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We present a framework for learning abstract relationalktedge with the aim
of explaining how people acquire intuitive theories of ghgh biological, or social
systems. Our approach is based on a generative relatiordgImith latent classes,
and simultaneously determines the kinds of entities thist é@&x a domain, the num-
ber of these latent classes, and the relations betweereslts®t are possible or likely.
This model goes beyond previous psychological models @&geay learning, which
consider attributes associated with individual categoligt not relationships between
categories. We apply this domain-general framework to pexsic problems: learn-
ing the structure of kinship systems and learning causatibe



1 Introduction

Imagine a hotel employee serving drinks at the general cuiore of the Episcopal
church. All the delegates are in casual clothes, and at #$nlds it difficult to iden-
tify the people who hold the most influential positions withihe church. Eventually
he notices that a group of delegates is treated with defereypeveryone — call them
the archbishops. Another group is treated with deferenaavbyyone except the arch-
bishops — call them the bishops. Just by observing the delegaingle, he might be
able to guess the seniority of the office each person holds.

Imagine now a child who stumbles across a set of identiaztitgy metal bars:
magnets, although she does not know it. As she plays with ane ¢he notices that
some some surfaces attract each other and some repel each$itie should realize
that there are two types of surfaces — call them North polesSouth poles. Each
surface repels others of the same type and attracts sudaties opposite type.

As these examples show, learning to reason about sociallgrsicpl systems can
require the discovery of latent structure in relationaladaBoth examples highlight
latent classes (bishops and archbishops, North and Soldk)pehich influence the
relations (deference, attraction) that hold among a setgots (guests, metal sur-
faces). These latent classes provide the building blocksipfntuitive domain theo-
ries, allowing us to understand and predict the interastiogtween novel objects in
each domain.

Throughout this paper we distinguish between relationsatributes. Attributes
are properties of individual objects, but relations spebtibw pairs of objects inter-
act. In many cases latent classes are associated with {adgldipatterns of attributes.
For instance, archbishops might tend to look a little oldemt bishops, and some
sets of magnets have the North poles painted red and the $olah painted black.
Real-world learning problems come in at least three formsreblems involving at-
tributes alone, relations alone, or some combination oftwee Psychologists have
paid most attention to the first problem, and have developedessful computational
models [1, 2] that explain how people discover classes gatgibute data. Our ap-
proach handles all three problems, although it reduces tefson’s rational model of
categorization [1] when given only attribute data. In re@ld settings it is perhaps
most usual for both types of data to be available. We focus tiethe purely relational
case, since this provides the greatest contrast with prewimrk on category learning.

This paper gives a rational account [1] of the discovery tdriaclasses in rela-
tional data. We define a generative model in which a particelation holds between
a pair of objects with some probability that depends onlyhneiasses of those objects.
Statisticians and sociologists have used a model of th§ kalled thestochastic block-
model[3, 4], to analyze social networks. The stochastic blockehdibwever, assumes
a fixed, finite number of classes. When discovering the lateattsire of a domain,
people learn the number of classes at the same time as theyheaclass assignments.
Our model, thenfinite blockmodelallows an unbounded number of classes. We pro-
vide an algorithm that simultaneously discovers the nunafelasses and the class
assignments, and use this model to explain human infereniveoi settings: learning
kinship systems and learning causal theories.
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Figure 1: (a) An adjacency matrix representing a relatioer @’domain with twelve

objects (b) The adjacency matrix permuted according,ta vector of class assign-
ments. The blue lines separate the four classes. (c) A clagh ghowing relations

between the four latent classes. Each class sends linkstolass and receives links
from another class.
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2 A generative model for relational data

Suppose we are interested in a system with a single direetation R (multiple re-
lations will be considered later). The relation can be repnéed as a grapfi with
labeled edges, where edgg between objectsand; has valuel if R holds between
i andj and value) otherwise. Our goal is to identify the latent classed the objects
using the information contained @&. For example, suppose th@tis the graph repre-
sented as an adjacency matrix in Figure 1(a). Our goal is tbdipartition of the 12
objects into classes. The best partition is representedguré 1(c), and Figure 1(b)
shows the matrixz sorted according to this four-class solution.

To find the best assignment of objects to classes, we definecags by which:
andG are generated and use Bayesian inference to infer an observed grapty.
We specify this generative model in two stages, first sholimgG is generated given
z, and then describing the process by whidk generated.

