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We propose an unsupervised learning technique for extracting information about authors and topics

from large text collections. We model documents as if they were generated by a two-stage stochas-

tic process. An author is represented by a probability distribution over topics, and each topic is

represented as a probability distribution over words. The probability distribution over topics in a

multi-author paper is a mixture of the distributions associated with the authors. The topic-word

and author-topic distributions are learned from data in an unsupervised manner using a Markov

chain Monte Carlo algorithm. We apply the methodology to three large text corpora: 150,000 ab-

stracts from the CiteSeer digital library, 1740 papers from the Neural Information Processing

Systems (NIPS) Conferences, and 121,000 emails from the Enron corporation. We discuss in de-

tail the interpretation of the results discovered by the system including specific topic and author

models, ranking of authors by topic and topics by author, parsing of abstracts by topics and au-

thors, and detection of unusual papers by specific authors. Experiments based on perplexity scores

for test documents and precision-recall for document retrieval are used to illustrate systematic

differences between the proposed author-topic model and a number of alternatives. Extensions

to the model, allowing for example, generalizations of the notion of an author, are also briefly

discussed.
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1. INTRODUCTION

With the advent of the Web and specialized digital text collections, automated
extraction of useful information from text has become an increasingly important
research area in information retrieval, statistical natural language processing,
and machine learning. Applications include document annotation, database or-
ganization, query answering, and automated summarization of text collections.
Statistical approaches based upon generative models have proven effective in
addressing these problems, providing efficient methods for extracting struc-
tured representations from large document collections.

In this article we describe a generative model for document collections, the
author-topic (AT) model, which simultaneously models the content of docu-
ments and the interests of authors. This generative model represents each
document as a mixture of probabilistic topics, in a manner similar to Latent
Dirichlet Allocation [Blei et al. 2003]. It extends previous work using proba-
bilistic topics-to-author modeling by allowing the mixture weights for different
topics to be determined by the authors of the document. By learning the pa-
rameters of the model, we obtain the set of topics that appear in a corpus and
their relevance to different documents, and identify which topics are used by
which authors. Figure 1 shows an example of several such topics with associ-
ated authors and words, as obtained from a single sample of the Gibbs sampler
trained on a collection of papers from the annual Neural Information Process-
ing Systems (NIPS) conferences (these will be discussed in more detail later
in the article). Both the words and the authors associated with each topic are
quite focused and reflect a variety of different and quite specific research areas
associated with the NIPS conference. The model used in Figure 1 also pro-
duces a topic distribution for each author—Figure 2 shows the likely topics for
a set of well-known NIPS authors from this model. By modeling the interests
of authors, we can answer a range of queries about the content of document col-
lections, including, for example, which subjects an author writes about, which
authors are likely to have written documents similar to an observed document,
and which authors produce similar work.

The generative model at the heart of our approach is based upon the idea that
a document can be represented as a mixture of topics. This idea has motivated
several different approaches in machine learning and statistical natural lan-
guage processing [Hofmann 1999; Blei et al. 2003; Minka and Lafferty 2002;
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Fig. 1. Eight examples of topics (out of 100 topics in total) from a model fit to NIPS papers from

1987 to 1999—shown are the 10 most likely words and 10 most likely authors per topic.

Griffiths and Steyvers 2004; Buntine and Jakulin 2004]. Topic models have
three major advantages over other approaches to document modeling: the top-
ics are extracted in a completely unsupervised fashion, requiring no document
labels and no special initialization; each topic is individually interpretable, pro-
viding a representation that can be understood by the user; and each document
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Fig. 2. Selected authors from the NIPS corpus, and four high-probability topics for each author

from the author-topic model. Topics unrelated to technical content (such as topics containing words

such as results, methods, experiments, etc.) were excluded.

can express multiple topics, capturing the topic combinations that arise in text
documents.

Supervised learning techniques for automated categorization of documents
into known classes or topics have received considerable attention in recent
years (e.g., Yang [1999]). However, unsupervised methods are often necessary
for addressing the challenges of modeling large document collections. For many
document collections, neither predefined topics nor labeled documents may be
available. Furthermore, there is considerable motivation to uncover hidden
topic structure in large corpora, particularly in rapidly changing fields such
as computer science and biology, where predefined topic categories may not
reflect dynamically evolving content.

Topic models provide an unsupervised method for extracting an interpretable
representation from a collection of documents. Prior work on automatic extrac-
tion of representations from text has used a number of different approaches.
One general approach, in the context of the general “bag of words” framework, is
to represent high-dimensional term vectors in a lower-dimensional space. Local
regions in the lower-dimensional space can then be associated with specific
topics. For example, the WEBSOM system [Lagus et al. 1999] uses nonlinear
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dimensionality reduction via self-organizing maps to represent term vectors in
a two-dimensional layout. Linear projection techniques, such as latent seman-
tic indexing (LSI), are also widely used (e.g., Berry et al. [1994]). Deerwester
et al. [1990], while not using the term “topics” per se, state:

“In various problems, we have approximated the original term-document ma-
trix using 50–100 orthogonal factors or derived dimensions. Roughly speaking,
these factors may be thought of as artificial concepts; they represent extracted
common meaning components of many different words and documents.”

A well-known drawback of the LSI approach is that the resulting representa-
tion is often hard to interpret. The derived dimensions indicate axes of a space,
but there is no guarantee that such dimensions will make sense to the user
of the method. Another limitation of LSI is that it implicitly assumes a Gaus-
sian (squared-error) noise model for the word-count data, which can lead to
implausible results such as predictions of negative counts.

A different approach to unsupervised topic extraction relies on clustering
documents into groups containing presumably similar semantic content. A
variety of well-known document clustering techniques have been used for this
purpose (e.g., Cutting et al. [1992]; McCallum et al. [2000]; Popescul et al.
[2000]; Dhillon and Modha [2001]). Each cluster of documents can then be
associated with a latent topic as represented for example by the mean term
vector for documents in the cluster. While clustering can provide useful broad
information about topics, clusters are inherently limited by the fact that each
document is typically only associated with one cluster. This is often at odds with
the multi-topic nature of text documents in many contexts—combinations of di-
verse topics within a single document are difficult to represent. For example,
the present article contains at least two significantly different topics: document
modeling and Bayesian estimation. For this reason, other representations that
allow documents to be composed of multiple topics generally provide better
models for sets of documents (e.g., better out of sample predictions, Blei et al.
[2003]).

There are several generative models for document collections that model
individual documents as mixtures of topics. Hofmann [1999] introduced the
aspect model (also referred to as probabilistic LSI, or pLSI) as a probabilistic
alternative to projection and clustering methods. In pLSI, topics are modeled as
multinomial probability distributions over words, and documents are assumed
to be generated by the activation of multiple topics. While the pLSI model
produced impressive results on a number of text document problems such as
information retrieval, the parameterization of the model was susceptible to
overfitting and did not provide a straightforward way to make inferences about
documents not seen in the training data. Blei et al. [2003] addressed these
limitations by proposing a more general Bayesian probabilistic topic model
called latent Dirichlet allocation (LDA). The parameters of the LDA model (the
topic-word and document-topic distributions) are estimated using an approxi-
mate inference technique known as variational EM, since standard estimation
methods are intractable. Griffiths and Steyvers [2004] further showed how
Gibbs sampling, a Markov chain Monte Carlo technique, could be applied to
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the problem of parameter estimation for this model, with relatively large data
sets.

More recent research on topic models in information retrieval has focused
on including additional sources of information to constrain the learned top-
ics. For example, Cohn and Hofmann [2001] proposed an extension of pLSI to
model both the document content as well as citations or hyperlinks between
documents. Similarly, Erosheva et al. [2004] extended the LDA model to model
both text and citations and applied their model to scientific papers from the
Proceedings of the National Academy of Sciences. Other recent work on topic
models focused on incorporating correlations among topics [Blei and Lafferty
2006a; Li and McCallum 2006], incorporating time dependent topics [Blei and
Lafferty 2006b], and incorporating context [Mei and Zhai 2006].

Our aim in this article is to extend probabilistic topic models to include
authorship information. Joint author-topic modeling has received little or no
attention as far as we are aware. The areas of stylometry, authorship attri-
bution, and forensic linguistics focus on the related but different problem of
identifying which author (among a set of possible authors) wrote a particular
piece of text [Holmes 1998]. For example, Mosteller and Wallace [1964] used
Bayesian techniques to infer whether Hamilton or Madison was the more likely
author of disputed Federalist papers. More recent work of a similar nature in-
cludes authorship analysis of a purported poem by Shakespeare [Thisted and
Efron 1987], identifying authors of software [Gray et al. 1997], and the use of
techniques such as neural networks [Kjell 1994] and support vector machines
[Diederich et al. 2003] for author identification.

These author identification methods emphasize the use of distinctive stylistic
features such as sentence length that characterize a specific author. In contrast,
the models we present here focus on extracting the general semantic content of
a document, rather than the stylistic details of how it was written. For example,
in our model we omit common “stop” words since they are generally irrelevant
to the topic of the document—however, the distributions of stop words can be
quite useful in stylometry. While topic information could be usefully combined
with stylistic features for author classification we do not pursue this idea in
this particular article.

