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Abstract

Languages are transmitted from person to person and generation to generation via a process of iterated
learning: people learn a language from other people who once learned that language themselves. We
analyze the consequences of iterated learning for learning algorithms based on the principles of Bayesian
inference, assuming that learners compute a posterior distribution over languages by combining a prior
(representing their inductive biases) with the evidence provided by linguistic data. We show that when
learners sample languages from this posterior distribution, iterated learning converges to a distribution
over languages that is determined entirely by the prior. Under these conditions, iterated learning is a
form of Gibbs sampling, a widely-used Markov chain Monte Carlo algorithm. The consequences of
iterated learning are more complicated when learners choose the language with maximum posterior
probability, being affected by both the prior of the learners and the amount of information transmitted
between generations. We show that in this case, iterated learning corresponds to another statistical
inference algorithm, a variant of the expectation-maximization (EM) algorithm. These results clarify
the role of iterated learning in explanations of linguistic universals and provide a formal connection
between constraints on language acquisition and the languages that come to be spoken, suggesting that
information transmitted via iterated learning will ultimately come to mirror the minds of the learners.
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1. Introduction

Languages change as they are passed from person to person, and from generation to
generation. A variety of explanations have been proposed for different aspects of language
change, as part of a growing literature on language evolution (e.g., Hurford, Studdert-Kennedy,
& Knight, 1998; Briscoe, 2002; Christiansen & Kirby, 2003). The key idea motivating much
of this work is that language change can be understood as a process of cultural evolution, with

Correspondence should be addressed to T. L. Griffiths, University of California, Berkeley, Department of
Psychology, 3210 Tolman Hall #1650, Berkeley, CA 94720-1650. E-mail: tom griffiths@berkeley.edu



442 T. L. Griffiths, M. L. Kalish/Cognitive Science 31 (2007)

languages themselves being subject to evolutionary forces. Accounts of language evolution
differ in the kind of forces they see as fundamental, appealing to analogues of the forces
of selection, mutation, and genetic drift that appear in biological evolution. For example,
accounts focusing on selection consider the consequences of a language for the “fitness” of its
speakers – that is, their tendency to produce further speakers of that language (e.g., Komarova
et al., 2001; Nowak et al., 2001, 2002).

While explanations of the properties of languages based on the fitness of their speakers are
intuitively appealing, it is important to take into account the possibility that those properties
could be produced by other processes. In biology, the prominent role of selection in early
evolutionary theory has more recently been supplemented by the suggestion that much of
the variation in the genome is the consequence of mutation and genetic drift, the forces that
govern the fidelity with which genetic information is transmitted from one generation to the
next (Kimura, 1983). In the case of language evolution, biological transmission is replaced
by cultural transmission, and in particular, learning. Each person learns a language from
the utterances produced by other people who were once language learners themselves. The
variation introduced by learning is the analogue of mutation and genetic drift in language
evolution, and it has been suggested that many of the properties of human languages might
simply arise from this process of iterated learning (Kirby, 1999, 2001; Brighton, 2002; Briscoe,
2002; Kirby & Hurford, 2002; Smith, Kirby, & Brighton, 2003; Kirby et al., 2004).

In order to study the consequences of learners learning from other learners, Kirby (2001)
introduced the iterated learning model. In this model, the process of language evolution
is idealized as the transmission of languages over a sequence of discrete generations, each
consisting of one or more learners. The first learner sees some linguistic data such as a set
of utterances, and forms a hypothesis about the language that might have produced it. Using
this hypothesis, the learner generates a new set of utterances, which are provided to the next
learner as data. This process continues, with each learner seeing data, forming a hypothesis,
and generating data for the next learner, as illustrated schematically in Fig. 1(a). Formalizing
the process of iterated learning in this way makes it possible to analyze its predictions for
language change (e.g., Kirby, 2001; Brighton, 2002; Smith et al., 2003).