2.1 Generating relations from classes

Assume that each potential relation between two objecteneigted independently,
andp(g;; = 1), the probability that the relation holds betweeand j, depends only
onz; andz;, the classes afandj. Given a set of assignmentsthe probability ofG

is

p(Glz,m) = T [ (nap) ™ (1 = nap) ™ (1)

a,b

wherea andb range over all classes,,; is the probability that the relation holds be-
tween a member of class and a member of clads m; is the number of edges
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Figure 2: Bottom row: adjacency matrices representingiogla in four domains, each
with thirty objects. The objects are sorted into classedi¢ated by labels a through
g). Top row: class graphs corresponding to the object greplmsv. Only the edges in
the class graph with large weights are shown. The leftmestsoyjraph, for example,
indicates a case where objects in one class tend to link ordthier objects in the same
class.

betweern andb with label equal to 1, and,;, is the number of edges betweemnd
b with label equal to zero.

The matrixn specifies aclass graph a graph over the classes where the edge
between class and clas$ has weight),;. Figure 2 shows several examples of class
graphsy and corresponding object grapfis Despite the simplicity of the model it can
express a rich class of relational structures. Figure 2 sljast four examples: a graph
with community structure, a ring, a hierarchy and a fully mected graph.

Multiple relations can be handled by assuming that eachioalés conditionally
independent of the others given class assignmentéttribute information can be
incorporated similarly if we assume that each attributeetation is conditionally in-
dependent of all other attributes and relations given afsgass assignments.

2.2 Generating classes

Statisticians and sociologists have defined a relationaleinahich uses Equation 1
and assumes that the are drawn from a fixed multinomial distribution over a finite
number of classes [4]. This model (tkchastic blockmodetioes not capture one of
the most important aspects of human learning: the discdbatya domain includes a
certain number of latent classes.

We use an alternative method for generatingzhe&hich does not require the num-
ber of classes to be specified in advance. The key intuitidhaisthe the number of
classes should be allowed to grow as more objects are addbé ®ystem. Given



one object, we need only a single class. As each object isdagiderandomly decide
whether that object belongs to the same class as some olgdtave seen before, or
whether it represents a new class. A Chinese restauranegg¢€RP) requires that
the probability that a new object belongs to an existingciasdirectly proportional

to the number of objects of that class seen previously. Utide€RP, the probability
distribution over classes for thth object, conditioned on the classes of the previous
objectsl,...,i—11is

Hu Ng >0

Zi=alzy, ..., 2_1) =< ‘ilta .
plai =alz,..., zio1) { o a is a new class
i—1l4a

()

wheren, is the number of objects already assigned to dassda is a parameter of
the distribution.

The CRP prior oz can generate partitions with as many classes as objects, and
will potentially create a countably infinite set of class@seg a countably infinite set
of objects. We therefore call the model in whigls generated according to Equation
2 andG is generated according to Equation 1 thénite blockmodel Other infinite
models have been proposed by machine learning resear&e$ (ising a similar
construction.

2.3 Model inference

Having defined a generative model farandz, we use Bayesian inference to compute
a posterior distribution over givenG:

p(z|G) x p(Glz)p(2) ®3)

wherep(G|z) can be derived from Equation 1, ap:) follows from Equation 2. For
the finite stochastic blockmodel, Snijders and Nowicki [ékdribe a Gibbs sampler
in which n and the distribution over classes are explicitly represgntVe will define
a Gibbs sampler for the infinite blockmodel, integrating gutnd using the CRP to
samplez.

Gibbs sampling is a form of Markov chain Monte Carlo, a staddaatistical tool
for Bayesian inference with otherwise intractable disttibns [7]. A Gibbs sampler
is a Markov chain in which the state corresponds to the veasabf interest, in our
casez, and transitions result from drawing each variable fromdiribution when
conditioned on all other variables, in our case the conditiprobability ofz; given all
other assignments._;, p(z;|z_;). It follows from Equation 3 that

p(zilz—i, G) < p(Gl2)p(zi|z—). (4)

To compute the first term on the right hand side, we integratele parameters in
Equation 1 using a symmetric Beta prior over eveyy.

