pre-specified rather than learned
hierarchical taxonomies based on adult similarity judgments
(Xu & Tenenbaum, 2007), or limited feature representations
(Nematzadeh, Grant, & Stevenson, 2015). The main differ-
ence between our work and the existing models is that we
explore whether the hierarchical structure of a taxonomy can
be learned simply by jointly classifying natural images with
multiple labels (or by choosing the right labels), mirroring the
multiple references heard by children.

Explaining Human Behavior with Deep Networks

Another line of related work explores how representations
from deep neural networks can be used to explain complex
human behavior. For example, deep convolutional neural net-
works (CNNs; LeCun et al., 2015) are specialized for image
processing tasks, and can explain human typicality (Lake,
Zaremba, Fergus, & Gureckis, 2015) and similarity ratings
(Peterson et al., 2016), object memorability (Dubey, Peter-
son, Khosla, Yang, & Ghanem, 2015), and shape sensitivity
(Kubilius, Bracci, & de Beeck, 2016). Peterson et al. (2016)
found that deep representations could be tuned post-hoc to
improve fit to human similarity judgments by almost 50%.
Although the resulting representations better capture the hu-
man mental representations, the size of the image dataset
used was relatively small, defining a limited context. Further,
the reason for the initial discrepancies (and different stimulus
groupings) is unknown, and the nature of the learned tuning
is opaque. For this reason, it may be useful to instead con-
sider training schemes that more closely match the pressures
human categorizors face to more elegantly derive the relevant
representations.

Recent work in explainable Al has emphasized the impor-
tance of understanding the biases that the training data or a
model’s architecture can introduce (e.g., Ritter, Barrett, San-
toro, & Botvinick, 2017; Zhao, Wang, Yatskar, Ordonez, &
Chang, 2017). Our analysis sheds light on another one of

these important biases — the basic-level bias — that the image
classification model captures.

Multi-level and Multi-label Classification

Computer vision research has recognized the importance of
training multi-label classifiers to take advantage of the avail-
able rich linguistic information in tasks such as image un-
derstanding (e.g., J. Wang et al., 2016). Some of this work
makes use of labels from different levels of a hierarchy, but
has mostly focused on improving classification performance;
for example, Lei, Guo, and Wang (2017) show that using
coarse-grained labels can improve the classification accuracy
of finer-grained categories. P. Wang and Cottrell (2015) are
the first to take inspiration from the work of Rosch (1973), but
they also focus on improving subordinate-level benchmarks.
They trained CNN classifiers on a set of 308 basic level labels
that encompassed an existing set of 1000 ILSVRC12 compe-
tition classes (Russakovsky et al., 2015) that clearly fit the
traditional conception of subordinate categories (Rosch et al.,
1976). They used this network as an initialization that was
then fine-tuned on the original 1000 classes, obtaining higher
accuracy than their baseline model trained without basic level
pre-training. Our work differs in that we assess the structure
of the learned representations and implications on later gen-
eralization behavior, both for each label set as the sole source
of supervision, and as simultaneous and potentially compet-
ing objectives.

Training Paradigms

We are interested in examining the extent to which linguistic
labels from different levels of the taxonomy (i.e., basic and
subordinate categories) affect the structure and hierarchical
taxonomy of the learned representations. To examine this hy-
pothesis, we train classifiers using each level separately, and
also using multiple labels (first taking a pretrained model on
one level and tuning it using labels from both levels). Our
goal in the latter case is to more closely mimic a child’s ex-
perience in language learning — children are known to make
use of simple labels first (e.g., “dog”; Rosch et al., 1976),
later followed by increasingly sharper distinctions (e.g., “poo-
dle”).!