Graph-based and network-based models are also frequently used as a ba-
sis for representation and analysis of relations among scientific authors. For
example, McCain [1990], Newman [2001], Mutschke [2003] and Erten et al.
[2003] use a variety of methods from bibliometrics, social networks, and graph
theory to analyze and visualize coauthor and citation relations in the scientific
literature. Kautz et al. [1997] developed the interactive ReferralWeb system for
exploring networks of computer scientists working in artificial intelligence and
information retrieval, and White and Smyth [2003] used PageRank-style rank-
ing algorithms to analyze coauthor graphs. In all of this work only the network
connectivity information is used—the text information from the underlying doc-
uments is not used in modeling. Thus, while the grouping of authors via these
network models can implicitly provide indications of latent topics, there is no
explicit representation of the topics in terms of the content (the words) of the
documents.
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This article is about a novel probabilistic model that represents both authors
and topics. It extends the previous work introduced by the authors in Steyvers
et al. [2004] and Rosen-Zvi et al. [2004], by providing a systematic comparison
of the author-topic model to other existing models, showing how the author-
topic model can be applied as an extension of the LDA model with the use of
fictitious authors and illustrating a number of applications of the model.

The outline of the article is as follows: Section 2 describes the author-topic
model and Section 3 outlines how the parameters of the model (the topic-word
distributions and author-topic distributions) can be learned from training data
consisting of documents with known authors. Section 4 discusses the applica-
tion of the model to three different document collections: papers from the NIPS
conferences, abstracts from the CiteSeer collection, and emails from Enron. The
section includes a general discussion of convergence and stability in learning,
and examples of specific topics and specific author models that are learned by
the algorithm. In Section 5 we describe illustrative applications of the model, in-
cluding detecting unusual papers for selected authors and detecting which parts
of a text were written by different authors. Section 6 compares and contrasts
the proposed author-topic model with a number of related models, including
the LDA model, a simple author model (with no topics), and a model allowing
fictitious authors, and includes experiments quantifying test set perplexity and
precision-recall, for different models. Section 7 contains a brief discussion and
concluding comments.

2. THE AUTHOR-TOPIC (AT) MODEL

In this section we introduce the author-topic model. The author topic model
belongs to a family of generative models for text where words are viewed as
discrete random variables, a document contains a fixed number of words, and
each word takes one value from a predefined vocabulary. We will use integers
to denote the entries in the vocabulary, with each word w taking a value from
1, . . . , W , where W is the number of unique words in the vocabulary. A doc-
ument d is represented as a vector of words, wd , with Nd entries. A corpus
with D documents is represented as a concatenation of the document vectors,
which we will denote w, having N = ∑D

d=1 Nd entries. In addition to these
words, we have information about the authors of each document. We define ad

to be the set of authors of document d . ad consists of elements that are in-
tegers from 1, . . . , A, where A is the number of authors who generated the
documents in the corpus. Ad will be used to denote the number of authors of
document d .

To illustrate this notation, consider a simple example. Say we have D = 3
documents in the corpus, written by A = 2 authors that use a vocabulary with
W = 1000 unique words. The first author (author 1) wrote paper 1, author 2
wrote paper 2, and they coauthored paper 3. According to our notation, a1 = (1),
a2 = (2) and a3 = (1, 2), and A1 = 1, A2 = 1, and A3 = 2. Say the first document
contains a single line, “Language Modeling” has an abundance of interesting
research problems. We can remove stop words such as has, an, and of, to leave a
document with 6 words. If language is the 8th entry in the vocabulary, modeling
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is the 12th, and abundance is the 115th, then w11 = 8, w12 = 12, w13 = 115,
and so on.

The author-topic model is a hierarchical generative model in which each word
w in a document is associated with two latent variables: an author, x and a topic,
z. These latent variables augment the N -dimensional vector w (indicating the
values of all words in the corpus) with two additional N -dimensional vectors z
and x, indicating topic and author assignments for the N words.

For the purposes of estimation, we assume that the set of authors of each
document is observed. This leaves unresolved the issue of having unobserved
authors, and avoids the need to define a prior on authors, which is outside of the
scope of this article. Each author is associated with a multinomial distribution
over topics. Conditioned on the set of authors and their distributions over topics,
the process by which a document is generated can be summarized as follows:
first, an author is chosen uniformly at random for each word that will appear in
the document; next, a topic is sampled for each word from the distribution over
topics associated with the author of that word; finally, the words themselves
are sampled from the distribution over words associated with each topic.

This generative process can be expressed more formally by defining some of
the other variables in the model. Assume we have T topics. We can parameterize
the multinomial distribution over topics for each author using a matrix � of
size T × A, with elements θta that stand for the probability of assigning topic
t to a word generated by author a. Thus

∑T
t=1 θta = 1, and for simplicity of

notation we will drop the index t when convenient and use θa to stand for the
ath column of the matrix. The multinomial distributions over words associated
with each topic are parameterized by a matrix � of size W × T , with elements
φwt that stand for the probability of generating word w from topic t. Again,∑W

w=1 φwt = 1, and φt stands for the tth column of the matrix. These multinomial
distributions are assumed to be generated from symmetric Dirichlet priors with
hyperparameters α and β respectively. In the results in this article we assume
that these hyperparameters are fixed. Table I summarizes this notation.

The sequential procedure of first picking an author followed by picking a
topic, then generating a word according to the probability distributions, leads
to the following generative process:

(1) For each author a = 1, . . . , A choose θa ∼ Dirichlet(α)
For each topic t = 1, . . . , T choose φt ∼ Dirichlet(β)

(2) For each document d = 1, . . . , D
Given the vector of authors ad

For each word i = 1, . . . , Nd

Conditioned on ad choose an author xdi ∼ Uniform(ad )
Conditioned on xdi choose a topic zdi ∼ Discrete(θxdi )
Conditioned on zdi choose a word wdi ∼ Discrete(φzdi )

The graphical model corresponding to this process is shown in Figure 3.
Note that by defining the model we fix the number of possible topics at T . In
circumstances where the number of topics is not determined by the application,
methods such as comparison of Bayes factors (e.g., Griffiths and Steyvers [2004])
or nonparametric Bayesian statistics (e.g., Teh et al. [2005]) can be used to
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Table I. Symbols Associated with the Author-Topic Model, as Used in this Article

Authors of the corpus A Set

Authors of the d th document ad Ad -dimensional vector

Number of authors of the d th document Ad Scalar

Number of words assigned to author and topic CTA T × A matrix

Number of words assigned to topic and word CWT W × T matrix

Set of authors and words in the training data Dtrain Set

Number of authors A Scalar

Number of documents D Scalar

Number of words in the d th document Nd Scalar

Number of words in the corpus N Scalar

Number of topics T Scalar

Vocabulary Size W Scalar

Words in the d th document wd Nd -dimensional vector

Words in the corpus w N -dimensional vector

ith word in the d th document wdi ith component of wd

Author assignments x N -dimensional vector

Author assignment for word wdi xdi ith component of xd

Topic assignments z N -dimensional vector

Topic assignment for word wdi zdi ith component of zd

Dirichlet prior α Scalar

Dirichlet prior β Scalar

Probabilities of words given topics � W × T matrix

Probabilities of words given topic t φt W -dimensional vector

Probabilities of topics given authors � T × A matrix

Probabilities of topics given author a θa T -dimensional vector

Fig. 3. Graphical model for the author-topic model.

infer T from a data set. In this article, we will deal with the case where T is
fixed.

Under this generative process, each topic is drawn independently when con-
ditioned on �, and each word is drawn independently when conditioned on �

and z. The probability of the corpus w, conditioned on � and � (and implicitly
on a fixed number of topics T ), is:

P (w|�, �, A) =
D∏

d=1

P (wd |�, �, ad ). (1)
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We can obtain the probability of the words in each document, wd , by summing
over the latent variables x and z, to give:

P (wd |�, �, A) =
Nd∏
i=1

P (wdi|�, �, ad )

=
Nd∏
i=1

A∑
a=1

T∑
t=1

P (wdi, zdi = t, xdi = a|�, �, ad ))

=
Nd∏
i=1

A∑
a=1

T∑
t=1

P (wdi|zdi = t, �)P (zdi = t|xdi = a, �)P (xdi = a|ad )

=
Nd∏
i=1

1

Ad

∑
a∈ad

T∑
t=1

φwditθta, (2)

where the factorization in the third line makes use of the conditional inde-
pendence assumptions of the model. The last line in the equations expresses
the probability of the words w in terms of the entries of the parameter ma-
trices � and � introduced earlier. The probability distribution over author as-
signments, P (xdi = a|ad ), is assumed to be uniform over the elements of ad ,
and deterministic if Ad = 1. The probability distribution over topic assign-
ments, P (zdi = t|xdi = a, �) is the multinomial distribution θa in � that cor-
responds to author a, and the probability of a word given a topic assignment,
P (wdi|zdi = t, �) is the multinomial distribution φt in � that corresponds to
topic t.