Accounts of language evolution have the potential to shed light not just on the dynamics of
language change, but on the kinds of languages we might ultimately expect to be produced by
such a process. One of the main applications of the iterated learning model has been attempting
to explain the origins of linguistic universals (e.g., Kirby, 2001; Brighton, 2002; Smith et al.,
2003). Human languages form a subset of all logically possible communication schemes, with
certain universal properties being shared by all languages. Some of these properties concern the
fundamental structure of language. For example, all human languages are compositional: the
elements of utterances correspond to the elements of the events they describe (Krifka, 2001).
Other linguistic universals govern subtle and surprisingly specific aspects of the grammar of
human languages (Greenberg, 1963; Comrie, 1981; Hawkins, 1988).

Linguistic universals have traditionally been explained by appealing to innate constraints
imposed by a system specific to the acquisition of language that is part of the human genetic
endowment (e.g., Chomsky, 1965). Universals are viewed as a manifestation of these innate
constraints. Iterated learning potentially provides an alternative explanation, suggesting that
properties such as compositionality can emerge as a consequence of many generations of
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Fig. 1. (a) Language is learned anew by each generation, a process which has been proposed as an explanation
for the existence of linguistic universals. Each learner sees data—a set of utterances—produced by the previous
generation, forms a hypothesis about the language from which those utterances were produced, and uses this
hypothesis to produce the data that will be supplied to the next generation. (b) Dependencies among variables in
the stochastic process induced by iterated learning. (c) Reduction to a Markov chain on hypotheses. (d) Reduction
to a Markov chain on data. (e) Reduction to a Markov chain on hypothesis-data pairs.

learners applying general-purpose learning algorithms. In particular, explanations of linguistic
universals based upon iterated learning have tended to focus on the idea that the finite amount
of information that can be communicated from one speaker to another imposes a “bottleneck”
on the transmission of language between generations. If particular properties of languages
make it easier to pass through that bottleneck, then many generations of iterated learning
might allow those properties to become universal. For example, it has been argued that the
regular structure of compositional languages means that they can be learned from less data,
and are thus more likely to pass through the information bottleneck (Kirby, 2001; Brighton,
2002; Smith et al., 2003).

The central role of iterated learning in language evolution suggests that we should attempt
to develop a deeper understanding of its implications. In particular, the possibility that iterated
learning with general-purpose learning algorithms might explain linguistic universals requires
determining the consequences of iterated learning for learners with different kinds of induc-
tive biases. Previous work has explored the influence of language acquisition on language
evolution via a number of avenues (Briscoe, 2002), including simulation of language learners
(Kirby, 2001; Brighton, 2002; Smith et al., 2003) and use of formal models of population
dynamics (Niyogi & Berwick, 1995, 1997a,b; Nowak, Plotkin, & Jansen, 2000; Komarova et
al., 2001; Nowak et al., 2001, 2002). These approaches indicate that languages with specific
properties, such as compositionality, can be produced by iterated learning with specific learn-
ing algorithms. However, there are no general results indicating the consequences of iterated
learning for arbitrary properties of languages or broad classes of learning algorithms.
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In this paper, we present a detailed analysis of iterated learning for the case where the
learners are rational Bayesian agents. Assuming that our learners use Bayes’ rule allows us to
characterize their biases through a prior probability distribution over hypotheses. We consider
two learning algorithms based on Bayesian inference: sampling from the posterior distribution
over hypotheses, and choosing the hypothesis that has maximum posterior probability. In both
cases, the consequences of iterated learning are strongly influenced by the prior of the learners.
When learners sample, iterated learning results in convergence of the probability that a learner
speaks a particular language to the prior probability the learner assigns to that language.
This convergence occurs regardless of the nature of the languages or the amount of data
available to each learner, indicating that iterated learning can produce systematic results in
the absence of an information bottleneck effect. The consequences of iterated learning when
learners maximize are more complicated, with the amount and accuracy of the data passed
between learners playing an important role, but are still governed by the prior distribution
assumed by the learners. We also show that iterated learning with sampling and maximizing
each correspond to algorithms that are widely used in statistics, providing a rich source of
further formal results.

The plan of the paper is as follows. Section 2 formally defines iterated learning, and
presents some general results characterizing its consequences. Section 3 introduces the basic
ideas behind Bayesian inference, and how these ideas apply to modeling language acquisition.
Section 4 presents our results on the consequences of iterated learning when learners sample
languages from their posterior distributions. Section 5 considers the case where learners
choose the hypothesis with greatest posterior probability. Section 6 illustrates the predictions
of this account by discussing an example of iterated learning in detail: the emergence of
compositionality. Section 7 shows how this framework can be extended to characterize the
consequences of iterated learning in an unbounded population of Bayesian learners. Section 8
concludes the paper, considering the implications of these results for understanding language
evolution and processes of cultural transmission more generally.

