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Abstract

Temporal information plays a major role in human causal in-
ference. We present a rational framework for causal induc-
tion from events that take place in continuous time. We de-
fine a set of desiderata for such a framework and outline a
strategy for satisfying these desiderata using continuous-time
stochastic processes. We develop two specific models within
this framework, illustrating how it can be used to capture both
generative and preventative causal relationships as well as de-
lays between cause and effect. We evaluate one model through
a new behavioral experiment, and the other through a compar-
ison to existing data.

Introduction
Causal induction plays a key role in human cognition, allow-
ing people to identify the causal relationships that structure
their environment. Recent work in cognitive science has re-
sulted in many successful models of how people infer causal
relationships from contingency data (Anderson, 1990; An-
derson & Sheu, 1995; Cheng, 1997; Griffiths & Tenenbaum,
2005) and events that unfold in discrete time (Wasserman,
1990; Greville & Buehner, 2007). However, relatively few
models have explored events that occur in continuous time.
And yet, people regularly and easily reason about causal phe-
nomena that evolve in continuous time (Michotte, 1963; Grif-
fiths & Tenenbaum, 2009). Our understanding of causal in-
ference would thus benefit from a framework capable of ex-
plaining human continuous-time causal inferences.

In this paper, we address this challenge by undertaking a
rational analysis of continuous-time causal induction, in the
spirit of Anderson (1990) and Marr (1982). We formalize the
abstract problem posed by continuous-time causal inference,
identifying a set of desiderata that a solution to this problem
needs to incorporate. We then outline a framework that sat-
isfies these desiderata, based on rational statistical inference
over continuous-time stochastic processes. Our framework
makes it possible to define both generative and preventative
causes that unfold in continuous time, and to take into account
delays between causes and effects.

With this framework in hand, we present two case stud-
ies from experimental psychology on human continuous-time
causal inference. The first case study involves a novel ex-
periment based on an experiment conducted by Griffiths and
Tenenbaum (2005), allowing us to show how our framework
can be used to infer whether a cause prevents events from
occurring. The second case study is a re-analysis of an ex-
periment on the effects of temporal information on human
causal inference that was originally conducted by Greville
and Buehner (2007). This second case study demonstrates
the value of being able to use delay distributions to character-
ize how the effect of a cause changes over time.

We begin with a brief overview of previous work on the
role of time in human causal inference, focusing on Griffiths
and Tenenbaum (2005) and Greville and Buehner (2007). We
then lay out a set of desiderata for a computational frame-
work for human continuous-time causal inference. We go on
to describe formally how we implement these desiderata in
our proposed framework. Following this, we apply the frame-
work to our two case studies, evaluating models that use pre-
ventative causes and delay distributions. Finally, we conclude
and suggest directions for future work.

Continuous-time causal induction
Studying the role of time in causal induction has a long his-
tory in cognitive science. One of the earliest established
findings in the study of human causal inference is our abil-
ity to perceive causal relations in collisions, which is highly
dependent on precise timing (Michotte, 1963). More re-
cently, Buehner and colleagues have been very active in
studying causal inference as it interacts with temporal infor-
mation (e.g., Buehner & May, 2003; Greville & Buehner,
2007). However, while studies of causal induction often
present events to participants in continuous time, they are typ-
ically analyzed using the discrete trial structure which the re-
searchers used to design the stimuli (e.g., Anderson & Sheu,
1995; Wasserman, 1990).

Nonetheless, it may be enlightening to treat events as if
they occurred over continuous time. Models considered by
Griffiths and Tenenbaum (2005, 2009) take this approach,
treating events that occur in continuous time as existing in
a continuous dimension, or analyzing summaries of events as
if they had occurred during a continuous interval. Even stim-
uli that are explicitly designed to convey information in dis-
crete time (e.g., Greville & Buehner, 2007) can be analyzed
in terms of continuous time by integrating over the time in-
tervals. In the remainder of this section we summarize results
from two studies on causal induction with temporal informa-
tion, providing context for our later analyses.