1 Betdmay + B, mab + )
p(Glz) = g Betd 3, ) ©

1The process was named out of respect for the apparently efiajtacity of Chinese restaurants. The
same process is also known less colorfully as a Polya urn scheme



wheref is a hyperparameter. The second term follows from the faattttire CRP is
exchangeable, meaning that the indices ofhean be permuted without affecting the
probability of 2. As a consequence we can treats the last object to be drawn from
the CRP. The resulting conditional distribution followseditly from Equation 2.

To facilitate mixing, we supplement our Gibbs sampler witb Metropolis-Hastings
updates. First, we consider proposals that attempt to amliass into two or merge
two existing classes [8]. Split-merge proposals allow sndthrge-scale changes to
the current state rather than the incremental changesatiestic of Gibbs sampling.
Second, we run a Metropolis-coupled Markov chain Monte &sirnulation: we run
several Markov chains at different temperatures and reigudansider swaps between
the chains. If the coldest chain becomes trapped in a modeeqgbdsterior distribu-
tion, the chains at higher temperatures are free to wandestétte space and find other
regions of high probability if they exist. To avoid free pareters, we sample the hyper-
parametersr and3 using a Gaussian proposal distribution and an (impropéfyum
prior over each.

Even though is integrated out, it is simple to recover the class grapbmgiv The

maximum likelihood value ofj,;, given z is —™«tt8___  Predictions about missing

Mab+Man+20

edges are also simple to compute. The prc')babi'lbity that abserwed edge between

objects i and j has value 1 jsg;; = 1) = % If some edges in graph
G are missing at random, we can ignore them and maintain seuptandm,;, over
only the observed part of the graph.

We do not claim that the MCMC simulations used to fit our modelkrapresentative
of cognitive processing. The infinite block model addre#isesgjuestion of what people
know about relational systems and our simulations will stioat this knowledge can
be acquired from data, but we do not consider the process hwiiis knowledge is

acquired.

3 Relational and attribute models on artificial data

We ran the infinite blockmodel on the structures shown in &) which are simple
versions of some the relational structures found in theweald. Our algorithm solves
each of these cases perfectly, finding the correct numbeltasées and the correct
assignment of objects to classes.

To further explore our model's ability to recover the truenther of classes we
gave it graphs based on randomly-generatedatrices of different dimensions. The
entries in each matrix were drawn independently from a symmBeta prior with
hyperparametes. Wheng is small, the average connectivity between blocks is uguall
very high or very low. As3 increases, the blocks of objects are no longer so cleanly
distinguished. Figure 3 shows that the model makes almostistakes when thg is
small but recovers the true number of classes less oft@rimyeases.

For comparison, we also evaluated the performance of a ndefieked on attributes
rather than relations. The analogous model for attributes a feature matrik where
fir is 1 if objecti possesses attributeand0 otherwise. Assuming that attributes are
generated independently and théf;, = 1), the probability that objecthas attribute
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Figure 3: Success at recovering the true number of latessetafrom artificially gen-
erated data. The infinite blockmodel performs better tharirtfinite mixture model as
the hyperparametet increases.

k, depends only on;, we have

p(F|z,0) Henak (1 — O)"*

where the product is over all classesnd features, n,; is the number of objects
for which z; = a and f;;, = 1, iy, is the number of objectsfor which z; = a and
fir = 0, andd,;, is the probability that featurk takes valud for classa. Using a CRP
prior on z, we can apply Gibbs sampling as in Equation 4 to iffét|F'), except we
now use

Betdnax + 3, Nk + )
p(Fl2) H S G5
in place of Equation 5. This model is an infinite mixture mo@gland is equivalent to
Anderson’s rational model of categorization [1].

The infinite mixture model can be applied to relational datee convert the rela-
tional graphG into an attribute matrixt’. We flattened each by n adjacency matrix
into an attribute matrix withk = 2n features, one for each row and column of the
matrix. For example, a matrix for the social relation “dsfén” is flattened into an
attribute matrix with two features corresponding to eaalsqe P: “defers to P” and “is
deferred to by P”. This model does well whéris small, but its performance falls off
more sharply than that of the blockmodel@mcreases.

