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We present a framework for learning abstract relational knowledge with the aim
of explaining how people acquire intuitive theories of physical, biological, or social
systems. Our approach is based on a generative relational model with latent classes,
and simultaneously determines the kinds of entities that exist in a domain, the num-
ber of these latent classes, and the relations between classes that are possible or likely.
This model goes beyond previous psychological models of category learning, which
consider attributes associated with individual categories but not relationships between
categories. We apply this domain-general framework to two specific problems: learn-
ing the structure of kinship systems and learning causal theories.
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1 Introduction

Imagine a hotel employee serving drinks at the general convention of the Episcopal
church. All the delegates are in casual clothes, and at first he finds it difficult to iden-
tify the people who hold the most influential positions within the church. Eventually
he notices that a group of delegates is treated with deference by everyone — call them
the archbishops. Another group is treated with deference byeveryone except the arch-
bishops — call them the bishops. Just by observing the delegates mingle, he might be
able to guess the seniority of the office each person holds.

Imagine now a child who stumbles across a set of identical-looking metal bars:
magnets, although she does not know it. As she plays with the bars she notices that
some some surfaces attract each other and some repel each other. She should realize
that there are two types of surfaces — call them North poles and South poles. Each
surface repels others of the same type and attracts surfacesof the opposite type.

As these examples show, learning to reason about social and physical systems can
require the discovery of latent structure in relational data. Both examples highlight
latent classes (bishops and archbishops, North and South poles) which influence the
relations (deference, attraction) that hold among a set of objects (guests, metal sur-
faces). These latent classes provide the building blocks ofour intuitive domain theo-
ries, allowing us to understand and predict the interactions between novel objects in
each domain.

Throughout this paper we distinguish between relations andattributes. Attributes
are properties of individual objects, but relations specify how pairs of objects inter-
act. In many cases latent classes are associated with predictable patterns of attributes.
For instance, archbishops might tend to look a little older than bishops, and some
sets of magnets have the North poles painted red and the Southpoles painted black.
Real-world learning problems come in at least three forms — problems involving at-
tributes alone, relations alone, or some combination of thetwo. Psychologists have
paid most attention to the first problem, and have developed successful computational
models [1, 2] that explain how people discover classes givenattribute data. Our ap-
proach handles all three problems, although it reduces to Anderson’s rational model of
categorization [1] when given only attribute data. In real-world settings it is perhaps
most usual for both types of data to be available. We focus here on the purely relational
case, since this provides the greatest contrast with previous work on category learning.

This paper gives a rational account [1] of the discovery of latent classes in rela-
tional data. We define a generative model in which a particular relation holds between
a pair of objects with some probability that depends only on the classes of those objects.
Statisticians and sociologists have used a model of this kind, called thestochastic block-
model[3, 4], to analyze social networks. The stochastic blockmodel, however, assumes
a fixed, finite number of classes. When discovering the latent structure of a domain,
people learn the number of classes at the same time as they learn the class assignments.
Our model, theinfinite blockmodel, allows an unbounded number of classes. We pro-
vide an algorithm that simultaneously discovers the numberof classes and the class
assignments, and use this model to explain human inference in two settings: learning
kinship systems and learning causal theories.
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Figure 1: (a) An adjacency matrix representing a relation over a domain with twelve
objects (b) The adjacency matrix permuted according toz, a vector of class assign-
ments. The blue lines separate the four classes. (c) A class graph showing relations
between the four latent classes. Each class sends links to one class and receives links
from another class.

2 A generative model for relational data

Suppose we are interested in a system with a single directed relationR (multiple re-
lations will be considered later). The relation can be represented as a graphG with
labeled edges, where edgegij between objectsi andj has value1 if R holds between
i andj and value0 otherwise. Our goal is to identify the latent classesz of the objects
using the information contained inG. For example, suppose thatG is the graph repre-
sented as an adjacency matrix in Figure 1(a). Our goal is to find a partition of the 12
objects into classes. The best partition is represented in Figure 1(c), and Figure 1(b)
shows the matrixG sorted according to this four-class solution.

To find the best assignment of objects to classes, we define a process by whichz
andG are generated and use Bayesian inference to inferz for an observed graphG.
We specify this generative model in two stages, first showinghowG is generated given
z, and then describing the process by whichz is generated.

