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Abstract

Models of categorization make different representational as-
sumptions, with categories being represented by prototypes,
sets of exemplars, and everything in between. Rational mod-
els of categorization justify these representational assumptions
in terms of different schemes for estimating probability distri-
butions. However, they do not answer the question of which
scheme should be used in representing a given category. We
show that existing rational models of categorization are spe-
cial cases of a statistical model called the hierarchical Dirichlet
process, which can be used to automatically infer a represen-
tation of the appropriate complexity for a given category.
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Rational models of cognition aim to explain human be-
havior as an optimal solution to the computational problems
posed by our environment (Anderson, 1990). Examining
these computational problems provides a deeper understand-
ing of the assumptions behind successful models of human
cognition, and can lead to new models. In this paper, we
pursue a rational analysis of category learning: inferringthe
structure of categories from a set of stimuli labeled as be-
longing to those categories. The knowledge acquired through
this process can ultimately be used to make decisions about
how to categorize new stimuli. Existing rational analyses of
category learning (Anderson, 1990; Ashby & Alfonso-Reese,
1995; Rosseel, 2002) agree that the computational problem
involved is one ofdensity estimation: determining the proba-
bility distributions over stimuli associated with different cat-
egory labels.

Viewing category learning as density estimation helps to
clarify the assumptions behind the two main classes of psy-
chological models: exemplar models and prototype models.
Exemplar models assume that a category is represented by a
set of stored exemplars, and categorization involves compar-
ing new stimuli to the set of exemplars in each category (e.g.,
Medin & Schaffer, 1978; Nosofsky, 1986). Prototype models
assume that a category is associated with a single prototype
and categorization involves comparing new stimuli to these
prototypes (e.g., Reed, 1972). These approaches to category
learning correspond to different strategies for density estima-
tion, being nonparametric and parametric density estimation
respectively (Ashby & Alfonso-Reese, 1995).

Despite providing insight into the assumptions behind
models of categorization, existing rational analyses of cate-

gory learning leave a number of questions open. In particular,
many categorization experiments have explored whether peo-
ple represent categories with exemplars or prototypes. One
desideratum for a rational account of category learning might
be that it can indicate when a learner should choose to use one
of these forms of representation over the other. The greater
flexibility of nonparametric density estimation has motivated
the claim that exemplar models are to be preferred as ratio-
nal models of category learning (Nosofsky, 1998). However,
nonparametric and parametric methods have different advan-
tages and disadvantages: the greater flexibility of nonpara-
metric methods comes at a cost of requiring more data to es-
timate a distribution. The decision as to which representation
scheme to use should be determined by the stimuli presented
to the learner, and existing rational analyses do not indicate
how this decision should be made (although a similar argu-
ment is made by Briscoe & Feldman, 2006).

The question of how to represent categories is complicated
by the fact that prototype and exemplar models are not the
only options. A number of models have recently explored
possibilities between these extremes, representing categories
using clusters of several exemplars (Anderson, 1990; Van-
paemel, Storms, & Ons, 2005; Rosseel, 2002; Love, Medin,
& Gureckis, 2004). The range of representations possible
in these models emphasizes the importance of being able to
identify an appropriate representation for a category fromthe
stimuli themselves: with more options for the representation
of categories, it becomes more important to be able to say
which option a learner should choose.

Our goal in this paper is to build on previous rational analy-
ses of category learning to provide not just a unifyingframe-
work which can be used to understand the assumptions be-
hind existing models of categorization, but a unifyingmodel
of which these models are special cases. This model goes
beyond previous unifying models of category learning (e.g.,
Rosseel, 2002; Vanpaemel et al., 2005) by providing a ratio-
nal solution to the question of which representation should
be chosen based purely on the structure of a category. These
results are achieved by identifying connections between mod-
els of human category learning and ideas from nonparametric
Bayesian statistics. In particular, we show that all of the mod-
els mentioned above can be viewed as variants of a stochastic



process called thehierarchical Dirichlet process(Teh, Jor-
dan, Beal, & Blei, 2004).