2. Analyzing iterated learning

Let D denote the set of data, d, that a learner might observe, and H denote the set of
hypotheses, h, that the learner might entertain about the origins of those data.1 In the case
of language learning, each hypothesis h ∈ H is a language, and the data d ∈ D are a set of
utterances. Each learner has a learning algorithm that specifies a procedure for choosing a
hypothesis h upon observing data d, and a production algorithm that specifies a procedure for
choosing new data d given a hypothesis h. Each learning algorithm, LA, defines a probability
distribution over hypotheses given data, PLA(h|d), and each production algorithm, PA, defines
a probability distribution over data given hypotheses, PPA(d|h). In the following analyses, we
will assume that all learners use the same learning and production algorithms.

Simulations of iterated learning are typically conducted in a setting where each generation
consists of a single learner who receives data produced by the learner in the previous generation
(Kirby, 2001; Brighton, 2002; Smith et al., 2003). Thus, the first learner sees data d0, samples
a hypothesis h1 from PLA(h1|d0), and generates new data d1 from PPA(d1|h1). These data
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are provided to the second learner, and the process continues, with the nth learner sampling
a hypothesis from PLA(hn|dn−1), and generating new data from PPA(dn|hn). This defines a
stochastic process on the variables d0, d1, . . . and h1, h2, . . ., as illustrated in Fig. 1 (b).

Using this formal framework, we can be precise about the questions we aim to answer by
analyzing iterated learning. To model language change, we need to understand the dynamics of
iterated learning: how the distribution over hn and dn changes as a function of time. To evaluate
the predictions that iterated learning makes about linguistic universals, we need to understand
its asymptotic behavior: what the distribution on hn and dn will be after many generations (that
is, as n becomes large). We can answer both of these questions by analyzing the stochastic
process defined by iterated learning using mathematical results characterizing the behavior of
Markov chains. Before outlining the relevance of these results to iterated learning, we will
briefly summarize the properties of Markov chains. More detailed introductions are provided
by Rosenthal (1995), Norris (1997), and Kemeny & Snell (1983).

2.1. A brief introduction to Markov chains

A Markov chain is a sequence of random variables v0, v1, . . . such that

P (vn|v0, v1, . . . , vn−1) = P (vn|vn−1) (1)

meaning that vn is independent of all of its predecessors, given vn−1. We will restrict our
attention to finite Markov chains, where each state of the Markov chain vn is an element of a
discrete set V , with k members. We will index the elements of this set using i, j ∈ {1, . . . , k}.
A Markov chain is homogeneous if P (vn|vn−1) is constant for all values of n. In this case, we
can fully describe the Markov chain with a transition matrix T = (tij ), such that

tij = P (vn = i|vn−1 = j ) (2)

where i and j are states of the Markov chain. Since P (vn = i|vn−1 = j ) is a probability
distribution,

∑k
i=1 tij = 1.

The dynamics of a finite Markov chain can be characterized using linear algebra. Let
p0 = (p0j ) be a vector encoding our knowledge about the initial state of the Markov chain,
with p0j = P (v0 = j ). Then we can write

P (v1 = i|p0) =
∑

j

P (v1 = i|v0 = j )P (v0 = j |p0) (3)

=
k∑

j=1

tijp0j (4)

where P (v1 = i|p0) is shorthand for the probability that v1 = i given that p0 encodes the
distribution of v0. If we use p1 to denote the distribution P (v1 = i|p0), we can write the result
in matrix form, with

p1 = Tp0 (5)



446 T. L. Griffiths, M. L. Kalish/Cognitive Science 31 (2007)

being the product of the matrix T and the vector p0. Similarly, we can write

pn = Tnp0 (6)

multiplying by T each time we add a new variable.
One way of understanding the asymptotic behavior of a Markov chain is to look for the

equivalent of “fixed points.” The stationary distribution of a Markov chain with transition
matrix T is a distribution π such that