Equations (1) and (2) can be used to compute the probability of a corpus w
conditioned on � and �: the likelihood of a corpus. If � and � are treated as
parameters of the model, this likelihood can be used in maximum-likelihood or
maximum-a-posteriori estimation. Another strategy is to treat � and � as ran-
dom variables, and compute the marginal probability of a corpus by integrating
them out. Under this strategy, the probability of w becomes:

P (w|A, α, β) =
∫

�

∫
�

P (w|A, �, �)p(�, �|α, β)d�d�

=
∫

�

∫
�

[
D∏

d=1

Nd∏
i=1

1

Ad

∑
a∈ad

T∑
t=1

φwditθta

]
p(�, �|α, β)d�d�,

where p(�, �|α, β) = p(�|α)p(�|β) are the Dirichlet priors on � and � defined
earlier.

3. LEARNING THE AUTHOR-TOPIC MODEL FROM DATA

The author-topic model contains two continuous random variables, � and �.
Various approximate inference methods have recently been employed for es-
timating the posterior distribution for continuous random variables in hier-
archical Bayesian models. These approximate inference algorithms range from
variational inference [Blei et al. 2003] and expectation propagation [Minka and
Lafferty 2002] to MCMC schemes [Pritchard et al. 2000; Griffiths and Steyvers
2004; Buntine and Jakulin 2004]. The inference scheme used in this article is
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based upon a Markov chain Monte Carlo (MCMC) algorithm or more specifically,
Gibbs sampling. While MCMC is not necessarily as computationally efficient as
approximation schemes such as variational inference and expectation propaga-
tion, it is unbiased and has been successfully used in several recent large scale
applications of topic models [Buntine and Jakulin 2004; Griffiths and Steyvers
2004].

Our aim is to estimate the posterior distribution, p(�, �|Dtrain, α, β). Sam-
ples from this distribution can be useful in many applications, as illustrated
in Section 4.3. This is also the distribution used for evaluating the predictive
power of the model (e.g., see Section 6.4) and for deriving other quantities, such
as the most surprising paper for an author (Section 5).

Our inference scheme is based upon the observation that:

p(�, �|Dtrain, α, β) =
∑
z,x

p(�, �|z, x, Dtrain, α, β)P (z, x|Dtrain, α, β).

We obtain an approximate posterior on � and � by using a Gibbs sampler
to compute the sum over z and x. This process involves two steps. First, we
obtain an empirical sample-based estimate of P (z, x|Dtrain, α, β) using Gibbs
sampling. Second, for any specific sample corresponding to a particular x and z,
p(�, �|z, x, Dtrain, α, β) can be computed directly by exploiting the fact that the
Dirichlet distribution is conjugate to the multinomial. In the next two sections
we will explain each of these two steps in turn.

3.1 Gibbs Sampling

Gibbs sampling is a form of Markov chain Monte Carlo, in which a Markov
chain is constructed to have a particular stationary distribution (e.g., Gilks
et al. [1996]). In our case, we wish to construct a Markov chain that con-
verges to the posterior distribution over x and z conditioned on Dtrain, α, and
β. Using Gibbs sampling we can generate a sample from the joint distribu-
tion P (z, x|Dtrain, α, β) by (a) sampling an author assignment xdi and a topic
assignment zdi for an individual word wdi, conditioned on fixed assignments of
authors and topics for all other words in the corpus, and (b) repeating this pro-
cess for each word. A single Gibbs sampling iteration consists of sequentially
performing this sampling of author and topic assignments for each individual
word in the corpus.

In Appendix A we show how to derive the following basic equation needed
for the Gibbs sampler:

P (xdi = a, zdi = t|wdi = w, z−di, x−di, w−di, A, α, β) ∝
CWT

wt,−di + β∑
w′ CWT

w′t,−di + Wβ

CTA
ta,−di + α∑

t ′ CTA
t ′a,−di + Tα

, (3)

for a ∈ ad . Here CTA represents the topic-author count matrix, where CTA
ta,−di

is the number of words assigned to topic t for author a excluding the topic
assignment to word wdi. Similarly CWT is the word-topic count matrix, where
CWT

wt,−di is the number of words from the wth entry in the vocabulary assigned to
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topic t excluding the topic assignment to word wdi. Finally, z−di, x−di, w−di stand
for the vector of topic assignments, vector of author assignment, and vector of
word observations in all corpora except for the ith word of the dth document, re-
spectively. The other symbols are summarized in Table I. This equation can be
manipulated further to obtain the conditional probability of the topic of the ith

word given the rest, P (zdi = t|z−di, x, Dtrain, α, β), and for the conditional prob-
ability of the author of the ith word given the rest, P (xdi = a|z, x−di, Dtrain, α, β).
In the results in this article we use a blocked sampler where we sample xdi and
zdi jointly, which improves the mixing time of the sampler (e.g. Roberts and
Sahu [1997])—empirically we also found an improvement in overall run time
compared to sampling xdi and zdi separately.

The algorithm for Gibbs sampling works as follows. We initialize the author
and topic assignments, x and z, randomly. In each Gibbs sampling iteration
we sequentially draw the topic and author assignment of the dith word from
the joint conditional distribution in Equation (3). After a predefined number of
iterations (the so-called burn-in time of the Gibbs sampler) we begin record-
ing samples xs, zs. The burn-in is intended to allow the sampler to approach
its stationary distribution—the posterior distribution P (z, x|Dtrain, α, β). In the
results in this article, for the purpose of displaying particular author-topic and
topic-word distributions we use the last sample in the chain. When we make
predictions we average over the last sample from each of S = 10 indepen-
dent chains. We found that using multiple samples from different chains pro-
vided better predictive performance than using multiple samples from the same
chain. In Section 4.1 we discuss these issues in more detail.

The worst case time complexity of each iteration of the Gibbs sampler is
O(N AmaxT ), where N is the total number of word tokens in the corpus and
Amax is the maximum number of authors that can be associated with a single
document. As the complexity is linear in N , Gibbs sampling can be efficiently
carried out on large data sets.

3.2 The posterior on � and �

Given z, x, Dtrain, α, and β, computing posterior distributions on � and � is
straightforward. Using the fact that the Dirichlet is conjugate to the multino-
mial, we have:

φt |z, Dtrain, β ∼ Dirichlet
(
CWT

·t + β
)

(4)

θa|x, z, Dtrain, α ∼ Dirichlet
(
CTA

·a + α
)
, (5)

where CWT
·t is the vector of counts of the number of times each word has been

assigned to topic t. Evaluating the posterior mean of � and � given x, z, Dtrain,
α, and β is straightforward. From Equations (4) and (5), it follows that:

E[φwt|zs, Dtrain, β] =
(
CWT

wt

)s + β∑
w′

(
CWT

w′t
)s + Wβ

(6)

E[θta|xs, zs, Dtrain, α] =
(
CTA

ta

)s + α∑
t ′

(
CTA

t ′a
)s + Tα

., (7)
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where (CWT)s is the matrix of topic-word counts exhibited in zs, and s refers
to sample s from the Gibbs sampler. These posterior means also provide point
estimates for � and �, and correspond to the posterior predictive distribution
for the next word from a topic and the next topic in a document, respectively.

In many applications, we wish to evaluate the expectation of some function
of � and �, such as the likelihood of a document, P (wd |�, �, ad ), given Dtrain,
α, and β. Denoting such a function f (�, �), we can use these results to define
a general strategy for evaluating such expectations. We wish to compute:

E[ f (�, �)|Dtrain, α, β] = Ex,z

[
E[ f (�, �)|x, z, Dtrain, α, β]

]
(8)

≈ 1

S

S∑
s=1

E[ f (�, �)|xs, zs, Dtrain, α, β], (9)

where S is the number of samples obtained from the Gibbs sampler. In practice,
computing E[ f (�, �)|xs, zs, Dtrain, α, β] may be difficult, as it requires integrat-
ing the function over the posterior Dirichlet distributions. When this is the case,
we use the approximation E[ f (�, �)] ≈ f (E[�], E[�]), where E[�] and E[�]
refer to the posterior means given in Equations (6) and (7). This is exact when
f is linear, and provides a lower bound when f is convex.

Finally, we note that this strategy will only be effective if f (�, �) is invariant
under permutations of the columns of � and �. Like any mixture model, the
author-topic model suffers from a lack of identifiability: the posterior probability
of � and � is unaffected by permuting their columns. Consequently, there need
be no correspondence between the values in a particular column across multiple
samples produced by the Gibbs sampler.

4. EXPERIMENTAL RESULTS

We trained the author-topic model on three large document data sets. The first
is a set of papers from 13 years (1987 to 1999) of the Neural Information Pro-
cessing (NIPS) Conference.1 This data set contains D = 1740 papers, A = 2037
different authors, a total of N = 2, 301, 375 word tokens, and a vocabulary size
of W = 13, 649 unique words. The second corpus consists of a large collection
of extracted abstracts from the CiteSeer digital library [Lawrence et al. 1999],
with D = 150, 045 abstracts with A = 85, 465 authors and N = 10, 810, 003
word tokens, and a vocabulary of W = 30, 799 unique words. The third corpus
is the Enron email data set,2 where we used a set of D = 121, 298 emails, with
A = 11, 195 unique authors, and N = 4, 699, 573 word tokens. We preprocessed
each set of documents by removing stop words from a standard list.