Identifying the connection between models of human cate-
gory learning and nonparametric Bayesian density estimation
extends the scope of the rational analysis of category learning.
It also provides a different perspective on human category
learning. Rather than suggesting that people use one form
of representation or another, our approach indicates how it
might be possible (and, in fact, desirable) for people to switch
between representations based upon the structure of the stim-
uli they observe, choosing the representation best justified by
the available data. We illustrate this by modeling data from
Smith and Minda (1998), in which people seem to shift from
using a prototype representation early in training to usingan
exemplar representation late in training.

The plan of the paper is as follows. The next section sum-
marizes exemplar and prototype models, and the idea of in-
terpolating between the two. We then discuss existing ratio-
nal models of categorization. This raises the question of how
the models might be unified, which we address by turning to
some ideas from nonparametric Bayesian statistics. Having
established these ideas, we define a unifying rational model
of categorization based on the hierarchical Dirichlet process,
and show that this model can capture the shift from prototypes
to exemplars in the data of Smith and Minda (1998).

Exemplars and prototypes
Exemplar and prototype models were originally developed
as accounts of the cognitive processes involved in catego-
rization, incorporating different assumptions about how cat-
egories are represented and how this information is used.
These models share the basic assumption that people assign
stimuli to categories based on similarity. Given a set ofN−1
stimuli with featuresxN−1 = (x1,x2, . . . ,xN−1) and category
labelscN−1 = (c1,c2, . . . ,cN−1), the probability that stimulus
N with featuresxN is assigned to categoryj is given by

P(cN = j|xN,xN−1,cN−1) =
ηN, jβ j

∑c ηN,cβc
(1)

whereηN,c is the similarity of the stimulusxN to categoryc
andβc is the response bias for categoryc. The key difference
between the models is in howηN,c is computed.

In an exemplar model (e.g., Medin & Schaffer, 1978;
Nosofsky, 1986), a category is represented by all of the stored
instances of that category. The similarity of stimulusN to cat-
egory j is calculated by summing the similarity of the stimu-
lus to all stored instances of the category. That is,

ηN, j = ∑
i|ci= j

ηN,i (2)

whereηN,i is a symmetric measure of the similarity between
the two stimulixN andxi . In a prototype model (e.g., Reed,
1972), a categoryj is represented by a single prototypical
instance. In this formulation, the similarity of a stimulusN to

categoryj is defined to be

ηN, j = ηN,p j (3)

wherep j is the prototypical instance of the category andηN,p j

is a measure of the similarity between stimulusN and the
prototypep j , as used in the exemplar model.

Realizing that these two models are opposite ends of a
spectrum, Vanpaemel et al. (2005) observed that we can for-
malize a set of interpolating models by allowing the instances
of each category to be partitioned into clusters, where the
number of clustersKc ranges from 1 toNc. Then each cluster
is represented by a prototype, and the similarity of a stimulus
N to categoryj is defined to be

ηN, j =
K j

∑
k=1

ηN,p j,k (4)

wherep j,k is the prototype of clusterk in categoryj. When
Kc = 1 for all c, this is equivalent to the prototype model,
and whenK = Nc for all c, this is equivalent to the exemplar
model. Thus, this generalized model, the Varying Abstraction
Model (VAM), is more flexible than both the exemplar and
prototype models, although it raises the problem of estimat-
ing which clustering people are actually using in a particular
categorization task (for details, see Vanpaemel et al., 2005).

Rational models of categorization
Following the methodology outlined by Anderson (1990), ra-
tional models of categorization explain human behavior in
terms of adaptive solutions to a computational problem posed
by the environment rather than the underlying cognitive pro-
cesses. Existing analyses tend to agree that the basic prob-
lem is one ofprediction– identifying the category label or
some other unobserved property of an object using its ob-
served properties (Anderson, 1990; Ashby & Alfonso-Reese,
1995; Rosseel, 2002). Focusing for the moment on the case
of predicting category labels, as in most categorization ex-
periments, the problem can be formulated as one of Bayesian
inference: computing the probability that objectN belongs
to categoryj given the features and category labels ofN−1
objects. Applying Bayes’ rule, we can write

P(cN = j|xN,xN−1,cN−1) = (5)

P(xN|cN = j,xN−1,cN−1)P(cN = j|cN−1)

∑cP(xN|cN = c,xN−1,cN−1)P(cN = c|cN−1)

with the posterior probability of categoryj being proportional
to the product of the probability of an object with featuresxN

being produced from that category and the prior probability
of choosing that category, taking into account the featuresand
labels of the previousN−1 objects (assuming that only cate-
gory labels influence the prior). Category learning, then, be-
comes a matter of determining these probabilities – a problem
that is known asdensity estimation. Different rational models
vary in how they approach this problem.