2.1 Generating relations from classes

Assume that each potential relation between two objects is generated independently,
andp(gij = 1), the probability that the relation holds betweeni andj, depends only
on zi andzj , the classes ofi andj. Given a set of assignmentsz, the probability ofG
is

p(G|z, η) =
∏

a,b

(ηab)
mab(1− ηab)

m̄ab (1)

wherea andb range over all classes,ηab is the probability that the relation holds be-
tween a member of classa and a member of classb, mab is the number of edges
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Figure 2: Bottom row: adjacency matrices representing relations in four domains, each
with thirty objects. The objects are sorted into classes (indicated by labels a through
g). Top row: class graphs corresponding to the object graphsbelow. Only the edges in
the class graph with large weights are shown. The leftmost class graph, for example,
indicates a case where objects in one class tend to link only to other objects in the same
class.

betweena andb with label equal to 1, and̄mab is the number of edges betweena and
b with label equal to zero.

The matrixη specifies aclass graph: a graph over the classes where the edge
between classa and classb has weightηab. Figure 2 shows several examples of class
graphsη and corresponding object graphsG. Despite the simplicity of the model it can
express a rich class of relational structures. Figure 2 shows just four examples: a graph
with community structure, a ring, a hierarchy and a fully connected graph.

Multiple relations can be handled by assuming that each relation is conditionally
independent of the others given class assignmentsz. Attribute information can be
incorporated similarly if we assume that each attribute or relation is conditionally in-
dependent of all other attributes and relations given a set of class assignments.

2.2 Generating classes

Statisticians and sociologists have defined a relational model which uses Equation 1
and assumes that thezi are drawn from a fixed multinomial distribution over a finite
number of classes [4]. This model (thestochastic blockmodel) does not capture one of
the most important aspects of human learning: the discoverythat a domain includes a
certain number of latent classes.

We use an alternative method for generating thezi which does not require the num-
ber of classes to be specified in advance. The key intuition isthat the the number of
classes should be allowed to grow as more objects are added tothe system. Given
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one object, we need only a single class. As each object is added, we randomly decide
whether that object belongs to the same class as some object we have seen before, or
whether it represents a new class. A Chinese restaurant process (CRP)1 requires that
the probability that a new object belongs to an existing class is directly proportional
to the number of objects of that class seen previously. Underthe CRP, the probability
distribution over classes for theith object, conditioned on the classes of the previous
objects1, . . . , i− 1 is

p(zi = a|z1, . . . , zi−1) =

{

na

i−1+α
na > 0

α
i−1+α

a is a new class
(2)

wherena is the number of objects already assigned to classa, andα is a parameter of
the distribution.

The CRP prior onz can generate partitions with as many classes as objects, and
will potentially create a countably infinite set of classes given a countably infinite set
of objects. We therefore call the model in whichz is generated according to Equation
2 andG is generated according to Equation 1 theinfinite blockmodel. Other infinite
models have been proposed by machine learning researchers [5, 6] using a similar
construction.

2.3 Model inference

Having defined a generative model forG andz, we use Bayesian inference to compute
a posterior distribution overz givenG:

p(z|G) ∝ p(G|z)p(z) (3)

wherep(G|z) can be derived from Equation 1, andp(z) follows from Equation 2. For
the finite stochastic blockmodel, Snijders and Nowicki [4] describe a Gibbs sampler
in which η and the distribution over classes are explicitly represented. We will define
a Gibbs sampler for the infinite blockmodel, integrating outη and using the CRP to
samplez.

Gibbs sampling is a form of Markov chain Monte Carlo, a standard statistical tool
for Bayesian inference with otherwise intractable distributions [7]. A Gibbs sampler
is a Markov chain in which the state corresponds to the variables of interest, in our
casez, and transitions result from drawing each variable from itsdistribution when
conditioned on all other variables, in our case the conditional probability ofzi given all
other assignmentsz

−i, p(zi|z−i). It follows from Equation 3 that

p(zi|z−i, G) ∝ p(G|z)p(zi|z−i). (4)

To compute the first term on the right hand side, we integrate out the parametersη in
Equation 1 using a symmetric Beta prior over everyηab:

p(G|z) =
∏

a,b

Beta(mab + β, m̄ab + β)

Beta(β, β)
(5)

1The process was named out of respect for the apparently infinite capacity of Chinese restaurants. The
same process is also known less colorfully as a Polya urn scheme.
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whereβ is a hyperparameter. The second term follows from the fact that the CRP is
exchangeable, meaning that the indices of thezi can be permuted without affecting the
probability ofz. As a consequence we can treatzi as the last object to be drawn from
the CRP. The resulting conditional distribution follows directly from Equation 2.