Causal induction from rates
Griffiths and Tenenbaum (2005) showed that people are ca-
pable of reasoning about causes that increase the rate at
which events occur over continuous time, and their judgments
are in close accordance with the predictions of a computa-
tional model engaging in continuous-time causal inference.
In their experiments, participants observed a series of results
that they were told came from physics experiments studying
whether different electrical fields cause different radioactive
compounds to emit more or fewer particles (the compound
always released particles at some rate). For each “experi-



ment”, participants were told how many particles were emit-
ted during one minute when the electrical field was on and
one minute when the field was off. Participants then indi-
cated the degree to which they endorse the claim that the field
caused the compounds to emit more particles on a scale of 0
(the field definitely does not cause the compound to decay) to
100 (the field definitely does cause the compound to decay).

Causal induction from tabular displays
Greville and Buehner (2007) demonstrated that the tempo-
ral distribution of event occurrences will alter people’s causal
judgments, even if the relative frequencies of the occurrence
of the effect in the presence or absence of a cause is held
constant. Their purpose was to show that “temporal regular-
ity” influences people’s judgments above and beyond mere
contingency information. Their experiments used a tabular
format to display events that unfolded over five days (split up
into five segments of one day each), reporting in which day
events occurred. This discretization allows the use of tradi-
tional models of causal inference which infer causes on the
basis of contingency information.

In each condition of Greville and Buehner’s experiments,
participants were shown two groups of 40 bacterial cultures,
one group which was exposed to radiation and one which was
not. Participants were shown (in tabular format) on which of
5 days each batch of bacteria died (if they died). Participants
were asked to rate the effect of the radiation on a scale of
−100 to 100 where −100 meant that the treatment was very
effective at killing the bacteria, while 100 meant that the treat-
ment was very effective at preventing the bacteria from dying
(a rating of 0 meant that the treatment had no effect).

Greville and Buehner asked each participant about 18 pairs
of tables, which differed in the frequency and distribution of
times of death. In particular, Greville and Buehner varied
the number of cultures dead by day five and the distribution
over the times at which the bacteria died. They first fixed the
number of deaths that would occur in each table. In all condi-
tions, the time distribution for the bacteria not exposed to ra-
diation was such that each of the deaths occurred with equal
probability in any of the five days. However, for the bacte-
ria exposed to radiation there were three time-of-death dis-
tributions: “strong contiguity”, in which bacteria death was
more likely in the first few days after the radiation treatment;
“weak contiguity”, in which bacteria died more often later in
five day period; and “random”, in which bacteria death was
uniformly distributed among the five days. Contingency in-
formation was held constant while varying contiguity. The
results of the experiments showed that temporal information
dramatically affects human causal inference.

Defining desiderata for the framework
The studies discussed in the previous section illustrate some
of the great variety in the phenomena to be considered by a
framework for continuous-time causal induction. Thus, it will
be helpful to identify the most vital features for allowing the

framework to capture a wide class of these cases. The follow-
ing sections detail an important set of these properties.
Intervention. The framework should capable of considering
interventions in the sense meant in causal graphical models
(Pearl, 2000). That is, an intervened upon node is said to be
rendered independent of its parent nodes.
Instantaneous and interval causes. The framework should
include both causes that exist instantaneously as well as over
intervals of time.
Generative and preventative causal relations. It is vitally
important when modeling human causal inference to distin-
guish between causes that generate effects and causes that
prevent effects (Griffiths & Tenenbaum, 2005, 2009). People
make dramatically different predictions based on which type
of relationship they are looking for. Thus, we would want
the framework to be capable of doing the same. In discrete
time, Griffiths and Tenenbaum (2005) used the Noisy-OR and
Noisy-ANDNOT logic gates to represent a cause that gener-
ates or prevents effects with reference to a background rate of
the effects’ occurrence. Because these discrete time parame-
terizations will not hold in continuous time, we will have to
redefine what we mean by a generative and a preventative re-
lation for continuous time.
Delay distributions. In most models of causation that work
in discrete time or over trials in which events occur simulta-
neously, a cause can only influence an effect if and only if
that cause is present. This is undesirable if we are to develop
a framework for continuous-time causal inference. Not only
would it be useful to track how a cause’s influence changes
over time, instantaneous events occur for only an infinitesi-
mal period of time. Thus, in order for such events to have any
effect on other variables they must be able to exert influence
even after they are no longer present. Thus, we will need to
characterize delay distributions, which define how a cause’s
influence on its effects changes over time.1