Exemplar and prototype models
Ashby and Alfonso-Reese (1995) observed a connection be-
tween the Bayesian solution to the problem of categoriza-
tion presented in Equation 5 and the way that choice prob-
abilities are computed in exemplar and prototype models
(i.e. Equation 1). Specifically,ηN, j can be identified with
P(xN|cN = j,xN−1,cN−1), while β j corresponds to the prior
probability of categoryj, P(cN = j|cN−1). The difference be-
tween exemplar and prototype models thus comes down to
different ways of estimatingP(xN|cN = j,xN−1,cN−1).

The definition ofηN, j used in an exemplar model (Equation
2) corresponds to estimatingP(xN|cn = j,xN−1,cN−1) as the
sum of a set of functions (known as “kernels”) centered on
thexi already labeled as belonging to categoryj, with

P(xN|cN = j,xN−1,cN−1) ∝ ∑
i|ci= j

f (xN,xi) (6)

wheref (x,xi) is a probability distribution centered onxi . This
is a method that is widely used for approximating distribu-
tions in statistics, being a simple form of nonparametric den-
sity estimation (meaning that it can be used to identify distri-
butions without assuming that they come from an underlying
parametric family) called kernel density estimation.

The definition ofηN, j used in a prototype model (Equa-
tion 3) corresponds to estimatingP(xN|cn = j,xN−1,cN−1) by
assuming that the distribution associated with each category
comes from an underlying parametric family, and then find-
ing the parameters that best characterize the instances labeled
as belonging to that category. The prototype corresponds to
these parameters. Again, this is a common method for esti-
mating a probability distribution, known as parametric den-
sity estimation, in which the distribution is assumed to be of
a known form but with unknown parameters.

The Mixture Model of Categorization
The interpretation of exemplar and prototype models as dif-
ferent schemes for density estimation suggests that a sim-
ilar interpretation might be found for interpolating mod-
els. Rosseel (2002) proposed one such model – the Mixture
Model of Categorization (MMC) – in which it is assumed that
P(xN|cN = j,xN−1,cN−1) is a mixture distribution. Specif-
ically, the model assumes that each objectxi comes from a
clusterzi , and each cluster is associated with a probability
distribution over the features of the objects generated from
that cluster. When evaluating the probability of a new object
xN, it is necessary to sum over all of the clusters from which
that object might have been drawn, with

P(xN|cN = j,xN−1,cN−1) = (7)
K j

∑
k=1

P(xN|zN = k,xN−1,zN−1)P(zN = k|zN−1,cN = j,cN−1)

where K j is the total number of clusters for categoryj,
P(xN|zN = k,xN−1,zN−1) is the probability ofxN under clus-
ter k, andP(zN = k|zN−1,cN = j,cN−1) is the probability of

generating a new object from clusterk in category j. The
clusters can either be shared between categories, or specific
to a single category (in which caseP(zN = k|zN−1,cN = j) is
0 for all clusters not belonging to categoryj). It is straight-
forward to show that this reduces to kernel density estima-
tion when each object has its own cluster and the clusters
are equally weighted, and parametric density estimation when
each category is represented by a single cluster. By a similar
argument to that used for the exemplar model above, we can
connect Equation 7 with the definition ofηN, j in the VAM
(Equation 4), providing a rational justification for this method
of interpolating between exemplars and prototypes.

Anderson’s Rational Model of Categorization

The MMC elegantly resolves the question of how to define a
rational model between exemplars and prototypes, but leaves
open the issue of determining how many clusters are used in
representing each category – a question about which of these
kinds of representations might be more appropriate based on
the available data. Anderson (1990) introduced a model that
he called the Rational Model of Categorization (RMC), which
presents a partial solution to this problem.