For each data set we ran 10 different Markov chains, where each was started
from a different set of random assignments of authors and topics. Each of the
10 Markov chains was run for a fixed number of 2000 iterations. For the NIPS
data set and a 100-topic solution, 2000 iterations of the Gibbs sampler took 12
hours of wall-clock time on a standard 2.5 GHz PC workstation (22 seconds per

1Available on-line at http://www.cs.toronto.edu/˜roweis/data.html
2Available on-line at http://www-2.cs.cmu.edu/˜enron/
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iteration). For a 300-topic solution, CiteSeer took on the order of 200 hours for
2000 iterations (6 minutes per iteration), and for a 200-topic solution Enron
took 23 hours for 2000 iterations (42 seconds per iteration).

As mentioned earlier, in the experiments described in this article we do not
estimate the hyperparameters α and β—instead they are fixed at 50/T and
0.01 respectively in each of the experiments described in the following.

4.1 Analyzing the Gibbs Sampler using Perplexity

Assessing the convergence of the Markov chain used to sample a set of variables
is a common issue that arises in applying MCMC techniques. This issue can be
divided into two questions: the practical question of when the performance of a
model trained by sampling begins to level out, and the theoretical question of
when the Markov chain actually reaches the posterior distribution. In general,
for real data sets, there is no foolproof method for answering the latter question.
In this article we will focus on the former, using the perplexity of the model
on test documents to evaluate when the performance of the model begins to
stabilize.

The perplexity score of a new unobserved document d that contains words
wd , and is conditioned on the known authors of the document ad , is defined as:

Perplexity(wd |ad , Dtrain) = exp

(
− log p(wd |ad , Dtrain)

Nd

)
, (10)

where p(wd |ad , Dtrain) is the probability assigned by the author-topic model
(trained on Dtrain) to the words wd in the test document, conditioned on
the known authors ad of the test document, and where Nd is the num-
ber of words in the test document. To simplify notation here, we dropped
the explicit dependency on the hyperparameters α, β. For multiple test doc-
uments, we report the average perplexity over documents: 〈Perplexity〉 =∑Dtest

d=1 Perplexity(wd |ad , Dtrain)/Dtest. Here Dtest stands for the set of docu-
ments that were held out for testing and Dtest is the number of the documents
in this testing set. The lower the perplexity the better the performance of the
model.

We can obtain an approximate estimate of perplexity by averaging over mul-
tiple samples, as in Equation 9:

p(wd |ad , Dtrain) ≈ 1

S

S∑
s=1

Nd∏
i=1

[
1

Ad

∑
a∈ad ,t

E[θtaφwdit |xs, zs, Dtrain, α, β]

]
.

In order to ensure that the sampler output covers the entire space, we run
multiple replications of the MCMC—the samples are generated from multiple
chains, each starting at a different state (e.g., Brooks [1998]). Empirical results
with both the CiteSeer and NIPS data sets, using different values for S, indi-
cated that S = 10 samples is a reasonable choice to get a good approximation
of the perplexity.

Figure 4 shows perplexity as a function of the number of iterations of the
Gibbs sampler, for a model with 300 topics fit to the CiteSeer data. Samples
xs, zs obtained from the Gibbs sampler after s iterations (where s is the x-axis in
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Fig. 4. Perplexity as a function of iterations of the Gibbs sampler for a T = 300 model fit to the

CiteSeer dataset. The inset shows the perplexity values (upper curves) from 10 individual chains

during early iterations of the sampler, while the lower curve shows the perplexity obtained by

averaging these 10 chains. The full graph shows the perplexity from averaging again, but now over

a larger range of sampling iterations.

the graph) are used to produce a perplexity score on test documents. Each point
represents the averaged perplexity over Dtest = 7502 CiteSeer test documents.
The inset in Figure 4 shows the perplexity for two different cases. The upper
curves show the perplexity derived from a single sample S = 1 (upper curves),
for 10 different such samples (10 different Gibbs sampler runs). The lower curve
in the inset shows the perplexity obtained from averaging over S = 10 samples.
It is clear from the figure that averaging helps—significantly better predictions
(lower perplexity) are obtained when using multiple samples from the Gibbs
sampler rather than just a single sample.

It also appears from Figure 4 that performance of models trained using the
Gibbs sampler appears to stabilize rather quickly (after about 100 iterations),
at least in terms of perplexity on test documents. While this is far from a formal
diagnostic test of convergence, it is nonetheless reassuring, and when combined
with the results on topic stability and topic interpretation in the next sections,
lends some confidence that the model finds a relatively stable topic-based rep-
resentation of the corpus. Qualitatively similar results were obtained for the
NIPS corpus: averaging provides a significant reduction in perplexity and the
perplexity values flatten out after a 100 or so iterations of the Gibbs sampler.

4.2 Topic Stability

While perplexity computations can and should be averaged over different Gibbs
sampler runs, other applications of the model rely on the interpretations of in-
dividual topics and are based on the analysis of individual samples. Because
of exchangeability of the topics, it is possible that quite different topic solu-
tions are found across samples. In practice, however, we have found that the
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topic solutions are relatively stable across samples, with only a small subset
of unique topics appearing in any sample. We assessed topic stability by a
greedy alignment algorithm that tries to find the best one-to-one topic corre-
spondences across samples. The algorithm calculates all pairwise symmetrized
KL distances between the T topic distributions over words from two different
samples (in this analysis, we ignored the accompanying distributions over au-
thors). It starts by finding the topic pair with lowest symmetrized KL distance
and places those in correspondence, followed in a greedy fashion with the next
best topic pair.

Figure 5 illustrates the alignment results for two 100-topic samples for the
NIPS data set taken at 2000 iterations from different Gibbs sampler runs. The
bottom panel shows the rearranged distance matrix, shows a strong diagonal
structure. Darker colors indicate lower KL distances. The top panel shows the
best and worst aligned pairs of topics across two samples (corresponding to the
top-left and bottom-right pair of topics on the diagonal of the distance matrix).
The best aligned topic-pair has an almost identical probability distribution
over words, whereas the worst aligned topic-pair shows no correspondence at
all. Roughly 80 of 100 topics have a reasonable degree of correspondence that
would be associated with the same subjective interpretation. We obtained sim-
ilar results for the CiteSeer data set.

4.3 Interpreting Author-Topic Model Results

We can use point estimates of the author-topic parameters to look at specific
author-topic and topic-word distributions and related quantities that can be
derived from these parameters (such as the probability of an author given a
randomly selected word from a topic). In the following results, we take a specific
sample xs, zs after 2000 iterations from a single arbitrarily selected Gibbs run,
and then generate point estimates of � and � using Equation (7). Equations
for computing the conditional probabilities in the different tables are provided
in Appendix B.

Complete lists of tables for the 100-topic NIPS model and the 300-topic Cite-
Seer model are available at http://www.datalab.uci.edu/author-topic.

4.3.1 Examples from a NIPS Author-Topic Model. The NIPS conference is
characterized by contributions from a number of different research communi-
ties within both machine learning and neuroscience. Figure 1 illustrates exam-
ples of 8 topics (out of 100) as learned by the model for the NIPS corpus. Each
topic is illustrated with (a) the top 10 words most likely to be generated condi-
tioned on the topic, and (b) the top 10 most likely authors to have generated a
word conditioned on the topic. The first 6 topics we selected for display (left to
right across the top and the first two on the left on the bottom) are quite specific
representations of different topics that have been popular at the NIPS confer-
ence over the time-period 1987–99: visual modeling, handwritten character
recognition, SVMs and kernel methods, source separation methods, Bayesian
estimation, and reinforcement learning. For each topic, the top 10 most likely
authors are well-known in terms of NIPS papers written on these topics (e.g.,
Singh, Barto, and Sutton in reinforcement learning). While most (order of 80 to
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Fig. 5. Topic stability across two different runs on the NIPS corpus: best and worst aligned topics

(top), and KL distance matrix between topics (bottom).

90%) of the 100 topics in the model are similarly specific in terms of semantic
content, the remaining 2 topics we display illustrate some of the other types
of topics discovered by the model. Topic 62 is somewhat generic, covering a
broad set of terms typical to NIPS papers, with a somewhat flatter distribution
over authors compared to other topics. These types of topics tend to be broadly
spread over many documents in the corpus, and can be viewed as syntactic in
the context of NIPS papers. In contrast, the “semantic content topics” (such as
the first 6 topics in Figure 1) are more narrowly concentrated within a smaller
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Fig. 6. Examples of topics and authors learned from the CiteSeer corpus.

set of documents. Topic 16 is somewhat oriented towards Geoff Hinton’s group
at the University of Toronto, containing the words that commonly appeared in
NIPS papers authored by members of that research group, with an author list
consisting largely of Hinton and his students and collaborators.