4  Kinship Systems

Australian tribes are renowned among anthropologistdi®complex relational struc-
ture of their kinship systems. In a mathematical appendi work by Levi-Strauss,
André Weil notes that several Australian kinship systems amaasphic to the dihe-
dral group of order eight [9]. Even trained field workers fihdge systems difficult to
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Figure 4: Relations between the four sections of a Kariemahip system. Members
of section 4 have mothers in section 1 and fathers in sectiorhs simple model is
consistent with the relational data shown in Figure 5.

understand [10] which raises an intriguing question aboghdive development: how
do children discover the social structure of their tribe’® Tdarning problem is partic-
ularly interesting since some communities appear to havexpticit representations
of kinship rules, let alone cultural transmission of suclest? We focus here on the
Alyawarra, a Central Australian tribe studied extensilghDenham [11, 12, 13]. Us-
ing Denham’s dat we show that our model is able to discover some of the prigsert
of the Alyawarra kinship system.

The Alyawarra have four kinship sections and the Alyawaargglage contains a
name for each section. To a first approximation, Alyawarreskip is captured by the
Kariera system shown in Figure 4. The system shows how trehigrsections of indi-
viduals are related to the kinship sections of their pardfas example, every member
of section 1 has a mother in section 4 and a father in sectio fallows from the
system that marriages are only permitted between sectiamsl 2 and between sec-
tions 3 and 4. These marriage restrictions are one exampe @fportant behavioral
consequences of the Alyawarra kinship system. Denham, MieDand Atkins [12]
have suggested that Alyawarra kinship is better capturethéyAranda system, an
eight-class system which can be derived by splitting ea¢hefour sections in twb
For our purposes, however, the simpler four class modeldsgmto give a flavor for
the structure of the Alyawarra kinship system.

As part of his fieldwork with the Alyawarra, Denham took phgrtaphs of 225 peo-
ple and asked 104 to provide a single kinship term for theesuilgjf each photograph
in the collection. We analyze the 104 by 104 square submettitie full 104 by 225

2Findler describes a case where the “extremely forceful rtjon against a male person having sexual
relations with his mother-in-law” could only be expressednaming the pairs who could and could not
engage in this act [10]

SAvailable online at the Alyawarra Ethnographic Archiventt p://waw. al c. edu/ denhamni
Al yawar r a/

4Denham and colleagues have also emphasized that Alyawarctiger departs from both the Kariera
and Aranda systems[12, 13]. Both these normative systems utiimarriages that are sometimes seen in
practice.
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Figure 5: Top: Object graphs for three Alyawarra kinshiprteidescribed in the text.
The 104 individuals are sorted by the 13 classes found bynfirete blockmodel (tick
marks separate latent classes). Bottom: Breakdown of tbhka8es by kinship section,
gender and age.

matrix of relations. Figure 5 shows three of the 26 different kinship terms reedrd
and the complete set of kinship terms is shown in Appendixdk.gach term, théi, j)
cell in the corresponding matrix is shaded if persarsed that term to refer to person
j. The four kinship sections are clearly visible in the firsbtmatrices. ‘Adiadya’
refers to a classificatory younger brother or sister: thabisa younger person in one’s
own section, even if he or she is not a biological sibling. tulidya’ is used by female
speakers to refer to a classificatory son or daughter, anddby speakers to refer to
the child of a classificatory sister. We see from the matrat thomen in section 1
have children in section 4, and vice versa. ‘Anowadya’ ietera preferred marriage
partner. The eight rough blocks indicate that men must maomen, that members of
section 1 are expected to marry members of section 2, andniatbers of section 3
are expected to marry members of section 4.

5We also ran simulations on the 104 by 225 matrix, ignoring tHaesmissing from the full 225 by
225 matrix as described in Section 2.3. The results are sitmifanot as clean as for the 104 by 104 case,
perhaps because the data missing from the full matrix are nsingiat random as our algorithm assumes.
For instance, no very young children appear among the 10#niraots but there are many among the set of
225.
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Figure 6: Accuracy at predicting unobserved kinship terfite baseline model always
chooses the most common term in the training set

We fit the infinite blockmodel to all 26 kinterm matrices sitameously, treating
each matrix as conditionally independent of all the othérergan assignment of ob-
jects to classes. The maximum likelihood solution is repmé=d in Figure 5. Denham
recorded the age, gender and kinship section of each of feigmants, and Figure 5
shows the composition of each class along each of these diomsn The six age cate-
gories were chosen by Denham, and are based in part on hidddgevof Alyawarra
terms for age groupings [11].

The blockmodel finds 13 classes, each of which includes meswdigust one kin-
ship section. Section 1 is split into four classes corredpanto older men, older
women, younger men and younger women. Section 3 is splithinée classes: younger
men, older men, and women. The remaining sections have ass fdr the younger
people, and a class each for older men and older women. Nattadhe of the demo-
graphic data was used to fit the model — the 13 classes werevdigd purely from
the relational kinship data.