More specifically, we pose the multi-level labeling prob-
lem simply as learning a set of independent softmax clas-
sifiers that are unconnected to each other and fully con-
nected to the final representation layer of a deep CNN.
We define the loss function for the multi-level classifiers as
0.5 Lpasic + 0.5 Lgupordinaze- Because these models have al-
ready been pretrained on one level, this joint loss can be
thought of as a method to prevent the fine-tuning proce-
dure from overwritting previous knowledge about the original
training domain (i.e., we would like the model to remember
what it learned about basic labels while approaching the new
problem of more fine-grained subordinate labeling, and vice

! Another possibility is to train multi-label classifier simultane-
ously on the two levels which we will explore in future.
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Figure 1: t-SNE visualizations of representations learned for (A) Sub training and (B) Basic training, colored by each of the
35 basic labels with the most subordinate classes for clarity. The basic model has tighter clusters and more distinct boundaries

between categories.

versa). While other alternative approaches exist for defining
the network architecture and loss function, this approach pro-
vides a single embedding space for all images, which allows
us to inspect the representations with classic psychological
methods such as hierarchical clustering.

We compare the representations from our multi-level clas-
sifiers with ones that are trained using only one level (basic
or subordinate). To train on single levels, we use a k-way
softmax classifier as the final layer, where k is the number of
classes for that level. We report the results for four different
models:

e Sub: Trained only on subordinate.

e Basic: Trained only on basic.

e Suby,,i.: Pretrained on basic; tuned with subordinate.

e Basic,,;,: Pretrained on subordinate; tuned with basic.

To train our multi-level classifiers, we use the model archi-
tecture defined in InceptionV3 (Szegedy et al., 2015) since
it obtains high accuracy while still being relatively quick to
train. It contains 159 layers, 23 million parameters, and a
top-1 validation accuracy of nearly 79% on ILSVRC12 us-
ing the default subordinate label set. We use the off-the-shelf
pretrained version of this network for the Sub model. For
the Basic model, we reinitialize the network parameters ran-
domly and retrain from scratch. For fine-tuning models, we
freeze all but the weights in the last block of InceptionV3 to
speed training.

Following P. Wang and Cottrell (2015), we use the 1000
labels from ILSVRC12 as our subordinate classes, and basic
level labels provided by the same authors, described in the
previous section.

Exploring Representations

We perform a set of exploratory qualitative visual analyses to
examine whether the representations learned by each model
reflect the grouping of similar objects observed in a hierar-
chical taxonomy. If representations capture such higher-level

abstractions, not only would examples of Dalmatians clus-
ter close to each other, but also different breeds. To analyze
the learned representations, we extracted a 2048-dimensional
feature vector from the last hidden layer before the output,
and used for all subsequent analyses in this paper.

We first explored the representations using t-SNE (Maaten
& Hinton, 2008), a common visualization method for CNN
representations, shown in Figure 1. The t-SNE method re-
duces the 2048-dimensional vectors to 2 dimensions so that
we can visually compare learned representations. We find
that the Sub model does not appear to cluster basic level cat-
egories very well (e.g., there are multiple spatially separated
clusters of dogs), whereas the Basic model does a much more
effective job of clustering these like subordinate classes to-
gether (e.g., dog breeds are now unified under a single tight
cluster). Models trained on both label sets simultaneously,
Suby,sic and Basicy,;,) exhibited similar clustering to the Ba-
sic model, and so they are omitted for this reason.

We also plot dendrograms of the the representations in
Figure 2. The Basic model has a clearly defined hierarchy,
whereas the Sub model does not. The branch we call “artifi-
cial” contains images showing artificial objects such as cars,
buildings, household objects, sports, and technology. The
other main branch, the “natural” distinction show animals,
fish, mushrooms, and other natural stimuli. Interestingly, this
high-level distinction is not present explicitly in the basic la-
bel set, and is one of the defining categorical divisions found
in human mental representations (Mur et al., 2013). As be-
fore, models trained on both label sets (Suby,,;. and Basicy,p)
behaved similarly to the Basic model, suggesting that signifi-
cant basic-level supervision at any stage of training allows for
the preservation of basic-level clustering.

Predicting Human Similarity Judgments

Another way to evaluate the goodness of the learned represen-
tations is examine how well they predict human psychologi-
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Figure 2: Dendrograms showing the learned representations. The model trained on subordinate labels (top) has no clear
hierarchical structure. The model trained on basic labels (bottom) has a clearly defined hierarchical structure which divides
the validation data into three top level categories: dogs, images of artificial items, and images of natural items. Over 10%
of Imagenet is images of dogs which is why there is a separate branch specifically for these images. We did not label the

subordinate model because it did not have a definable structure.

cal representations as captured by pairwise human similarity
judgments (Shepard, 1987). As a gold-standard dataset, we
use the similarity ratings collected by Peterson et al. (2016).
This dataset consists of 7,140 pairwise comparisons of all
120 images presented to MTurk workers, who were asked to
rate their similarity between 0 and 10.