π = Tπ (7)

meaning that the probability distribution over states at point n is the same as the distribution
over states at point n − 1. This distribution is “stationary” because once it has been reached,
the probability of a variable being in a particular state will remain constant. Drawing on linear
algebra once again, Eq. 7 identifies π as an eigenvector of the matrix T with an eigenvalue
of 1. The requirement that

∑k
i=1 tij = 1 means that T is a stochastic matrix, so its largest

(or “first”) eigenvalue, λ1, is 1, making π the first eigenvector of T. A standard result in the
theory of Markov chains indicates that the asymptotic distribution over states of the chain will
approach the stationary distribution as n becomes large, regardless of the initial state of the
chain. More formally,

lim
n→∞ Tnp0 = π (8)

for any p0, implying that limn→∞ P (vn|v0) = π (vn) for any v0. The rate of convergence
depends on the magnitude of the second eigenvalue, λ2, decreasing as |λ2| increases towards
1 (a simple proof is provided by Rosenthal, 1995).

Equation 8 makes it straightforward to determine the asymptotic behavior of a Markov
chain: we need only find the first eigenvector of the transition matrix, which can be done
using a variety of analytic and numerical methods (e.g., Stewart, 1994). However, there is one
caveat on this convergence result: the Markov chain needs to be ergodic. Markov chains with
finite state spaces are ergodic if they satisfy two conditions, being irreducible and aperiodic.
A Markov chain is irreducible if every state has a non-zero probability of ever reaching every
other state after some finite number of iterations. It is aperiodic if the greatest common divisor
of the times at which it is possible for a state to return to itself is 1 for all states.

The most common way in which ergodicity is violated is through the existence of “sinks”—
states (or sets of states) that the chain enters but never leaves (in violation of irreducibility).
A chain with multiple sinks will eventually become stuck in one of them. The probability
of entering a particular sink will depend on the initial state, so the asymptotic independence
implied by Eq. 8 does not hold. However, it is easy to check whether any finite Markov
chain is ergodic by finding the eigenvalues of the transition matrix: a Markov chain is ergodic
if and only if it has just one eigenvalue of unit magnitude (see Rosenthal, 1995). Even if
the underlying chains are not ergodic, predictions can still be made about the asymptotic
probability of different states, although they require using more sophisticated tools for the
analysis of Markov chains (e.g., Kemeny & Snell, 1983).
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2.2. Markov chains on hypotheses and data

If we can reduce a stochastic process to a Markov chain, we have gone a long way towards
understanding its properties: its dynamics are specified by Eq. 6, and its asymptotic behavior
is characterized by Eq. 8. We now return to the stochastic process defined by iterated learning,
showing that we can obtain answers to our questions about the consequences of iterated
learning by reducing it to two Markov chains: a Markov chain on hypotheses, and a Markov
chain on data.

A standard way to analyze probabilistic models is to consider the consequences of summing
out a subset of the random variables in the model. The iterated learning model outlined above
defines a joint probability distribution on both the data seen by learners and the hypotheses they
infer, P (d0, h1, d1, h2, . . .). Summing over all possible values for the data seen by each learner
defines a probability distribution on hypotheses alone, P (h1, h2, . . .). The dependencies among
these variables are shown in Fig. 1(c), taking the form of a Markov chain. The state space
of this Markov chain is H, and its transition matrix is Q = (qij ), whose elements give the
probability that a learner chooses hypothesis i after seeing data generated from hypothesis j ,

qij = PLA,PA(hn = i|hn−1 = j ) =
∑
d∈D

PLA(hn = i|d)PPA(d|hn−1 = j ), (9)

where PLA(hn = i|d) and PPA(d|hn−1 = j ) are determined by the learning and production
algorithms respectively, as specified above. This Markov chain has a stationary distribution
θ = (θi) satisfying

θ = Qθ (10)

or, departing from vector notation for a moment, θi = ∑
j qij θj .