When given the same data, the maximum likelihood partitiamébby the purely
attribute-based infinite mixture model is qualitativelyra®. It includes only 5 classes:
one for each of three kin sections, and two for Section 1t(sgh older and younger
people). We might expect that the true class structure Haastt16 classes (4 sections
by 2 genders by 2 age categories) and probably more, sinagghdimension might
be broken into more than two categories. Neither model &ekia solution quite like
this, but the blockmodel comes closer than the infinite mexmodel.

To further explore the difference between the two modelsusex them both for
link prediction. We created sparse versions of the 104 byma#ix where only some
of the entries were observed, and asked the algorithms tim file missing values.
Figure 6 shows that the infinite blockmodel performs suliithy better than the infi-
nite mixture model when the number of examples is small. Oy kagge training sets,
however, the infinite mixture model has the advantage sirttas more parameters to
capture subtle trends in the data. A blockmodel with 13 eladms 169 parameters
(one for each pair of classes): the mixture model with 5 ea$ms 1040 parameters,
one for each feature-class pair. Both algorithms perfornchrhetter than a simple
baseline that always chooses the most common kinship tetine itraining set.

10
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Figure 7: Left: Graphs representing the four conditionshie éxperiments of Tenen-
baum and Niyogi. Right: Bayes factors (y-axis) for the fitgee stages (x-axis) of
each condition comparing the infinite blockmodel to a nuppdithesis where each ob-

jectis placed initsownclassoc( A — B,+: A< B,A: A 03 B,* A P B)

A limitation of both models is that neither is able to repredggher-order relation-
ships (hierarchical or factorial) between the classes. Wearrently exploring such
extensions. A hierarchical model should learn, for examplat the first four classes
found by our blockmodel can be grouped together into a hitghe class.

5 Causal Theories

Tenenbaum and Niyogi (2003) studied people’s ability taresample causal theories
in situations similar to the magnetism example mentionelieeaThis section uses the
infinite blockmodel to explain some of their findings. The esments considered here
require subjects to interact with a computer-generateddwehere identical-looking
objects can be moved around on screen. Some objects “attotler objects when-
ever they touch. I activategy (denotedr — y), theny lights up and beeps whenever
xz andy touch. In some worlds, activation is symmetric (denatee- y): both z
andy light up and beep. Unknown to the subjects, each object bsltmone of two
classesA or B. Figure 7 shows class graphs and object graphs for four enpetal
conditions. In the first world4 — B), every A activates everyB but activations are
asymmetric. In the second worldl(« B), activations are symmetric: every acti-
vates everyB and everyB activates every. In the remaining two worlds4 22 B
andA 2 B) , eachA activates (asymmetrically or symmetrically) a random stibs
(on average, 50%) aB’s.

Tenenbaum and Niyogi (2003) examined whether subjectsdadigstover these
simple theories after interacting with some subset of thHeatb. Their experiments
had seven phases and three new objects were added to the darewy each phase
(see [14] for details). As new objects were added, subjeetdenpredictions about
how these objects would interact with old objects or withteather. At the end of the

11
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Figure 8: Predictions about new objects {, y, z), after seeing old objects from the
theoryA — B. Edges with question marks show activation relations toreedipted.
The cross on the edge betweeandw indicates that, andv have been observed not to
activate each other. Tables show predictions of experiahsabjects (P), of the infinite
blockmodel (B) and of the infinite mixture model (A).

experiment, subjects gave a written description of how tijeats worked. No mention
of classes was made during the instructions, so inferriegettistence of two classes
and the relation between them constitutes a genuine discove

We consider two aspects of these experiments: the reldffieutty of learning the
four theories shown in Figure 7, and the specific predictibias people make about
relations involving new objects after they have learned ohthese theories. Given
experience with 18 objects, people had no difficulty leagniine two deterministic

theoriesA — B andA « B. The asymmetric hondeterministic structure,o—'i) B,
was much more difficult; only about half of 18 subjects sudegkon this task. The

symmetric nondeterministic structurd, 2> B, was the most difficult; only two out of
18 subjects attained even partial success.