A framework based on Poisson processes
To form a rational framework encompassing these desiderata,
we draw from the wide literature in statistics and computer
science on continuous-time stochastic processes. In particu-
lar we pay attention to one class of continuous-time stochas-
tic processes: Poisson processes. Poisson processes provide
an excellent starting ground for generalizing causal graphi-
cal models (and hence intervention) as they define a series of
independent random variables indexed over continuous time,
being the continuous analogue of the independent Bernoulli
events that take place on a series of discrete trials in many
causal graphical models (Griffiths, 2005).

In its simplest sense, a Poisson process is a stochastic pro-
cess (i.e., a series of random variables) that defines the rate
at which instantaneous events occur over continuous time.
That rate is determined by the rate function λ(t). If a set

1This notion of change over time is not meant to capture that
described in Rottman and Ahn (2009) where the change occurs over
successive presentations of the cause, but change associated with
temporal distance to one presentation of the cause.



of events are produced by a Poisson process, the probability
that a certain number of events (k) occurred in a time interval
([t0, t1], 0 ≤ t0 < t1) is,

P [(N(t1)−N(t0)) = k] =
e−λt0,t1 (λt0,t1)k

k!
,

where λt0,t1 =

∫ t1

t0

λ(t)dt .

The rate function defines the distribution of waiting times be-
tween events. For example, the waiting time before the first
event (τ1) is distributed P (τ1 = t) = λ(t)e−λ0,t .

Poisson processes have several desirable properties. If you
have two independent Poisson processes with rates λ1(t) and
λ2(t), you can take the union of their event sets and this pro-
duces another Poisson process with rate λ1(t)+λ2(t). This is
a “superposition” of Poisson processes. Now, suppose the ex-
istence of some Poisson process PP0, which has rate λ0(t).
Suppose also that you have another function with the same
support on t called π1(t), the range of which is a subset of
[0, 1]. Then, for an event produced by PP0, cancel that event
(i.e., treat it as if it had never occurred) with probability π1(t).
This procedure is called “thinning” the Poisson process PP0,
and the resultant Poisson process has rate λ(t)(1− π(t)).

Poisson processes have been used to model aspects of
continuous-time causal induction, including both causes that
occur instantaneously and over intervals (Griffiths, 2005;
Griffiths & Tenenbaum, 2005, 2009). However, this work
has focused on generative causes and only explored a lim-
ited class of delay distributions. In the remainder of the pa-
per, we show that this framework can address more of these
desiderata. First, we define preventative causes within the
Poisson process framework, evaluating the resulting model
through a new behavioral experiment based on Griffiths and
Tenenbaum (2005). We then introduce an extremely general
approach to handling delay distributions, which we evaluate
using the results of Greville and Buehner (2007).

Generative and preventative causes
The properties of the Poisson process – specifically invari-
ance of the form of the stochastic process under the superpo-
sition and thinning transformations – can be used to charac-
terize generative and preventative causal relations. Suppose
that there are i generative causes({Ci}) and j preventative
causes ({Cj}), and they exist over intervals of time. That is
∀Ca ∈ {Ci} ∪ {Cj}, ∃Ta(Ca = 1) ⊂ T where T is the set
of all non-measure-zero time intervals and Ta(Ca = 1) is the
set of intervals during which Ca occurs. Let the Poisson pro-
cess PP0 be a background rate of effect occurrence with an
unknown time-invariant rate function λ0 > 0. Causes assert
their influence by altering the base-rate of the effect.