For each model, we compute the similarity between im-
age pairs as the inner product of their learned representations.
Then, we calculate the Pearson correlation between the repre-
sentations learned by each model and the gold-standard sim-
ilarity ratings. We report R> to compare directly with previ-
ous work (see Table 1). Interestingly, the performance of the
models that either train solely on basic labels or are tuned
with basic labels greatly surpass those that train solely on
subordinate labels or are tuned with subordinate labels. We
note that previous work has obtained very similar correlations
to our Basic results by using a different (yet comparable)
network trained only on subordinate labels (Peterson et al.,
2016). This may indicate the current network is generally less
apt to predict human similarity judgments, but is more likely
to encode information relevant to people given the right su-
pervision from basic labels. In addition, our results show that
human psychological representations can be approximated
using simpler classifiers with more coarse-grained object dis-
tinctions (basic level labels). It is also worth noting that most
of the previous work in explaining human visual representa-
tions uses subordinate-label trained networks (Agrawal et al.,
2014; Mur et al., 2013); our results show a new alternative for
predicting these representations.

Generalization Experiments

Xu and Tenenbaum (2007) (henceforth, X&T) examined how
people generalize a novel word label after observing a few ex-
amples, and whether the number or the taxonomic level from

Sub  Basic Subp,. Basicg,
R? 038 0.57 0.41 0.57

Table 1: Variance explained in human similarity judgments
by representations formed by each model.

which the examples were drawn changes the generalization
behavior. For example, the participants heard a word label
such as “dax” while observing one Dalmatian, three Dalma-
tians, or three different breeds of dogs. Figure 3 shows the
set-up of their experiments.

The experiment set-up of X&T’s can be thought of as a
few-shot learning task. We examine whether our models ex-
hibit the generalization behavior observed in these experi-
ments. We focus on three of their training conditions.

e 1 sub: the model (or a participant in X&T’s experiment)
observes 1 (subordinate) example, such as a Dalmatian.

e 3 sub: the model receives 3 examples from the same sub-
ordinate category, such as 3 Dalmatians.

e 3 basic: 3 examples are drawn from a basic-level, such as
a poodle, a Dalmatian, and a Great Pyrenees.

In X&T’s experiments, after training, the participants were
asked to pick everything that is a “dax” from a fixed set of
examples drawn from different levels of taxonomy. We focus
on the test objects that are relevant to our experimental con-
ditions, i.e., two basic-level and two subordinate matches.?
For example, after observing one Dalmatian as a “dax”, the
participants had to decide whether two other Dalmatians, a
poodle, and a golden retriever are also examples of “dax”.
The results of their experiment is shown in Figure 4. Two in-
teresting observations can be made from their results: First,

2X&T also included superordinate examples (such as an animal
other than a dog). Here we only focus on the subordinate and basic-
level matches because our training data only includes those labels.



people exhibit basic-level bias since they generalize to the
basic-level after observing only subordinate examples. Sec-
ond, their degree of basic-level generalization decreases after
observing 3 examples (see “Basic Match” in 1-sub and 3-sub
conditions in plot titled “Human” in Figure 4).

We simulate the different conditions of X&T’s experiments
as a few-shot generalization task, and examine the generaliza-
tion behavior of models on both subordinate and basic-level
matches.

Training conditions.
3sub
A

Test: Pick everything that is a dax.

() p

2 e 4
P :
J;S" 4 1

)) ) } i

Figure 3: The setup of X&T’s experiments Xu and Tenen-
baum (2007) used in this paper. The first row shows the three
training conditions and the second row is an example of the
test trial. Note that during the test trial, the basic matches (dog
breeds other than Dalmatians) are different from the ones ob-
served during training (in contrary to what is shown here).