These findings are consistent with the behavior of a Baydsamer inferring the
theory that best explains the observed relations. The weigthe evidence that the
world respects a block structure can be expressed as thenalaigelihood of the
observed relational data under the infinite block model. @aputed these likelihoods
by enumerating then summing over all possible class assgtenfor up to 9 objects.
Figure 7 plots Bayes factors (log ratio of evidence terms}ltie infinite blockmodel
relative to a “null hypothesis” where each object belonggs@wn class. The Bayes
factors increase in all cases as more objects and relatiensbeserved, but the rate
of increase varies across the four theories in accordanttetieir relative ease of
learning.

Learning the correct causal theory based on a set of obsezlagibns should allow
people to infer the unobserved causal relations that witl far a new object: in the
same domain, provided they observe sufficient data to iheclass membership of
Figure 8 shows several kinds of relational prediction thahan learners can perform.
All of these examples assume a learner who has observed jgheoblnd relations in
Figure 7 generated by th& — B theory. Given a new objeat which has just been
activated by an ol object, a learner with the correct theory should classifys a

12



B, and predict that anothet will activate = but that nothing will happen betweean
and aB. Analogous predictions can be maderiiis observed only to be activated
by a new objecyy. Figure 8 shows that people make these predictions coyraftér
learning the theory [14], as does the infinite blockmodele Trifinite mixture model
performs poorly on these tasks (Figure 8) as a consequertceabig relations like
attributes. Under this model, learning about relationsvbeh new objects is identical
to learning about entirely new features, ameheof the learner’s previous experience
is relevant. Only the blockmodel thus accounts for a prilecfpnction of intuitive
theories: generalization from previous experience to Wyh@w systems in the same
domain.

6 Conclusions and future directions

We have presented an infinite generative model for repregeabstract relational

knowledge and discovering the latent classes generatoggtielations. This analy-
sis hardly begins to approach the richness and flexibilitgeaple’s intuitive domain

theories, but may provide some of the critical building li&dt may also be useful in

other fields. Our framework for discovering latent classesr extension of relational
models previously proposed in sociology (stochastic blmddels [4]) and machine
learning (probabilistic relational models [15]). We arsaéxploring the cognitive rel-
evance of other relational structures discussed in thelsis fisuch as the overlapping
class model of Kubica et al. [16], and structures where gsane defined by regu-
lar equivalence [17]. Developing a framework that can foparganeous and flexible
combinations of these structures remains a formidable tgsn
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A Kinship Data

Arengiya FF/FFZ, SS/SD (ms), BSS/BSD (fs)

Anyaina MM/MMB, MMBSS/MMBSD, ZDS/ZDD (ms), DS/DD (fs)
Aidmeniya MMBSS/MMBSD, ZDS/ZDD (ms), DS/DD (fs)
Aburliya FM/FMB, FMBSD/FMBSS, ZSS/ZSD (ms), SS/SD (fs)
Adardiya MF/MFZ, DS/DD, BDS/BDD (fs)

Agniya F

Aweniya Fz, FMZD

Amaidya M, SW (ms)

Abmarliya  MB, SWB (ms)

Awaadya EB

Anguriya EZ

Adiadya YB/YZ

Angeliya FZS/MBS

Algyeliya FzZD/MBD

Adniadya MBS

Aleriya S/D (ms), BS/BD (fs)

Umbaidya  S/D (fs), ZS/zD (ms), FMBS/FMBD

Anowadya  W/MMBDD (ms), H/MFZDS (fs)

Muriya MMBD/MMBS, WM/WMB (ms), ZDH/ZDHZ (ms)
Agenduriya ZS/ZD (ms), rare term for biological sister’sigh
Amburniya WB/ZH

Andungiya HZ/BW (fs)

Aneriya BWM/DHZ (fs)

Aiyenga “Myself”

Undyaidya WZ (ms), rare term used as reciprocal for amburniya
Gnaldena YZ, rare term for biological younger sister

Table 1: Glosses given by Denham [18] for the 26 kinship tamisgure 9. F=father,
M=mother, B=brother, Z=sister, S=son, D=daughter, H=huash W=wife, E=elder,
Y=younger, fs=female speaker, ms=male speaker. For exaragladya refers to a
classificatory younger brother (YB) or younger sister (YZ).
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Figure 9: Matrices for the 26 kinterms recorded by Denhame Tt individuals are

sorted according to the 13 classes found by the infinite Inhadel. Glosses for the
terms are shown in Table 1.