Generative causes will superpose themselves onto the
background process, thereby increasing the rate of effect oc-
currence. That is, we can think of a generative cause Ci as
producing a series of effects on its own, thereby inducing

a Poisson process PPi with parameter λi(t), where we as-
sume that the cause only exhibits a non-zero effect when it is
present (i.e., t ∈ Ti(Ci = 1)). That is, whenCi is present, the
rate will be λ0 + λi, and otherwise the rate will be λ0. This
is equivalent to a continuous-time version of the Noisy-OR
logic gate, used in models of discrete-time causal inference
(see Griffiths, 2005; Simma et al., 2008).

We will assume preventative causes will thin all Poisson
processes that generate effects including both the background
and generative processes. A preventative cause Cj will have
thinning parameter πj which affects the generative processes
if and only if cause is present. Thus, if λtotal(t) is the total rate,
whenCj is absent, the rate be λtotal(t), but whenCj is present
the rate will become λtotal(t)(1− πj). This is equivalent to a
continuous-time version of the Noisy-ANDNOT logic gate,
which in the discrete-time setting defines the probability that
an event will be canceled when the cause is present.

In the case where there are many causes, we will presume
that they are independent and thus can be composed with one
another, such that you will have a summation of the rates for
the generative causes and a product of 1− the thinning pa-
rameters for the preventative causes. The rate function for a
case with background rate λ0 and i generative causes and j
preventative causes is defined as

λ(t) =
(
λ0 +

∑
i

λi

∫
T ′∈Ti(Ci=1)

δ(t, T ′)dT ′
)

∏
j

(1− πj
∫
T ′∈Tj(Cj=1)

δ(t, T ′)dT ′). (1)

where δ(·, ·) is the Dirac delta function, which has an infinite
spike where the two arguments agree and 0 elsewhere. Note,
this does not include a prior for the causes; i.e., we treat these
causes as continuous-time interventions.

The situation used as a cover story by Griffiths and Tenen-
baum (2005) – determining whether electrical fields change
the rate at which radioactive compounds emit particles – in-
volves a system that can be analyzed using this model, where
it has one effect (particle emissions) with a background rate
and (possibly) one generative cause (the electrical field, Ci).
Griffiths and Tenenbaum presented participants with informa-
tion summarizing the number of effect occurrences (particle
emissions) that occurred during one minute with the cause
on and one minute with the cause off. For each compound,
participants rated on a scale of 0 (the electric field definitely
does not cause the compound to decay) to 100 (the electric
field definitely does cause the compound to decay) their be-
lief regarding whether Ci was indeed a cause.

To model the participants’ predictions, Griffiths and Tenen-
baum (2005) treated the problem as one of model selection
between a graphical model G0 where the cause had no ef-
fect (i.e., λi(t) = 0,∀t) and a graphical model G1 where the
cause did have an effect (i.e., λi(t) > 0,∃t). They parameter-
ized G0 and G1 as we have above, as Poisson processes with
different rate functions, where generative causes are treated



as we have treated them above. The quantity used to pre-
dict human judgments, termed “Causal Support”, was the log
likelihood ratio in favor of G1, integrating over the values
of all of the parameters of the Poisson process. This model
performed well at predicting the mean judgments of the par-
ticipants, with a scaled correlation of r = .978, α = .35.2

Other models considered by Griffiths and Tenenbaum (2005)
also performed well, with the raw difference in rates ∆R
(Anderson & Sheu, 1995) giving r = .899, α = .05, a vari-
ant on the Power-PC theory (Cheng, 1997) giving r = .845
α = .06, and a modified χ2 score giving r = .980, α = .01.