Learning from Positive Examples

To mimic generalization experiments with humans, we use
a k-shot generalization formulation meant to learn concepts
from positive examples only. Specifically, we use exponenti-
ated euclidean distance (in the spirit of Shepard (1987), given
that we are interesting in making qualitative comparisons to
human behavior), normalized over distances to all items in
the test set to obtain generalization probabilities:

e—d(q[,C)
B Z] eid(Qj'rc) ’

g(qi.c) (1)
where g is the generalization function, ¢ is concept template
(a single training example or the mean of several training ex-
amples), g; is the query (test) image, and d is the euclidean
distance function described above.

It has been demonstrated that human generalization be-
havior tightens as the number of examples increases (Tenen-
baum, 2000). We can represent this phenomenon in our
model through a simple augmentation:

efnd(%'ac)

Zj efnd(qj,c) ’

§'(gi,c) = )
where 7 is the number of positive examples observed.

Since we care only about the relative differences in gen-
eralization probabilities across different levels of testing
stimuli, we further normalize each set of probabilities for
each training set by dividing each probability by the largest
g'(gi,c) in the set (e.g., the largest probability becomes 1).

To evaluate this model, we sample test and train stimuli
analogous to X&T from 88/308 of the basic level labels in
our set that encompassed at least 3 subordinate classes, a re-
quirement for the final three-example experiment condition.

Generalization Results

The results of the generalization experiments from all four of
our models are shown in Figure 4 (see top left and all bot-
tom plots). To some extent, all models exhibit a basic level
bias (there is some non-zero probability assigned to gener-
alization at the basic level, even when a single example is
given). However, this effect is extremely weak in the Sub
model. In all other models that involve basic labels, a stronger
basic-level bias is apparent after training on 1 example or 3
subordinate examples, strongly resembling more human-like
trends. In addition, this basic-level generalization decreases
as the model processes more examples (compare 1 sub to 3
sub conditions). Moreover, most models also exhibit subor-
dinate and basic-level generalization after observing 3 exam-
ples drawn from a basic-level category, further resembling
humans. Note that the observed basic-level bias for the Sub
training, just by capturing the perceptual similarities present
in the data, to some extent learns about the higher-level simi-
larities (groupings) of the examples. However, adding nearly
any form of higher-level supervision (i.e., using basic-level
labels) produces higher basic-level generalization and a better
match to human behavior. We also observe a basic-level bias
with g (not shown), but without incorporating the number of
examples into the formulation, the basic-level generalization
is larger than that of people in the 3-sub condition.

Conclusion

Image classification models are often trained on images
paired with single labels that correspond to the subordinate
level of the hierarchical taxonomy. People, on the other hand,
use multiple labels to refer to the same entity in the world
(e.g., dog and Dalmatian). This explicit use of multiple labels
makes the category learning problem easier as people can use
the labels to identify similarities between the concepts (in ad-
dition to other features, such as perceptual cues, that signal
similarity). Moreover, the use multiple labels helps form hi-
erarchical representations that capture different levels of ab-
straction. For example, two Dalmatians are more similar to
each other than a Dalmatian to a poodle; dalmatians and poo-
dles are still highly similar and should share more relevant
features than a Dalmatian and a cow (body size as opposed
to black and white spots). This hierarchical nature of the rep-
resentation is in turn helpful in categorizing and labeling a
new entity: a child can use the similarity of an unobserved
breed of dog (a Great Pyrenees) to previously-seen dogs to
categorize and infer a label for it.

In this paper, we show that training on basic-level and sub-
ordinate labels (or just basic-level labels) results in represen-
tations that better capture the hierarchical structure of taxon-
omy of real-world objects. We also show that these represen-
tations result in a better match to the basic-level bias observed
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Figure 4: The results of generalization experiments from our trained models and the human data from X&T’s experiments.

in human generalization behavior.

Interestingly, we observe that a relatively big portion of Im-
ageNet (10%) are subordinate dog labels. Future work should
look at other datasets with more interesting, less skewed ba-
sic label stratifications. Additionally, we only explore basic
and subordinate levels in this work, which are both known to
share many features in common with their members (Rosch,
1978), whereas high-level superordinate classes (e.g., furni-
ture) often have members with few shared features.
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