To facilitate mixing, we supplement our Gibbs sampler with two Metropolis-Hastings
updates. First, we consider proposals that attempt to splita class into two or merge
two existing classes [8]. Split-merge proposals allow sudden large-scale changes to
the current state rather than the incremental changes characteristic of Gibbs sampling.
Second, we run a Metropolis-coupled Markov chain Monte Carlo simulation: we run
several Markov chains at different temperatures and regularly consider swaps between
the chains. If the coldest chain becomes trapped in a mode of the posterior distribu-
tion, the chains at higher temperatures are free to wander the state space and find other
regions of high probability if they exist. To avoid free parameters, we sample the hyper-
parametersα andβ using a Gaussian proposal distribution and an (improper) uniform
prior over each.

Even thoughη is integrated out, it is simple to recover the class graph givenz. The
maximum likelihood value ofηab givenz is mab+β

m̄ab+mab+2β
. Predictions about missing

edges are also simple to compute. The probability that an unobserved edge between

objects i and j has value 1 isp(gij = 1) =
mzizj

+β

m̄zizj
+mzizj

+2β
. If some edges in graph

G are missing at random, we can ignore them and maintain counts mab andm̄ab over
only the observed part of the graph.

We do not claim that the MCMC simulations used to fit our model are representative
of cognitive processing. The infinite block model addressesthe question of what people
know about relational systems and our simulations will showthat this knowledge can
be acquired from data, but we do not consider the process by which this knowledge is
acquired.

3 Relational and attribute models on artificial data

We ran the infinite blockmodel on the structures shown in Figure 2, which are simple
versions of some the relational structures found in the realworld. Our algorithm solves
each of these cases perfectly, finding the correct number of classes and the correct
assignment of objects to classes.

To further explore our model’s ability to recover the true number of classes we
gave it graphs based on randomly-generatedη matrices of different dimensions. The
entries in each matrix were drawn independently from a symmetric Beta prior with
hyperparameterβ. Whenβ is small, the average connectivity between blocks is usually
very high or very low. Asβ increases, the blocks of objects are no longer so cleanly
distinguished. Figure 3 shows that the model makes almost nomistakes when theβ is
small but recovers the true number of classes less often asβ increases.

For comparison, we also evaluated the performance of a modeldefined on attributes
rather than relations. The analogous model for attributes uses a feature matrixF where
fik is 1 if object i possesses attributek and0 otherwise. Assuming that attributes are
generated independently and thatp(fik = 1), the probability that objecti has attribute
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Figure 3: Success at recovering the true number of latent classes from artificially gen-
erated data. The infinite blockmodel performs better than the infinite mixture model as
the hyperparameterβ increases.

k, depends only onzi, we have

p(F |z, θ) =
∏

a,k

θnak

ak (1− θak)n̄ak

where the product is over all classesa and featuresk, nak is the number of objectsi
for which zi = a andfik = 1, n̄ak is the number of objectsi for which zi = a and
fik = 0, andθak is the probability that featurek takes value1 for classa. Using a CRP
prior onz, we can apply Gibbs sampling as in Equation 4 to inferP (z|F ), except we
now use

p(F |z) =
∏

a,k

Beta(nak + β, n̄ak + β)

Beta(β, β)

in place of Equation 5. This model is an infinite mixture model[6] and is equivalent to
Anderson’s rational model of categorization [1].

The infinite mixture model can be applied to relational data if we convert the rela-
tional graphG into an attribute matrixF . We flattened eachn by n adjacency matrix
into an attribute matrix withk = 2n features, one for each row and column of the
matrix. For example, a matrix for the social relation “defers to” is flattened into an
attribute matrix with two features corresponding to each person P: “defers to P” and “is
deferred to by P”. This model does well whenβ is small, but its performance falls off
more sharply than that of the blockmodel asβ increases.