Griffiths and Tenenbaum (2005) considered only genera-
tive causes, creating the opportunity to use the same paradigm
to evaluate whether the treatment of preventative causes
outlined above is effective. We ran a new experiment to
address this question. Considering only one preventative
cause, we used nearly identical materials to Griffiths and
Tenenbaum (2005), only changing the word “increases” to
“decreases” and using the following (N(c−), N(c+)) pairs
(where (N(c−) and N(c+)) are the number of particles that
were emitted during the minute when, respectively, the cause
was absent and was present): (52, 2), (60, 10), (100, 50),
(12, 2), (20, 10), (60, 50), (4, 2), (12, 10), (52, 50).

We recruited 18 participants through Amazon Mechanical
Turk to participate in our study online. We asked each partic-
ipant to make the following judgment about each of the nine
cases: “Does this field decrease the rate at which this com-
pound emits particles?” Participants responded on a scale
ranging from 0 (the electrical field definitely does not de-
crease the rate of particle emissions) to 100 (the electrical
field definitely does decrease the rate of particle emissions).

Following Griffiths and Tenenbaum (2005) we modeled
this task as a model selection problem between two graphs
G0 where the cause has no effect and G1 where the cause
has a (preventative) effect on the rate of particle emissions.
We used the model defined in Equation 1 with one poten-
tial preventative cause with parameter π1 and a background
rate λ0 to define the likelihood functions for G0 and G1. We
assumed that in G0, π1 is constrained to be equal to 0. To ob-
tain the log likelihood ratio, we need to provide likelihoods in
terms of the graphical models (i.e., P (D|G0) and P (D|G1)
for the observed data D). However, as they stand, the Pois-
son processes associated with these graphical models assume
that the parameters λ0 and π1 are known, which is not the
case. We thus need to define prior distributions over these pa-
rameters. With defined prior distributions, we can use Monte
Carlo integration to obtain our marginal likelihoods, corre-
sponding to the probability of the data given just the graphi-
cal model. We defined the prior for π1 as U(0, 1), i.e., uni-
formly distributed in the interval [0, 1]. Griffiths and Tenen-
baum (2005) used an improper prior for λ0, with λ0 ∼ 1

λ0
.

We approximated the previously used prior by sampling v0 ∼

2As is usual in these studies, the authors scaled their model’s
values with the non-linear transformation y = sign(x)|x|α where α
is chosen to maximize the linear correlation r.
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Figure 1: Preventative data for particle emissions: human re-
sponses and scaled model predictions. Support is the model
that results from our framework.

U(log(10−6), log(106)) and letting λ0 = ev0 . 3

Using the log likelihood ratio in favor of the hypothesis that
π1 ∼ U(0, 1) (G1) over π1 = 0 (G0) as our predictor of mean
human judgments, we see a high scaled correlation with the
results of the experiment: Causal Support gives r = 0.963,
α = 0.23 (see Figure 1). We also evaluated the models tested
by Griffiths and Tenenbaum (2005), which showed similarly
high performance, ∆R : r = 0.780, α = 1.95 × 10−4;
Power PC: r = 0.986, α = 0.45 ; and χ2 : r = 0.942, α =
1.95 × 10−4. Our purpose is not to claim that the model
we have defined is the best model of human inference, but to
demonstrate that the assumptions we have made about han-
dling preventative causes in our framework are reasonable.
Future work will hopefully clarify whether this model out-
performs the other models in cases where their predictions
diverge more dramatically.

Delay distributions
We will now describe how we implement delay distributions
in our framework and apply the resultant model to modeling
the results of Greville and Buehner (2007) – i.e., the bacte-
ria death studies. We assume that generative and preventative
causes have the same representation as above. We will as-
sume that delay functions define what proportion of a cause’s
influence remains an arbitrary amount of time after it occurs,
where a base parameter defines the maximum influence of the
cause.

Let fgi (·, ·; γi) indicate the delay function with unknown
parameters γi for generative cause Ci, and fpj (·, ·; θj) indi-
cate the delay function with unknown parameters θj for pre-
ventative cause Cj . Let the set {tk} be the set of times that
instantaneous cause Ck occurs and {[tl,0, tl,1]} be the set of

3To see the approximation, note that v0 = log(λ) and v′0 = 1
λ

and use a change of variables to find fλ0(·).