4.3.2 Examples from a CiteSeer Author-Topic Model. Results from a 300-
topic model for a set of 150,000 CiteSeer abstracts are shown in Figure 6, again
in terms of the top 10 most likely words and the top 10 most likely authors
per topic. The first four topics describe specific areas within computer science,
covering Bayesian learning, data mining, information retrieval, and database
querying. The authors associated with each topic are quite specific to the words
in that topic. For example, the most likely authors for the Bayesian learning
topic are well-known authors who frequently write on this topic at conferences
such as UAI and NIPS. Similarly, for the data mining topic, all of the 10 most
likely authors are frequent contributors of papers at the annual ACM SIGKDD
conference on data mining. The full set of 300 topics discovered by the model
for CiteSeer provide a broad coverage of modern computer science and can be
explored online using the aforementioned browser tool.

Not all documents in CiteSeer relate to computer science. Topic 82, on the
right side of Figure 6, is associated with astronomy. This is due to the fact that
CiteSeer does not crawl the Web looking for computer science papers per se,
but instead searches for documents that are similar in some sense to a general
template format for research papers.

4.4 Examples from an Enron Author-Topic Model

Figure 7 shows a set of topics from a model trained on a set of 120,000 publicly
available Enron emails. We automatically removed all text from the emails
that was not necessarily written by the sender, such as attachments or text
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Fig. 7. Examples of topics learned from the Enron email corpus.

that could be clearly identified as being from an earlier email (e.g., in reply
quotes). The topics learned by the model span both topics that one might expect
to see discussed in emails within a company that deals with energy (topics 23
and 54) as well as topics such as topic 18 that directly relate to the California
energy crisis in 2001–2002. Two of the topics are not directly related to official
Enron business, but instead describe employees’ personal interests such as
Texas sports (182) and Christianity (113).

Figure 8 shows a table with the most likely topics for 6 of the 11,195 possible
authors (email accounts). The first three are institutional accounts: Enron Gen-
eral Announcements, Outlook Migration Team (presumably an internal email
account at Enron for announcements related to the Outlook email program),
and The Motley Fool (a company that provides financial education and advice).
The topics associated with these authors are quite intuitive. The most likely
topic (p = 0.942) for Enron General Announcements is a topic with words that
might typically be associated with general corporate information for Enron
employees. The topic distribution for the Outlook Migration Team is skewed to-
wards a single topic (p = 0.991) containing words that are quite specific to the
Outlook email program. Likely topics for the Motley Fool include both finance
and investing topics, as well as topics with HTML-related words and a topic for
dates. The other 3 authors shown in Figure 8 correspond to email accounts for
specific individuals in Enron—although the original data identifies individual
names for these accounts we do not show them here to respect the privacy of
these individuals. Author A’s topics are typical of what we might expect of a
senior employee in Enron, with topics related to rates and customers, to the
FERC (Federal Energy Regulatory Commission), and to the California energy
crisis (including mention of the California governor at the time, Gray Davis).
Author B’s topics are focused more on day-to-day Enron operations (pipelines,
contracts, and facilities) with an additional topic for more personal matters
(“good, time”, etc). Finally, Author C appears to be involved in legal aspects
of Enron’s international activities, particularly in Central and South America.
The diversity of the topic distributions for different authors in this example
demonstrates clearly how the author-topic model can learn about the roles and
interests of different individuals from text that they have written.
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Fig. 8. Selected “authors” from the Enron data set, and the four highest probability topics for each

author from the author-topic model.

5. ILLUSTRATIVE APPLICATIONS OF THE AUTHOR-TOPIC MODEL

In this section we provide some illustrative examples of how the author-topic
model can be used to answer different types of questions and prediction prob-
lems concerning authors and documents.

5.1 Automated Detection of Unusual Papers by Authors

We illustrate in this section how our model could be useful for detecting papers
that were written by different people with the same name. In digital libraries
such as CiteSeer and Google Scholar, this type of name disambiguation is an
important and difficult problem. Our goal in this section is not to propose a
solution to the author disambiguation problem, but instead to illustrate that
author-topic models lead to useful predictions in this context.

ACM Transactions on Information Systems, Vol. 28, No. 1, Article 4, Publication date: January 2010.



Learning Author-Topic Models from Text Corpora • 4:21

Perplexity can be used to estimate the likelihood of a particular document
conditioned on a particular author. We first train a model on Dtrain. For a specific
author name a∗ of interest, we then score each document by that author as
follows. We calculate a perplexity score for each document in Dtrain as if a∗ was
the only author, that is, even for a document with other authors, we condition
on only a∗.

We use the same equation for perplexity as defined in Section 4.2 except
that now wd is a document that is in the training data Dtrain. Thus, the
words in a document are not conditionally independent, given the distribu-
tion over the model parameters � and �, as inferred from the training doc-
uments. We use as a tractable approximation, P (wd |a∗, Dtrain) ≈ 1

S

∑
s
∏

i
∑

t
E[θ̂a∗t φ̂twdi |xs, zs, Dtrain, α, β].

For our CiteSeer corpus, author names are provided with a first initial and
second name, for example, A Einstein. This means of course that for some very
common names (e.g., J Wang or J Smith) there will be multiple actual individ-
uals represented by a single name in the model. This noise in the data provides
an opportunity to investigate whether perplexity scores are able to help in sep-
arating documents from different authors who have the same first initial and
last name.

We focused on names of four well-known researchers in the area of artifi-
cial intelligence, Michael Jordan (M Jordan), Daphne Koller (D Koller), Tom
Mitchell (T Mitchell) and Stuart Russell (S Russell), and derived perplexity
scores in the manner described above using S = 10 samples. In Table II, for
each author, we list the two CiteSeer abstracts with the highest perplexity
scores (most surprising relative to this author’s model), the median perplexity,
and the two abstracts with the lowest perplexity scores (least surprising).

In these examples, the most perplexing papers (from the model’s viewpoint)
for each author are papers that were written by a different person than the
person we are primarily interested in. In each case (for example for M Jordan)
most of the papers in the data set for this author were written by the machine
learning researcher of interest (in this case, Michael Jordan of UC Berkeley).
Thus, the model is primarily tuned to the interests of that author and assigns
relatively high perplexity scores to the small number of papers in the set that
were written by a different author with the same name. For M Jordan, the
most perplexing paper is on programming languages and was in fact written
by Mick Jordan of Sun Microsystems. In fact, of the 6 most perplexing pa-
pers for M Jordan, 4 are on software management and the JAVA programming
language, all written by Mick Jordan. The other two papers were in fact co-
authored by Michael Jordan of UC Berkeley, but in the area of link analysis,
which is an unusual topic relative to the many of machine learning-oriented
topics that he has typically written about in the past.

The highest perplexity paper for T Mitchell is in fact authored by Toby
Mitchell and is on the topic of estimating radiation doses (quite different from
the machine learning work of Tom Mitchell). The paper with the second high-
est perplexity for Tom Mitchell is about an application of the EM algorithm.
This EM paper is not nearly so much of an outlier as compared to the paper
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Table II. Papers Ranked by Perplexity for Different Authors

Paper Titles for M Jordan, from 57 documents Perplexity

An Orthogonally Persistent Java 16021

Defining and Handling Transient Fields in PJama 14555

MEDIAN SCORE 2567

Learning From Incomplete Data 702

Factorial Hidden Markov Models 687

Paper Titles for D Koller, from 74 documents Perplexity

A Group and Session Management System for Distributed

Multimedia Applications 9057

An Integrated Global GIS and Visual Simulation System 7879

MEDIAN SCORE 1854

Active Learning for Parameter Estimation in Bayesian Networks 756

Adaptive Probabilistic Networks with Hidden Variables 755

Paper Titles for T Mitchell, from 13 documents Perplexity

A method for estimating occupational radiation dose 8814

to individuals, using weekly dosimetry data

Text classification from labeled and unlabeled documents using EM 3802

MEDIAN SCORE 2837

Learning to Extract Symbolic Knowledge from the World Wide Web 1196

Explanation based learning for mobile robot perception 1093

Paper Titles for S Russell, from 36 documents Perplexity

Protection Domain Extensions in Mungi 10483

The Mungi Single-Address-Space Operating System 5203

MEDIAN SCORE 2837

Approximating Optimal Policies for Partially 981

Observable Stochastic Domains

Adaptive Probabilistic Networks with Hidden Variables 799

on estimating radiation doses since it is relatively close to the median perplex-
ity. It is reasonable that it has the highest perplexity of any papers that Tom
Mitchell actually authored, given that most of his other work (prior to 2000 in
particular, which is the period for which most of our CiteSeer papers are from)
was focused on knowledge-based learning (such as the the two papers in the
set with the lowest perplexity).

The two most perplexing papers for D Koller are also not authored by Daphne
Koller of Stanford, but by two different researchers, Daniel Koller and David
Koller. Moreover, the two most typical (lowest perplexity) papers of D Koller
are prototypical representatives of the research of Daphne Koller, with words
such as learning, Bayesian and probabilistic network appearing in the titles
of these two papers. For S Russell the two most unlikely papers are about the
Mungi operating system and have Stephen Russell as an author. These papers
are relative outliers in terms of their perplexity scores since most of the papers
for S Russell are about reasoning and learning and were written by Stuart
Russell from UC Berkeley.
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Fig. 9. Automated labeling by the model of a pseudo-abstract from two authors.