The RMC differs from the other models discussed in this
section in assuming that category labels should be treated like
features. Thus, the RMC specifies a joint distribution on fea-
tures and category labels, rather than assuming that the dis-
tribution on category labels is estimated separately and then
combined with a distribution on features for each category.
As in the MMC, this distribution is a mixture, with

P(xN,cN) = ∑
zN

P(xN,cN|zN)P(zN) (8)

whereP(zN) is a distribution over clusterings of theN ob-
jects. The key difference from the MMC is that this distribu-
tion allows the number of clusters to be unbounded, with

P(zN) =
αK

∏N−1
i=0 [α+ i]

K

∏
k=1

(Mk−1)! (9)

whereα is a parameter of the distribution andMk is the num-
ber of objects assigned to clusterk.1 This is the distribu-
tion that results from sequentially assigning objects to clus-
ters with probability

P(zi = k|zi−1) =

{ Mk
i−1+α Mk > 0 (i.e.,k is old)

α
i−1+α Mk = 0 (i.e.,k is new)

(10)

where the countsMk are accumulated overzi−1. Thus, each
object can be assigned to an existing cluster with probability
proportional to the number of objects already assigned to that
cluster, or to a new cluster with probability determined byα.

1Due to space constraints, we have defined this distribution in the
form associated with the Dirichlet process, rather than using the idea
of a “coupling probability” from Anderson’s (1990) treatment (see
Neal, 1998, and Sanborn, Griffiths, & Navarro, 2006, for details).



Despite having been defined in terms of the joint distri-
bution of xN andcN, the assumption that features and cate-
gory labels are independent given clusters makes it possible
to write P(xN|cN = j,xN−1,cN−1) in the same form as Equa-
tion 7. The probability of clusterk is simply

P(zN = k|zN−1,cN = j,cN−1) ∝ (11)

P(cN = j|zN = k,zN−1,cN−1)P(zN = k|zN−1)

where the second term on the right hand side is given by
Equation 10. This defines a distribution over the sameK
clusters regardless ofj, but the value ofK depends on the
number of clusters inzN−1. The RMC can thus be viewed as
a form of the mixture model in which all clusters are shared
between categories but the number of clusters is inferred from
the data. However, the two models are not directly equivalent,
because assuming that features and category labels are gen-
erated based on the clustering induces a dependency between
the two, meaning thatcN depends onxN−1 as well ascN−1, vi-
olating the (arguably sensible) assumption made by the other
models and embodied in Equation 5.

The RMC thus comes close to our goal of specifying a uni-
fying rational model of categorization, capturing many of the
ideas embodied in other models and making it possible to
infer a representation warranted by the data. However, the
model is still significantly limited. First, the analysis given
in the previous paragraph shows that the model assumes that
every category is represented using the same set of clusters
(and thus the same number), an assumption that is inconsis-
tent with many models that interpolate between prototypes
and exemplars (e.g., Vanpaemel et al., 2005). Second, the
idea that category labels should be treated like other features
has some odd implications, such as the dependency between
features and category labels mentioned above. These lim-
itations leave room for a model in which each category is
directly represented by a different number of clusters, with
the appropriate number being inferred from the data. We de-
velop and test such a model in the remainder of the paper,
by drawing on connections between the RMC and work in
nonparametric Bayesian statistics.

Dirichlet processes and beyond
The RMC defines a probability distribution as a mixture of
an unbounded number of clusters. The same idea appears in
nonparametric Bayesian statistics, in the form of theDirichlet
process mixture model(Antoniak, 1974; Neal, 1998). In fact,
the distribution defined by the RMC is exactly the same as
that defined by this model (Neal, 1998; Sanborn et al., 2006).
This equivalence means that we can use recent results gener-
alizing the Dirichlet process to identify a richer class of ratio-
nal models of categorization.

Teh, Jordan, Blei, and Beal (2004) introduced a general-
ization of the Dirichlet process known as thehierarchical
Dirichlet process(HDP). The basic idea is simple. Observa-
tions are divided into groups, and each group is modeled us-
ing a Dirichlet process. A new observation is first compared

HDP∞,∞

categories share no clusterscategories share clusters

intermediate number of clusters

(prototype)

(exemplar)

γ → ∞

α → 0
one cluster per category

α → ∞
(RMC)

γ ∈ (0,∞)

α ∈ (0,∞)

one stimulus per cluster

HDP0,+

HDP+,+

HDP∞,+

HDP0,∞

HDP+,∞

Figure 1: Unifying rational models of categorization. Each
model is specified as HDPα,γ, where+ is a value in(0,∞).

to all of the clusters in its group, with the prior probability of
each cluster determined by Equation 10. If the observation is
to be assigned to a new cluster, the new cluster is drawn from
a second Dirichlet process that compares the stimulus to all
of the clusters that have been created across groups. This
Dirichlet process is governed by parameterγ, analogous toα,
and the prior probability of each cluster is proportional tothe
number of times that cluster has been selected by any group,
instead of the number of observations in each cluster. The
new observation is only assigned a completely new cluster if
both Dirichlet processes select a new cluster.