−70

−60

−50

−40

−30

−20

−10

0

10

20

30

 Predicting Greville & Buenher (2007): Exp 1

 Scaled Model Predictions

 M
e

a
n

 S
u

b
je

ct
 R

e
sp

o
n

se
s

Figure 2: Model predictions for Greville and Buehner (2007),
Experiment 1.

times over which interval cause Cl occurs. We set λ0 to indi-
cate the underlying rate of an effects’ occurrence, and λi and
πj to indicate the maximum value of a cause’s influence.

The effects of delay distributions can be accommodated by
defining a Poison process with rate

λ(t) =

(
λ0 +

∑
Cg

i

( ∑
t′∈{ti}

λif
g
i (t, t′; γi)+

∑
[t′0,t

′
1]∈{[ti,0,ti,1]}

λif
g
i (t, [t′0, t

′
1]; γi)

))
∏
Cp

j

( ∏
t′∗∈{tj}

(1− πjfpj (t, t′; θj))

∏
[t′0,t

′
1]∈{[tj0 ,tj1 ]}

(1− πjfpj (t, [t′0, t
′
1]; θj))

)
.

where f(t, [t0, t1]; ·) is the convolution of f(t, x; ·) with the
boxcar function on [t0, t1] (i.e., the function that takes the
value 1 for all x ∈ [t0, t1] and 0 otherwise). This allows us
to keep the expressivity needed to capture our first findings,
while allowing greater generality in the types of delay distri-
butions applicable to interval causes.

Modeling the studies in Greville and Buehner (2007) re-
quires further formal specification. Because events in these
experiments were deaths they happen only once. As such,
we only consider a bacterium to have died on the first ar-
rival in a Poisson process defining the rate of death (i.e.,
p(τ1 = t) = λ(t)e−λ0,t , where λa,b =

∫ b
a
λ(t)dt). But,

we do not know the precise time at which the bacterium died,
merely the day on which it died. Therefore, the likelihood
that bacterium i died on day ti,1 is

∫ ti,1
ti,0

λ(t) e−λ0,tdt =

e−λ0,ti,0 − e−λ0,ti,1 , where ti,0 is the day before ti,1. Fi-
nally, we model the 80 bacterial cultures in each condition
as 80 conditionally independent Poisson processes given an
underlying graph, i.e.,p(D|G) =

∏80
i=1

∫ ti,1
ti,0

λ(t) e−λ0,tdt.

Because Greville and Buehner (2007) asked participants
to respond on a scale of -100 (the radiation definitely causes
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Figure 3: Model predictions for Greville and Buehner (2007),
Experiment 2.

death) to 0 (the radiation has no effect) to 100 (the radiation
definitely prevents death), we have effectively three graphs to
choose from: Gg , the generative graph (where π1 = 0 and
λ1 ∈ R+); Gp, the preventative graph (where λ1 = 0 and
π1 ∈ [0, 1]); and G0 the null graph (where π1 = λ1 = 0). As
in Griffiths and Tenenbaum (2009), we modeled participants’
mean responses in each condition as P (Gp|D) − P (Gg|D),
assuming all three graphs are a priori equally likely.

We assumed a scaled exponential decay function with pa-
rameter φ1 is used for both generative and preventative causes
(i.e., fi(t, t′; γi) = fj(t, t

′; θj) = e−φ1(t−t′) where t′ is the
time that a cause occurs). Because the radiation is only ap-
plied to the bacteria once at the beginning of the five days, for
Gg and Gp, the only occurrence of the cause is instantaneous
and appears at t = 0. Thus, for the generative graph,

λ0,t =

∫ t

0

λ0 + λ1f1(s, 0; γ1)ds = tλ0 +
λ1
φ1

(1− e−tφ1),

and for the preventative graph,

λ0,t = tλ0(1− π1
φ1

(1− e−tφ1))

Similar to before, as a prior for λ0 we used v0 ∼
U(log(10−1), log(101)) and set λ0 = ev0 . The remaining
priors were defined as π1 ∼ U(0, 1), λ1 ∼ Γ(1, λ0), and
φ1 ∼ Γ(1, λ0), where the priors are defined in terms of λ0
such that they inherit the scale defined by λ0.