4 Kinship Systems

Australian tribes are renowned among anthropologists for the complex relational struc-
ture of their kinship systems. In a mathematical appendix toa work by Levi-Strauss,
André Weil notes that several Australian kinship systems are isomorphic to the dihe-
dral group of order eight [9]. Even trained field workers find these systems difficult to
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Figure 4: Relations between the four sections of a Kariera kinship system. Members
of section 4 have mothers in section 1 and fathers in section 2. This simple model is
consistent with the relational data shown in Figure 5.

understand [10] which raises an intriguing question about cognitive development: how
do children discover the social structure of their tribe? The learning problem is partic-
ularly interesting since some communities appear to have noexplicit representations
of kinship rules, let alone cultural transmission of such rules.2 We focus here on the
Alyawarra, a Central Australian tribe studied extensivelyby Denham [11, 12, 13]. Us-
ing Denham’s data3, we show that our model is able to discover some of the properties
of the Alyawarra kinship system.

The Alyawarra have four kinship sections and the Alyawarra language contains a
name for each section. To a first approximation, Alyawarra kinship is captured by the
Kariera system shown in Figure 4. The system shows how the kinship sections of indi-
viduals are related to the kinship sections of their parents. For example, every member
of section 1 has a mother in section 4 and a father in section 3.It follows from the
system that marriages are only permitted between sections 1and 2 and between sec-
tions 3 and 4. These marriage restrictions are one example ofthe important behavioral
consequences of the Alyawarra kinship system. Denham, McDaniel and Atkins [12]
have suggested that Alyawarra kinship is better captured bythe Aranda system, an
eight-class system which can be derived by splitting each ofthe four sections in two4.
For our purposes, however, the simpler four class model is enough to give a flavor for
the structure of the Alyawarra kinship system.

As part of his fieldwork with the Alyawarra, Denham took photographs of 225 peo-
ple and asked 104 to provide a single kinship term for the subject of each photograph
in the collection. We analyze the 104 by 104 square submatrixof the full 104 by 225

2Findler describes a case where the “extremely forceful injunction against a male person having sexual
relations with his mother-in-law” could only be expressed bynaming the pairs who could and could not
engage in this act [10]

3Available online at the Alyawarra Ethnographic Archive:http://www.alc.edu/denham/
Alyawarra/

4Denham and colleagues have also emphasized that Alyawarra practice departs from both the Kariera
and Aranda systems[12, 13]. Both these normative systems rule out marriages that are sometimes seen in
practice.
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Figure 5: Top: Object graphs for three Alyawarra kinship terms described in the text.
The 104 individuals are sorted by the 13 classes found by the infinite blockmodel (tick
marks separate latent classes). Bottom: Breakdown of the 13classes by kinship section,
gender and age.

matrix of relations.5 Figure 5 shows three of the 26 different kinship terms recorded,
and the complete set of kinship terms is shown in Appendix A. For each term, the(i, j)
cell in the corresponding matrix is shaded if personi used that term to refer to person
j. The four kinship sections are clearly visible in the first two matrices. ‘Adiadya’
refers to a classificatory younger brother or sister: that is, to a younger person in one’s
own section, even if he or she is not a biological sibling. ‘Umbaidya’ is used by female
speakers to refer to a classificatory son or daughter, and by male speakers to refer to
the child of a classificatory sister. We see from the matrix that women in section 1
have children in section 4, and vice versa. ‘Anowadya’ refers to a preferred marriage
partner. The eight rough blocks indicate that men must marrywomen, that members of
section 1 are expected to marry members of section 2, and thatmembers of section 3
are expected to marry members of section 4.

5We also ran simulations on the 104 by 225 matrix, ignoring the values missing from the full 225 by
225 matrix as described in Section 2.3. The results are similarbut not as clean as for the 104 by 104 case,
perhaps because the data missing from the full matrix are not missing at random as our algorithm assumes.
For instance, no very young children appear among the 104 informants but there are many among the set of
225.
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We fit the infinite blockmodel to all 26 kinterm matrices simultaneously, treating
each matrix as conditionally independent of all the others given an assignment of ob-
jects to classes. The maximum likelihood solution is represented in Figure 5. Denham
recorded the age, gender and kinship section of each of his informants, and Figure 5
shows the composition of each class along each of these dimensions. The six age cate-
gories were chosen by Denham, and are based in part on his knowledge of Alyawarra
terms for age groupings [11].

The blockmodel finds 13 classes, each of which includes members of just one kin-
ship section. Section 1 is split into four classes corresponding to older men, older
women, younger men and younger women. Section 3 is split intothree classes: younger
men, older men, and women. The remaining sections have one class for the younger
people, and a class each for older men and older women. Note that none of the demo-
graphic data was used to fit the model — the 13 classes were discovered purely from
the relational kinship data.