5.2 Topics and Authors for New Documents

In many applications, we would like to quickly assess the topic and author
assignments for new documents not contained in a text collection. Figure 9
shows an example of this type of inference. CiteSeer abstracts from two authors,
B Scholkopf and A Darwiche were combined into a single pseudo-abstract and
the document was treated as if they had both written it. These two authors work
in relatively different but not entirely unrelated sub-areas of computer science:
Scholkopf in machine learning and Darwiche in probabilistic reasoning. The
document is then parsed by the model—words are assigned to these authors. We
would hope that the author-topic model, conditioned now on these two authors,
can separate the combined abstract into its component parts.

Instead of rerunning the algorithm for every new document added to a text
collection, our strategy is to instead apply an efficient Monte Carlo algorithm
that runs only on the word tokens in the new document, leading quickly to
likely assignments of words to authors and topics. We start by assigning words
randomly to coauthors and topics. We then sample new assignments of words
to topics and authors by applying the Gibbs sampler only to the word tokens in
the new document, each time temporarily updating the count matrices CWT and
CAT . The resulting assignments of words to authors and topics can be saved
after a few iterations (10 iterations in our simulations).

Figure 9 shows the results after the model has classified each word according
to the most likely author. Note that the model only sees a bag of words and is
not aware of the word order that we see in the figure. For readers viewing this
in color, the more red a word is, the more likely it is to have been generated
(according to the model) by Scholkopf (and blue for Darwiche). Non-colored
words are words that are not in the vocabulary of the model. For readers viewing
the figure in black and white, the superscript 1 indicates words classified by the
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model for Scholkopf, and superscript 2 for Darwiche (a superscript was added
whenever the probability of one author or the other was above 0.75).

The results show that all of the significant content words (such as kernel,
support, vector, diagnoses, directed, graph) are classified correctly. As we might
expect most of the errors are words (such as “based” or “criterion”) that are not
specific to either authors’ area of research. Were we to use word order in the
classification, and classify (for example) whole sentences, the accuracy would
increase further. As it is, the model correctly classifies 69% of Scholkopf ’s words
and 72% of Darwiche’s.

6. COMPARING DIFFERENT GENERATIVE MODELS

In this section we describe several alternative generative models that model au-
thors and words and discuss similarities and differences between these models
with our proposed author-topic model. Many of these models are special cases
of the author-topic model. Appendix C presents a characterization of several of
these models in terms of methods of matrix factorization, which reveals some of
these relationships. In this section, we also compare the predictive power of the
author-topic model (in terms of perplexity on out-of-sample documents) with a
number of these alternative models.

6.1 A Standard Topic (LDA) Model

As mentioned earlier in the article, there have been a number of other earlier
approaches to modeling document content based on the idea that the proba-
bility distribution over words in a document can be expressed as a mixture
of topics, where each topic is a probability distribution over words [Blei et al.
2003; Hofmann 1999; Ueda and Saito 2003; Iyer and Ostendorf 1999]. Here
we will focus on one such model—Latent Dirichlet Allocation (LDA; Blei et al.
[2003]).3 In LDA, the generation of a corpus is a three step process. First, for
each document, a distribution over topics is sampled from a Dirichlet distribu-
tion. Second, for each word in the document, a single topic is chosen according to
this distribution. Finally, each word is sampled from a multinomial distribution
over words specific to the sampled topic.

The parameters of this model are similar to those of the author topic model:
� represents a distribution over words for each topic, and � represents a dis-
tribution over topics for each document. Using this notation, the generative
process can be written as:

(1) for each document d = 1, . . . , D choose θd ∼ Dirichlet(α),
for each topic t = 1, . . . , T choose φt ∼ Dirichlet(β);

(2) for each document d = 1, . . . , D,
for each word wdi, indexed by i = 1, ..Nd :

conditioned on d choose a topic zdi ∼ Discrete(θd ),
conditioned on zdi choose a word wdi ∼ Discrete(φzdi ).

3The model we describe is actually the smoothed LDA model with symmetric Dirichlet priors [Blei

et al. 2003] as this is closest to the author-topic model.
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Fig. 10. Different generative models for documents.

A graphical model corresponding to this process is shown in Figure 10(a).
Latent Dirichlet Allocation is a special case of the author-topic model, cor-

responding to the situation in which each document has a unique author. Es-
timating � and � provides information about the topics that participate in a
corpus and the weights of those topics in each document respectively. However,
this topic model provides no explicit information about the interests of authors:
while it is informative about the content of documents, authors may produce
several documents—often with coauthors—and it is consequently unclear how
the topics used in these documents might be used to describe the interests of
the authors.

6.2 A Simple Author Model

Topic models illustrate how documents can be modeled as mixtures of proba-
bility distributions. This suggests a simple method for modeling the interests
of authors, namely where words in documents are modeled directly by author-
word distributions without any hidden latent topic variable, as originally pro-
posed by McCallum [1999]. Assume that a group of authors, ad , decides to write
the document d . For each word in the document an author is chosen uniformly
at random, and a word is chosen from a probability distribution over words that
are specific to that author.

In this model, � denotes the probability distribution over words associated
with each author. The generative process is as follows:

(1) for each author a = 1, . . . , A choose φa ∼ Dirichlet(α);
(2) for each document d = 1, . . . , D,

given the set of authors ad ,
for each word wdi, indexed by i = 1, ..Nd :

conditioned on ad choose an author xdi ∼ Uniform(ad ),
conditioned on xdi choose a word wdi ∼ Discrete(φxdi ).

A graphical model corresponding to this generative process is shown in
Figure 10(b).

This model is also a special case of the author-topic model, corresponding to
a situation in which there is a unique topic for each author. When there is a sin-
gle author per document, it is equivalent to a naive Bayes model. Estimating �
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provides information about the interests of authors, and can be used to answer
queries about author similarity and authors who write on subjects similar to
an observed document. However, this author model does not provide any infor-
mation about document content that goes beyond the words that appear in the
document and the identities of authors of the document.

6.3 An Author-Topic Model with Fictitious Authors

A potential weakness of the author-topic model is that it does not allow for any
idiosyncratic aspects of a document. The document is assumed to be generated
by a mixture of the authors’ topic distributions and nothing else. The LDA model
is in a sense at the other end of this spectrum—it allows each document to have
its own document-specific topic mixture. In this context it is natural to explore
models that lie between these two extremes. One such model can be obtained by
adding an additional unique “fictitious” author to each document. This fictitious
author can account for topics and words that appear to be document-specific
and not accounted for by the authors. The fictitious author mechanism in effect
provides the advantage of an LDA element to the author-topic model. In terms of
the algorithm, the only difference between the standard author-topic algorithm
and the one that contains fictitious authors is that the number of authors is
increased from A to A + D, and the number of authors per document Ad is
increased by 1—the time complexity of the algorithm increases accordingly. One
also has the option of putting a uniform distribution over authors (including the
fictitious author) or allowing a non-uniform distribution over both true authors
and the fictitious author.

6.4 Comparing Perplexity for Different Models

We compare the predictive power, using perplexity, of the models discussed in
this section on the NIPS document set. We divided the D = 1740 NIPS papers
into a training set of 1557 papers and a test set of 183 papers of which 102
are single-authored papers. We chose the test data documents such that each
author of a test set document also appears in the training set as an author. For
each model, we generated S = 10 chains from the Gibbs sampler, each starting
from a different initial conditions. We kept the 2000th sample from each chain
and estimated the average perplexity using Equation (10). For all models we
fixed the number of topics at T = 100 and used the same training set, Dtrain, and
test set. The hyperparameter values were set in the same manner as in earlier
experiments: in the LDA model and the author-topic model α = 50/T = 0.5
and β = 0.01. The single hyperparameter of the author model was set to 0.01.

In Figure 11 we present the average perplexity as a function of the number
of observed words from the test documents. All models were trained on the
training data and then a number of randomly selected words from the test doc-
uments (indicated on the x-axis) were used for further training and perplexity
calculated on the remaining words. In order to reduce the time complexity of
the algorithm we approximated the posterior distributions by making use of
the same Monte-Carlo chains for all derivations, where for each point in the
graph the chain is trained further only on the observed test words. In the graph
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Fig. 11. Averaged perplexity as a function of observed words in the test documents. The main plot

shows results for the topic (LDA) model, the author-topic (AT) model, and the author-topic model

with fictitious authors. The inset shows results for the author model and author-topic model.

we present results for the author-topic model, the topic (LDA) model, and the
author-topic (AT) model with fictitious authors. The inset shows the author
model and the author-topic model.

The author model (inset) has by far the worst performance—including latent
topics significantly improves the predictive log-likelihood of such a model (lower
curve in the inset). In the main plot, for relatively small numbers of observed
words (up to 16), the author-topic models (with and without fictitious authors)
have lower perplexity than the LDA model. The LDA model learns a topic
mixture for each document in the training data. Thus, on a new document with
zero or even just a few observed words, it is difficult for the LDA model to
provide predictions that are tuned to that document. In contrast, the author-
topic model performs better than LDA with few (or even zero) words observed
from a document, by making use of the available side-information about the
authors of the document.