The HDP provides a way to model probability distributions
across groups of observations. Each distribution is a mixture
of an unbounded number of clusters, but the clusters can be
shared between groups. Furthermore, the number of clus-
ters in each group can vary independently. A priori expecta-
tions about the number of clusters in a group and the extent
to which clusters are shared between groups are determined
by the parametersα andγ. Whenα is small, each group will
have few clusters, but whenα is large, the number of clus-
ters will be closer to the number of observations. Whenγ is
small, groups are likely to share clusters, but whenγ is large,
the clusters in each group are likely to be unique.

A unifying rational model
We can now define a unifying rational model of categoriza-
tion, based on the HDP. If we identify each category with
a “group” for which we want to estimate a distribution, the
HDP instantly becomes a model of category learning, provid-
ing us with a way to formulate models in which the number
of clusters in each category is learned, and subsuming all pre-
vious rational models through different settings ofα and γ.
Figure 1 identifies six models we can obtain by considering
limiting values ofα andγ.2

Three of the models shown in Figure 1 are exactly isomor-
phic to existing models. HDP∞,∞ is an exemplar model, with
one cluster per object and no sharing of clusters. HDP0,∞ is a
prototype model, with one cluster per category and no shar-
ing of clusters. HDP∞,+ is the RMC, provided that category
labels are treated as features. In HDP∞,+, every object has its
own cluster, but those clusters are generated from the higher-
level Dirichlet process. Consequently, group membership is

2The case ofγ → 0 is omitted, since it simply corresponds to a
model in which all observations belong to the same cluster across all
categories, for all values ofα.



ignored and the model reduces to a Dirichlet process.

There are also several new models. HDP0,+ makes the
same basic assumptions as the prototype model, with a single
cluster per category, but makes it possible for different cate-
gories to share the same prototype – something that might be
appropriate in an environment where the same category can
have different labels. However, the most interesting models
are HDP+,+ and HDP+,∞. These models are essentially the
MMC, with clusters shared between categories or unique to
different categories respectively, but the number of clusters in
each category can differ and be learned from the data. Conse-
quently, these models make it possible to answer the question
of whether a particular category is best represented using pro-
totypes, exemplars, or something in between, simply based on
the structure of that category. In the remainder of the paper,
we show that one of these models – HDP+,∞ – can capture the
shift that occurs from prototypes to a more exemplar-based
representation in a recent categorization experiment.

Modeling the prototype-exemplar transition

Smith and Minda (1998) argued that people seem to produce
responses that are more consistent with a prototype model
early in learning, later shifting to exemplar-based represen-
tations. The models discussed in the previous section poten-
tially provide a rational explanation for this effect: the prior
specified in Equation 9 prefers fewer clusters and is unlikely
to be overwhelmed by small amounts of data to the contrary,
but as the number of objects consistent with multiple clusters
increases, the representation should shift. These resultsthus
provide an opportunity to compare the HDP to human data.

We focused on the non-linearly separable structure ex-
plored in Experiment 2 of Smith and Minda (1998). In this
experiment, 16 participants were presented with six-letter
nonsense words labeled as belonging to different categories.
Each letter could take one of two values, producing the bi-
nary feature representation shown in Table 1. Each category
contains one prototypical stimulus (000000 or 111111), five
stimuli with five features in common with the prototype, and
one stimulus with only one feature in common with the pro-
totype, which we will refer to as an “exception”. No linear
function of the features can correctly classify every stimulus,
meaning that a prototype model will not be able to distinguish
between the categories exactly. Participants were presented
with a random permutation of the 14 stimuli and asked to
identify each as belonging to either Category A or Category
B, receiving feedback after each stimulus. This block of 14
stimuli was repeated 40 times for each participant, and the re-
sponses were aggregated into 10 segments of 4 blocks each.
The results are shown in Figure 2 (a). The exceptions were
initially identified as belonging to the wrong category, with
performance improving later in training.