When given the same data, the maximum likelihood partition found by the purely
attribute-based infinite mixture model is qualitatively worse. It includes only 5 classes:
one for each of three kin sections, and two for Section 1 (split into older and younger
people). We might expect that the true class structure has atleast 16 classes (4 sections
by 2 genders by 2 age categories) and probably more, since theage dimension might
be broken into more than two categories. Neither model achieves a solution quite like
this, but the blockmodel comes closer than the infinite mixture model.

To further explore the difference between the two models, weused them both for
link prediction. We created sparse versions of the 104 by 104matrix where only some
of the entries were observed, and asked the algorithms to fillin the missing values.
Figure 6 shows that the infinite blockmodel performs substantially better than the infi-
nite mixture model when the number of examples is small. On very large training sets,
however, the infinite mixture model has the advantage since it has more parameters to
capture subtle trends in the data. A blockmodel with 13 classes has 169 parameters
(one for each pair of classes): the mixture model with 5 classes has 1040 parameters,
one for each feature-class pair. Both algorithms perform much better than a simple
baseline that always chooses the most common kinship term inthe training set.
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Figure 7: Left: Graphs representing the four conditions in the experiments of Tenen-
baum and Niyogi. Right: Bayes factors (y-axis) for the first three stages (x-axis) of
each condition comparing the infinite blockmodel to a null hypothesis where each ob-

ject is placed in its own class. (◦ : A→ B, + : A↔ B,△: A
0.5
→ B, ∗: A

0.5
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A limitation of both models is that neither is able to represent higher-order relation-
ships (hierarchical or factorial) between the classes. We are currently exploring such
extensions. A hierarchical model should learn, for example, that the first four classes
found by our blockmodel can be grouped together into a higher-level class.

5 Causal Theories

Tenenbaum and Niyogi (2003) studied people’s ability to learn simple causal theories
in situations similar to the magnetism example mentioned earlier. This section uses the
infinite blockmodel to explain some of their findings. The experiments considered here
require subjects to interact with a computer-generated world where identical-looking
objects can be moved around on screen. Some objects “activate” other objects when-
ever they touch. Ifx activatesy (denotedx→ y), theny lights up and beeps whenever
x andy touch. In some worlds, activation is symmetric (denotedx ↔ y): both x

andy light up and beep. Unknown to the subjects, each object belongs to one of two
classes,A or B. Figure 7 shows class graphs and object graphs for four experimental
conditions. In the first world (A → B), everyA activates everyB but activations are
asymmetric. In the second world (A ↔ B), activations are symmetric: everyA acti-

vates everyB and everyB activates everyA. In the remaining two worlds (A
0.5
→ B

andA
0.5
↔ B) , eachA activates (asymmetrically or symmetrically) a random subset

(on average, 50%) ofB’s.
Tenenbaum and Niyogi (2003) examined whether subjects could discover these

simple theories after interacting with some subset of the objects. Their experiments
had seven phases and three new objects were added to the screen during each phase
(see [14] for details). As new objects were added, subjects made predictions about
how these objects would interact with old objects or with each other. At the end of the
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Figure 8: Predictions about new objects (v, w, y, z), after seeing old objects from the
theoryA → B. Edges with question marks show activation relations to be predicted.
The cross on the edge betweenu andv indicates thatu andv have been observed not to
activate each other. Tables show predictions of experimental subjects (P), of the infinite
blockmodel (B) and of the infinite mixture model (A).

experiment, subjects gave a written description of how the objects worked. No mention
of classes was made during the instructions, so inferring the existence of two classes
and the relation between them constitutes a genuine discovery.

We consider two aspects of these experiments: the relative difficulty of learning the
four theories shown in Figure 7, and the specific predictionsthat people make about
relations involving new objects after they have learned oneof these theories. Given
experience with 18 objects, people had no difficulty learning the two deterministic

theoriesA → B andA ↔ B. The asymmetric nondeterministic structure,A
0.5
→ B,

was much more difficult; only about half of 18 subjects succeeded on this task. The

symmetric nondeterministic structure,A
0.5
↔ B, was the most difficult; only two out of

18 subjects attained even partial success.
These findings are consistent with the behavior of a Bayesianlearner inferring the

theory that best explains the observed relations. The weight of the evidence that the
world respects a block structure can be expressed as the marginal likelihood of the
observed relational data under the infinite block model. We computed these likelihoods
by enumerating then summing over all possible class assignmentsz for up to 9 objects.
Figure 7 plots Bayes factors (log ratio of evidence terms) for the infinite blockmodel
relative to a “null hypothesis” where each object belongs toits own class. The Bayes
factors increase in all cases as more objects and relations are observed, but the rate
of increase varies across the four theories in accordance with their relative ease of
learning.