Once enough words from a specific document have been observed, the predic-
tive performance of the LDA model improves since it can learn a more accurate
predictive model for that specific document. Above 16 observed words, on aver-
age, the author-topic model is not as accurate as the LDA model since it does
not have a document-specific topic mixture that can be tuned to the specific
word distribution of the test document. Adding one unique fictitious author
per document results in a curve that is systematically better than the author
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topic model without a fictitious author. The fictitious author model is not quite
as accurate on average as the LDA (topic) model after 64 words or so. This is
intuitively to be expected: the presence of a fictitious author gives this model
more modeling flexibility compared to the author-topic model, but it is still more
constrained than the LDA model for a specific document.

6.5 Comparing Information Retrieval Measures of the Author-Topic and
Standard Topic Models

In this section, we describe an illustrative experiment to retrieve full text doc-
uments using document titles and author names. We compare the performance
of the author-topic model with a standard topic (LDA) model (from Section 6.1)
and a state-of-the-art TFIDF approach. Finding documents similar to a query
document is a well-known problem in information retrieval. While there are a
variety of approaches to finding similar documents when the full text of a query
document is available, the problem is more challenging when only partial infor-
mation about the query document is available (e.g. the title of the document or
the list of authors). For example, there are many documents listed in the Cite-
Seer data base for which only the titles and authors are available. Similarly,
many older conferences only have titles and authors online, not full papers.

On this problem, we use the extended NIPS conference corpus (years 1987–
2003).4 This data set contains D = 2483 documents, A = 2865 authors, and
W = 16,901 unique words. For each document, we include its set of authors as
additional words so that LDA and TFIDF have the same information as the
author-topic model. Class labels are available for documents from 2001 to 2003
and there are 593 such documents in the corpus. There are 13 classes in this
corpus corresponding to NIPS paper categories such as AA (Algorithms and
Architectures) and N S (Neuroscience). Each labeled document is associated
with one of these classes. We obtained the titles of these documents from the
NIPS Conference Proceedings website.5 We divided this data set into query and
retrieval sets with 200 and 2283 documents respectively. The query set was
created by randomly selecting documents from the set of documents with class
labels such that for each query document at least one of its authors is present
in the retrieval set. A query consists of words from the title of a document and
its associated authors. Documents from the retrieval set with the same class
label as the query document are judged to be relevant to the query document.
We ran S = 10 different Markov chains for the author-topic model and the LDA
model (each with T = 100) on the retrieval set, using the same parameters as
described in Section 4.

For TFIDF, we use the Okapi BM25 method [Sparck Jones et al. 2000] where,
given a query q, the score of a document d is given by

BM25-Score(d, q) =
∑
w∈q

IDF(w)
X (w, d)(k1 + 1)

X (w, d) + k1

(
1 − b + b Nd

μN

) ,

4Available on-line at http://ai.stanford.edu/˜gal/data.html
5http://books.nips.cc/
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where

IDF(w) = log
D − Dw + 0.5

Dw + 0.5
,

X (w, d) is the frequency of the query-word w in document d, Nd is the number
of words in document d, μN is the mean value of Nd across documents in the
corpus, D is the total number of documents in the corpus, Dw is the number of
documents in the corpus containing the word w, and k1 and b are free param-
eters. We set k1 = 2 and b = 0.75 which is a popular setting for Okapi BM25
[Robertson et al. 1995].

In the language modeling approach to information retrieval (e.g., Ponte and
Croft [1998]), queries can be matched to documents using the query likelihood
model, where the similarity of a query q to a document d is measured by the
probability of the words in the query q conditioned on the document d, P(q|d).
For the author-topic model, we have:

P (q|d) =
∏
w∈q

[
1

Ad

∑
a∈ad

T∑
t=1

P (w|t) P (t|a)

]

≈ 1

S

S∑
s=1

∏
w∈q

[
1

Ad

∑
a∈ad

T∑
t=1

E[φwt|zs, D, β] E[θta|xs, zs, D, α]

]
, (11)

where the expected values of φwt and θta are estimated using Equations (6) and
(7) respectively. Similarly, for LDA we have:

P (q|d) =
∏
w∈q

[
T∑

t=1

P (w|t) P (t|d )

]
,

which can be computed approximately using the LDA model parameters
learned from Gibbs sampling (analogous to the approximation in Equation (11)).
Note that the AT model (Equation (11)) is conditioning on the set of authors ad

of the candidate retrieval document d, whereas LDA and TFIDF treat authors
as just additional words. This allows the AT model to have a relatively wider
distribution of probability mass in the topic distribution for a document (as it
can borrow topical information from multiple documents via the authors). In
other words, a document has a more peaked topic distribution in LDA than in
the AT model. So, when there is less information in a query (as in this experi-
ment where a query is restricted to the words in the title and the set of authors),
the AT model should have a better chance of matching to the query-word topics.

Figure 12 (top) indicates that given just the titles and authors of query doc-
uments, the AT model is more accurate at retrieving documents than both the
LDA model and TFIDF. When the full text of query documents is available
(Figure 12, bottom) all the approaches improve in their accuracy and the per-
formance of LDA is now marginally better than that of the AT model and TFIDF.
This is consistent with what we know about the LDA and AT models: the LDA
model has more flexibility in modeling a document once it sees enough words
(after the crossover point of 16 to 32 words in Figure 11). In these experiments
TFIDF is used as a simple baseline. In a practical setting one can likely get

ACM Transactions on Information Systems, Vol. 28, No. 1, Article 4, Publication date: January 2010.



4:30 • M. Rosen-Zvi et al.

0 0.2 0.4 0.6 0.8 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Recall

P
re

ci
si

o
n

AT
LDA
TFIDF

0 0.2 0.4 0.6 0.8 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

o
n

AT
LDA
TFIDF

Fig. 12. Precision-recall curves for the NIPS corpus with two different query types: top where

queries are document titles+authors, and bottom where queries are full text of documents+authors.

better precision-recall characteristics than any of the approaches shown here
by combining a word-level retrieval approach (like TFIDF or a multinomial-
based document model) with latent semantic matching approaches (like LSA,
LDA, and AT models) [Wei and Croft 2006; Chemudugunta et al. 2007].

7. CONCLUSIONS

The author-topic model proposed in this article provides a relatively simple
probabilistic model for exploring the relationships between authors, documents,
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topics, and words. This model provides significantly improved predictive power
in terms of perplexity compared to a more impoverished author model, where
the interests of authors are directly modeled with probability distributions over
words. When compared to the LDA topic model, the author-topic model was
shown to have more focused priors when relatively little is known about a new
document, but the LDA model can better adapt its distribution over topics to
the content of individual documents as more words are observed. The primary
benefit of the author-topic model is that it allows us to explicitly include authors
in document models, providing a general framework for answering queries and
making predictions at the level of authors as well as the level of documents.

We presented results of applying the author-topic model to large text corpora,
including NIPS proceedings papers, CiteSeer abstracts, and Enron emails. Po-
tential applications include automatic reviewer recommender systems where
potential reviewers or reviewer panels are matched to papers based on the
words expressed in a paper as well the names of the authors. The author topic
model could be incorporated in author identification systems to infer the iden-
tity of an author of a document not only on the basis of stylistic features, but
also using the topics expressed in a document.

The underlying probabilistic model of the author-topic model is quite simple
and ignores several aspects of real-word document generation that could be
explored with more advanced generative models. For example, as with many
statistical models of language, the generative process does not make any as-
sumption about the order of words as they appear in documents. Recent work,
for example, Griffiths et al. [2005] and Gruber et al. [2007] present extensions of
the LDA model by relaxing the bag-of-words assumption and modeling the word
sequence by hidden Markov models. In Griffiths et al. [2005], an extension of
the LDA model is presented in which words are factorized into function words,
handled by a hidden Markov model (HMM) and content words handled by a
topic model. Because these models automatically parse documents into content
and non-content words, there is no need for a preprocessing stage where non-
content words are filtered out using a predefined stop-word list. In Gruber et al.
[2007] the natural flow of topics is learned by modeling Markov dependencies
between the hidden topics. These HMM extensions could also be incorporated
into the author-topic model to highlight parts of documents where content is
expressed by particular authors.

Beyond the authors of a document, there are several other sources of informa-
tion that can provide opportunities to learn about the set of topics expressed in
a document. For example, for email documents, McCallum et al. [2005] propose
an extension of the author topic model where topics are conditioned on both
the sender as well as the receiver. For scientific documents, we have explored
simple extensions within the author-topic modeling framework to generalize
the notion of an author to include any information source that might constrain
the set of topics. For example, one can redefine ad to include not only the set
of authors for a document but also the set of citations. In this manner, words
and topics expressed in a document can be associated with either an author or
a citation. These extensions are attractive because they do not require changes
to the generative model. The set of topics could also be conditioned on other
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information about the documents (beyond authors and citations), such as the
journal source, the publication year, and the institutional affiliation of the au-
thors. An interesting direction for future work is to develop efficient generative
models where the distribution over topics is conditioned jointly on all such
sources of information.