We tested three models: the exemplar model HDP∞,∞, the
prototype model HDP0,∞, and HDP+,∞. In all three models,
we assumed that the features of each object are independent

given its cluster, meaning that we can write

P(xN|zN = k,xN−1,zN−1) = ∏
d

P(xN,d|zN = k,xN−1,zN−1)

wherexN,d is the value of thedth feature of objectN. Given
the cluster, the value on each dimension is assumed to have
a Bernoulli distribution (although other distributions can be
used for continuous features). Integrating out the parameter
of this distribution with respect to a Beta(µ0,µ1) prior, we
obtain

P(xN,d = v|zN = k,xN−1,zN−1) =
Mk,v +µv

Mk +µ0 +µ1
(12)

whereMk,v is the number of stimuli with valuev on thedth
feature thatzN identifies as belonging to clusterk.

All three models were exposed to the same training stimuli
as the human participants, and used to categorize each stimu-
lus after each segment of 4 blocks. The cluster structures for
the prototype and exemplar models are fixed, so the probabil-
ity of each category is straightforward to compute. However,
since HDP+,∞ allows arbitrary clusterings, the possible clus-
terings need to be summed over when computing the proba-
bilities used in categorization (as in Equation 7). We approx-
imated this sum by sampling from the posterior distribution
on clusterings using the Markov chain Monte Carlo (MCMC)
algorithm described by Teh et al. (2004). Each set of predic-
tions is based on an MCMC simulation with a burn-in of 1000
steps, followed by 100 samples separated by 10 steps each.
The parameterα was also estimated by sampling.

As in Smith and Minda’s original modeling of this data,
a guessing parameter was incorporated to allow for the pos-
sibility that participants were randomly responding for some
proportion of the stimuli. The guessing parameter was fit for
each participant, being fixed across every instance of every
stimulus for that participant. The values ofµ0 andµ1 were
also fit for each participant, with the restriction thatµ0 = µ1,
resulting in two free parameters for each of the models.

The predictions of the three models are shown in Figure 2,
averaged across participants, and model fits appear in Figure
3. As might be expected, the prototype model does poorly
in predicting the categories of the exceptions, while the ex-
emplar model is more capable of handling these stimuli. We
replicated the results of Smith and Minda (1998) in finding
that the prototype model fit better early in training (for seg-
ments 1-4), and the exemplar model better later in training.
However, we also found that HDP+,∞ provided an equiva-
lent or better account of human performance than the other
two models from segment 4 onwards. In particular, only this
model captured the shift in the treatment of the exceptions

Table 1: Categories A and B from Smith and Minda (1998)

Stimuli
A 000000, 100000, 010000, 001000, 000010, 000001, 111101
B 111111, 011111, 101111, 110111, 111011, 111110, 000100
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Figure 2: Human data and model predictions. (a) Results of Smith & Minda (1998, Experiment 2). (b) Prototype model,
HDP∞,0. (c) Exemplar model, HDP∞,∞. (d) HDP+,∞. For all panels, white plot markers are stimuli in Category A, and black are
in Category B. Triangular markers correspond to the exceptions to the prototype structure (111101 and 000100 respectively).
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Figure 3: Model fits, measured as log-likelihood of the human
responses under each model, for each segment of training.

over training. This shift occurred because the number of clus-
ters in the HDP changes around segment 4: categories are ini-
tially represented with one cluster, but then become a more
complex two cluster representation, with one for the stimuli
close to the prototype and one for the exception.

Conclusion
One of the most valuable aspects of rational models of cog-
nition is their ability to establish connections across different
fields. Here, we were able to exploit the correspondence be-
tween Anderson’s (1990) Rational Model of Categorization
and the Dirichlet process to draw on recent work in nonpara-
metric Bayesian statistics that allowed us to define a more
general rational model, based on the hierarchical Dirichlet
process. This model subsumes previous rational analyses of
human category learning, and provides a general solution to
the problem of selecting the number of clusters to represent
a category. The result is a picture of human categorization in
which people do not use a fixed representation of categories

across all contexts, but instead select a representation whose
complexity is warranted by the available data.
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