Learning the correct causal theory based on a set of observedrelations should allow
people to infer the unobserved causal relations that will hold for a new objectx in the
same domain, provided they observe sufficient data to infer the class membership ofx.
Figure 8 shows several kinds of relational prediction that human learners can perform.
All of these examples assume a learner who has observed the objects and relations in
Figure 7 generated by theA → B theory. Given a new objectx which has just been
activated by an oldA object, a learner with the correct theory should classifyx as a
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B, and predict that anotherA will activatex but that nothing will happen betweenx
and aB. Analogous predictions can be made ifx is observed only to be activated
by a new objecty. Figure 8 shows that people make these predictions correctly after
learning the theory [14], as does the infinite blockmodel. The infinite mixture model
performs poorly on these tasks (Figure 8) as a consequence oftreating relations like
attributes. Under this model, learning about relations between new objects is identical
to learning about entirely new features, andnoneof the learner’s previous experience
is relevant. Only the blockmodel thus accounts for a principle function of intuitive
theories: generalization from previous experience to wholly new systems in the same
domain.

6 Conclusions and future directions

We have presented an infinite generative model for representing abstract relational
knowledge and discovering the latent classes generating those relations. This analy-
sis hardly begins to approach the richness and flexibility ofpeople’s intuitive domain
theories, but may provide some of the critical building blocks. It may also be useful in
other fields. Our framework for discovering latent classes is an extension of relational
models previously proposed in sociology (stochastic blockmodels [4]) and machine
learning (probabilistic relational models [15]). We are also exploring the cognitive rel-
evance of other relational structures discussed in these fields, such as the overlapping
class model of Kubica et al. [16], and structures where groups are defined by regu-
lar equivalence [17]. Developing a framework that can form spontaneous and flexible
combinations of these structures remains a formidable opentask.
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A Kinship Data

Arengiya FF/FFZ, SS/SD (ms), BSS/BSD (fs)
Anyaina MM/MMB, MMBSS/MMBSD, ZDS/ZDD (ms), DS/DD (fs)
Aidmeniya MMBSS/MMBSD, ZDS/ZDD (ms), DS/DD (fs)
Aburliya FM/FMB, FMBSD/FMBSS, ZSS/ZSD (ms), SS/SD (fs)
Adardiya MF/MFZ, DS/DD, BDS/BDD (fs)
Agniya F
Aweniya FZ, FMZD
Amaidya M, SW (ms)
Abmarliya MB, SWB (ms)
Awaadya EB
Anguriya EZ
Adiadya YB/YZ
Angeliya FZS/MBS
Algyeliya FZD/MBD
Adniadya MBS
Aleriya S/D (ms), BS/BD (fs)
Umbaidya S/D (fs), ZS/ZD (ms), FMBS/FMBD
Anowadya W/MMBDD (ms), H/MFZDS (fs)
Muriya MMBD/MMBS, WM/WMB (ms), ZDH/ZDHZ (ms)
Agenduriya ZS/ZD (ms), rare term for biological sister’s child
Amburniya WB/ZH
Andungiya HZ/BW (fs)
Aneriya BWM/DHZ (fs)
Aiyenga “Myself”
Undyaidya WZ (ms), rare term used as reciprocal for amburniya
Gnaldena YZ, rare term for biological younger sister

Table 1: Glosses given by Denham [18] for the 26 kinship termsin Figure 9. F=father,
M=mother, B=brother, Z=sister, S=son, D=daughter, H=husband, W=wife, E=elder,
Y=younger, fs=female speaker, ms=male speaker. For example, adiadya refers to a
classificatory younger brother (YB) or younger sister (YZ).



Arengiya Anyainya Aidmeniya Aburliya

Adardiya Agngiya Aweniya Amaidya

Abmarliya Awaadya Anguriya Adiaya

Angeliya Algyeliya Adniadya Aleriya

Umbaidya Anowadya Muriya Angenduriya

Amburniya Andungiya Aneriya Aiyenga

Undyaidya Gnaldena

Figure 9: Matrices for the 26 kinterms recorded by Denham. The 104 individuals are
sorted according to the 13 classes found by the infinite blockmodel. Glosses for the
terms are shown in Table 1.