APPENDIXES

APPENDIX A: DERIVING THE SAMPLING EQUATIONS FOR THE
AUTHOR-TOPIC MODEL

In this section, we describe the derivation of the sampling equation,
Equation (3), used to generate samples for the author-topic model. In the
author-topic model, the joint distribution of the set of word tokens in the cor-
pus w, the set of topic assignments z, the set of author assignments x, the
set of author mixtures �, and the set of topic mixtures �, given the Dirichlet
hyperparameters α and β, and the author set A, can be simplified as follows:

P (w, z, x, �, �|α, β, A) = P (w, z, x|�, �, A)P (�, �|β, α)

= P (w|z, �)P (z|x, �)P (x|A)P (�|β)P (�|α)

=
[

N∏
i=1

P (wdi|φzdi )

] [
N∏

i=1

P (zdi|θxdi )

] [
D∏

d=1

Nd∏
i=1

P (xdi|ad )

]

P (�|β)P (�|α)

=
[

N∏
i=1

φwdizdi

] [
N∏

i=1

θzdixdi

] [
D∏

d=1

Nd∏
i=1

1

Ad

]
P (�|β)P (�|α)

=
[

T∏
t=1

W∏
w=1

φ
CWT

wt
wt

] [
A∏

a=1

T∏
t=1

θ
CTA

ta
ta

] [
D∏

d=1

(
1

Ad

)Nd
]

[
T∏

t=1

(
�(Wβ)

�(β)W

W∏
w=1

φ
β−1
wt

)] [
A∏

a=1

(
�(Tα)

�(α)T

T∏
t=1

θα−1
ta

)]

=
[
�(Wβ)

�(β)W

]T [
�(Tα)

�(α)T

]A
[

D∏
d=1

1

Ad
Nd

]
[

T∏
t=1

W∏
w=1

φ
CWT

wt +β−1

wt

] [
A∏

a=1

T∏
t=1

θ
CTA

ta +α−1

ta

]

= Const

[
T∏

t=1

W∏
w=1

φ
CWT

wt +β−1

wt

] [
A∏

a=1

T∏
t=1

θ
CTA

ta +α−1

ta

]
, (12)

where Const = [�(Wβ)
�(β)W ]T [�(Tα)

�(α)T ]A[
∏D

d=1
1

Ad
Nd

], CWT
wt is the number of times the wth

word in the vocabulary is assigned to topic t, CTA
ta is the number of times topic

t is assigned to author a, Nd is the number of words in document d , and N
is the number of words in the corpus. As a first step in deriving the Gibbs
sampling equation for the author-topic model, we integrate out the random
variables � and � from Equation (12), making use of the fact that the Dirichlet
distribution is a conjugate prior of multinomial distribution. In this manner
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we can interpret the terms involving � and � in Equation (12) as Dirichlet
distributions, as they have the same functional form. The resulting Dirichlet
integrals are well-known (e.g., see Box and Tiao [1973]), and are of the form∫ ∏M

m=1[xkm−1
m d xm] =

∏M
m=1 �(km)∑M

m=1 km
, with the integral over a simplex. Applying this

to Equation (12), we have:

P (w, z, x|α, β, A) = Const

∫
�

∫
�

[
T∏

t=1

W∏
w=1

φ
CWT

wt +β−1

wt

] [
A∏

a=1

T∏
t=1

θ
CTA

ta +α−1

ta

]
d�d�

= Const

[
A∏

a=1

∫
θ:a

T∏
t=1

θ
CTA

ta +α−1

ta dθ:a

] [
T∏

t=1

∫
φ:t

W∏
w=1

φ
CWT

wt +β−1

wt dφ:t

]

= Const

[
A∏

a=1

∏T
t=1 �(CTA

ta + α)

�(
∑

t ′ CTA
t ′a + Tα)

] [
T∏

t=1

∏W
w=1 �(CWT

wt + β)

�(
∑

w′ CWT
w′t + Wβ)

]
.

(13)

To obtain the Gibbs sampling equation, we need to obtain an expression for
P (xdi = a, zdi = t|wdi = w, z−di, x−di, w−di, A, α, β). From Bayes’ theorem, we
have

P (xdi = a, zdi = t|wdi = w, z−di, x−di, w−di, A, α, β) ∝ P (w, z, x|α, β, A)

P (w−di, z−di, x−di|α, β, A)
,

(14)
where yi stands for all components of the vector y excluding the ith component.
Setting w, z, x to w−di, z−di, x−di respectively in Equation (12), we get:

P (w−di, z−di, x−di, �, �|α, β, A) =

Ad Const

[
T∏

t=1

W∏
w=1

φ
CWT

wt,−di+β−1

wt

] [
A∏

a=1

T∏
t=1

θ
CTA

ta,−di+α−1

ta

]
,

where Ad is the number of authors of the document d . Integrating over � and
� in this equation, in a manner analogous to that for Equation (13), we get:

P (w−di, z−di, x−di|α, β, A) = Ad Const

[
T∏

t=1

∏W
w=1 �(CWT

wt,−di + β)

�(
∑

w′ CWT
w′t,−di + Wβ)

]
[

A∏
a=1

∏T
t=1 �(CTA

ta,−di + α)

�(
∑

t ′ CTA
t ′a,−di + Tα)

]
. (15)

Using the results from Equations (14), (13), and (15); and the identity
�(k + 1) = k�(k); we obtain the following Gibbs sampling equation for the
author-topic model (Equation (3)):

P (xdi = a, zdi = t|wdi = w, z−di, x−di, w−di, A, α, β) ∝
CWT

wt,−di + β∑
w′ CWT

w′t,−di + Wβ

CTA
ta,−di + α∑

t ′ CTA
t ′a,−di + Tα

.
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APPENDIX B: COMPUTING PROBABILITIES FROM A SINGLE SAMPLE

In Figures 1, 2, 6, and 7 we presented examples of topics, with predictive dis-
tributions for words and authors given a particular topic assignment. In this
appendix we provide the details on how to compute these predictive distribu-
tions for a particular sample.

The probability that a new word, in a particular sample s, would be wN+1 =
w, given that it is generated from topic zN+1 = t, is given by:

P (wN+1 = w|zN+1 = t) = (CWT
wt )s + β∑

w′ (CWT
w′t )s + Wβ

. (16)

Similarly, the probability that a novel word generated by the author xN+1 = a
would be assigned to topic zN+1 = t is obtained by:

P (zN+1 = t|xN+1 = a) = (CTA
ta )s + α∑

t ′ (CTA
t ′a )s + Tα

. (17)

(For simplicity of notation we omitted terms that are implicitly conditioned on
in the probabilities in this section, such as xs, zs, Dtrain, α β and T ). We can
also compute the probability that a novel word is authored by author xN+1 = a
given that it is assigned to topic zN+1 = t, and given a sample from the posterior
distribution, xs ,zs. The novel word is part of a new unobserved document that
contains a single word and is authored by all authors in the corpus. One can
first calculate the joint probability of the author assignment as well as the topic
assignment,

P (zN+1 = t, xN+1 = a) = P (zN+1 = t|xN+1 = a) P (xN+1 = a) =
1

A
(CTA

ta )s + α∑
t ′ (CTA

t ′a )s + Tα
,

and using Bayes’ rule one obtains:

P (xN+1 = a|zN+1 = t) =
(CTA

ta )s+α∑
t′ (C

TA
t′a )s+Tα∑

a′
(CTA

ta′ )s+α∑
t′ (C

TA
t′a′ )s+Tα

. (18)

APPENDIX C: INTERPRETING MODELS AS MATRIX FACTORIZATION

The relationships among the models discussed in Section 6 can be illustrated
by interpreting each model as a form of matrix factorization (c.f. Lee and Seung
[1999] and Canny [2004]). Each model specifies a different scheme for obtain-
ing a probability distribution over words for each document in a corpus. These
distributions can be assembled into a W × D matrix P, where pwd is the proba-
bility of word w in document d . In all three models, P is a product of matrices.
As shown in Figure 13, the models differ only in which matrices are used.

In the author-topic model, P is the product of three matrices: the W × T
matrix of distributions over words �, the T × A matrix of distributions over
topics �, and an A × D matrix A, as shown in Figure 13 (a). The matrix A
expresses the uniform distribution over authors for each document, with aad
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Fig. 13. Matrix factorization interpretation of different models. (a) The author-topic model (b) A

standard topic model. (c) A simple author model.

taking value 1
Ad

if a ∈ ad and zero otherwise. The other models each collapse

together one pair of matrices in this product. In the topic model, � and A are
collapsed together into a single T × D matrix �, as shown in Figure 13 (b). In
the author model, � and � are collapsed together into a single W × A matrix
�, as shown in Figure 13 (c).

Under this view of the different models, parameter estimation can be con-
strued as matrix factorization. As Hofmann [1999] pointed out for the topic
model, finding the maximum-likelihood estimates for � and � is equivalent
to minimizing the Kullback-Leibler divergence between P and the empirical
distribution over words in each document. The three different models thus
correspond to three different schemes for constructing an approximate factor-
ization of the matrix of empirical probabilities, differing only in the elements
into which that matrix is decomposed.
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