Using Monte Carlo integration, we calculated our model’s
judgments P (Gp|D)−P (Gg|D) for the data in Greville and
Buehner (2007). Because the experiments used slightly dif-
ferent methods we evaluated our model predictions separately
for each experiment but concurrently for all 18 conditions
within each experiment. Our model has a scaled correlation
of r = .910 (α = 2.74) with mean participant responses in
Experiment 1 and a scaled correlation of r = .957 (α = 1.72)
with mean participant responses in Experiment 2. Since sub-
mitting this paper, we learned of another model which out-
performs our own – namely that described in Buehner (2006).



This was used to analyze the same data and had an excellent
linear fit for the two experiments, r = .97 and .953 (Buehner,
2006). In these cases, our models make very similar predic-
tions thus, we will need to explore more complex experimen-
tal scenarios (e.g., trials with multiple exposures to the cause
at different times). This would put predictions from these
models in starker contrast.

Conclusions and future directions
Continuous-time causal induction is so pervasive that we of-
ten go about not even noticing that we are engaging in it. The
richness of temporal information surely aids people as they
infer causes in their everyday life. Here we have developed a
rational framework that makes use of that same wealth of in-
formation. The framework is based on an extension to causal
graphical models to include continuous-time stochastic pro-
cesses – specifically Poisson processes. We demonstrate in
two case studies that our framework is capable of accurately
predicting human judgments in tasks that require reasoning
about preventative causes and reasoning about delay func-
tions. This extends previous work on Poisson processes as
rational models of continuous-time causal induction.

Continuous-time stochastic processes are a very rich class
of mathematical objects, and we expect that the formal frame-
work we have outlined will grow more powerful as further
tools are added to it. Fortunately, there are currently many
tools being crafted. Our hope is to develop inference algo-
rithms that allow our framework to consider large, complex
networks of causal variables and the relations between them,
in the vein of Pearl (2000) and Simma and Jordan (2010).
Additionally, it will add an additional layer of generality to
develop an account for how instantaneous events can alter the
states of events that occur over intervals of time. Currently
we take the parameters of causes as fixed at all times – it is
merely the influence of the cause on the effect that wanes.
However, people are very capable of reasoning about causal
relations that change their form over time (Rottman & Ahn,
2009), and as such explaining data of that sort may be essen-
tial for capturing the full range of human causal reasoning.

Developing a rational framework for continuous-time
causal induction could potentially provide insight into other
phenomena of human causal judgment. One of the advan-
tages of taking a Bayesian approach to causal induction is its
ability to form strong inferences from very small amounts of
data. This feature may be essential in explaining why per-
ceptual causality (where one makes a causal inference from
a single piece of data) is extremely sensitive to subtle dif-
ferences in timing (Michotte, 1963; Newman, Choi, Wynn,
& Scholl, 2008). Finally, one of the central motivations for
studying time in causation is a pervasive belief that the tim-
ing of events can unveil the direction of the underlying rela-
tionship (i.e., what causes what; Rottman & Keil, 2012). If
people do believe this (even implicitly), then characterizing
the role of continuous-time in causation would be absolutely
necessary if we are to understand the full extent of the human

mind’s capacity and propensity for causal inference.
Of course, all of this belies the fact that there are many

phenomena on human causal reasoning that have yet to be
studied. What any computational-level framework offers is
the ability to develop new questions out of the formal princi-
ples that originally drove the design – even if those questions
did not exist when the framework was formulated. If such an
event occurs in the near future, it would be a pleasant thought
to think that it could have been the effect of the work pre-
sented here; but whether that will occur – only time will tell.
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