We can use a similar approach to derive a Markov chain on the data generated by the
learners. Summing over the hypotheses entertained by each learner, we obtain a probability
distribution P (d0, d1, . . .) with the dependency structure shown in Fig. 1 (d), being a Markov
chain on d0, d1, . . .. The state space of this Markov chain is D, and the transition matrix R has
elements rij indicating the probability that a learner produces data dn = i given that they saw
data dn−1 = j ,

rij = PLA,PA(dn = i|dn−1 = j ) =
∑
h∈H

PPA(dn = i|h)PLA(h|dn−1 = j ). (11)

The stationary distribution of this Markov chain is ρ = (ρi) such that ρ = Rρ.
The Markov chains on hypotheses and data induced by iterated learning can be used to

answer questions about its dynamics and asymptotic behavior. The process of language change
can be predicted using the transition matrices Q and R. The properties of the languages pro-
duced by iterated learning are indicated in the stationary distributions θ and ρ, providing the
underlying Markov chains are ergodic. The conditions for ergodicity have intuitive interpreta-
tions in the context of iterated learning. For example, the Markov chain on hypotheses would
not be ergodic if there existed more than one language such that once a learner had chosen
that language every subsequent learner would also select that language (i.e., the language acts
as a sink).
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2.3. An example: Two languages

To provide a concrete illustration of the ideas introduced in the previous section, we will
work through a simple example of iterated learning. Following a strategy adopted by Niyogi
and Berwick (1995, 1997a, 1997b), we will consider the case where learners are faced with
a choice between two languages, L1 and L2. In this case, the transition matrix Q has four
elements

Q =
(

q11 q12

q21 q22

)
(12)

where qij is defined in Eq. 9, with h = i being the hypothesis that the language is Li . q11

and q22 represent the probability that each language is faithfully transmitted from one learner
to the next, while q21 and q12 indicate failures of transmission, being the probability that a
learner acquires L2 from data produced from L1 and the probability that a learner acquires
L1 from data produced from L2 respectively.

With just two languages, it is easy to find the stationary distribution of the Markov chain.
θ will be a distribution over just two languages, with θ1 being the probability that h = 1 and
θ2 being the probability that h = 2. By the definition of the stationary distribution, we have

θ1 = q11θ1 + q12θ2 (13)

from which we obtain

θ1 = q12

q12 + q21
(14)

by exploiting the fact that q21 = 1 − q11, q12 = 1 − q22, and θ2 = 1 − θ1. Thus, the stationary
probability of each of the two languages is determined by the relative fidelity with which those
languages are transmitted.

Finally, we can compute the eigenvalues of Q. Since Q is a 2 × 2 matrix, it has two
(not necessarily unique) eigenvalues. The first eigenvalue, λ1, is 1, since Q is the transition
matrix of a Markov chain, and corresponds to the eigenvector defined by Eq. 14. The second
eigenvalue is given by

λ2 = 1 − q12 − q21 (15)

and corresponds to the eigenvector (1, −1)T . The second eigenvalue thus gets closer to 1 as
q12 and q21 get closer to zero, slowing convergence of the Markov chain to its stationary
distribution, because it becomes difficult to move between states. When q12 = q21 = 0 there
is no movement between languages across generations, and both languages act as a sink. The
language spoken by the nth generation is thus completely determined by the language spoken
by the first learner. The Markov chain is thus not ergodic, and this is reflected in the fact that
λ2 = 1. This simple example can also be used to illustrate the other way in which ergodicity
can be violated. If q12 = q21 = 1, then every generation speaks a different language from
that which preceded it. In this case, the language spoken by the nth learner is completely
determined by the language spoken by the first learner and the parity of n. Applying Eq. 15
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gives λ2 = −1, so the magnitude of the second eigenvalue is |λ2| = 1, consistent with the fact
that the Markov chain is not ergodic.

2.4. Summary

Formalizing iterated learning makes analyzing its consequences straightforward. The re-
duction of iterated learning to a Markov chain allows us to determine its dynamics and
asymptotic behavior by computing a transition matrix and finding its first eigenvector. For
example, in the case of the Markov chain on hypotheses, we want the transition matrix Q
and the probability distribution θ that satisfies Eq. 7. The first eigenvector θ can be computed
numerically for any choice of learning and production algorithms, provided the state space,
H, is small or the transition matrix, Q, is sparse. Stronger assumptions about the learning and
production algorithms make it possible to go beyond these general results and obtain analytic
expressions for θ . In previous work, this has been done for two simple learning algorithms:
one that memorizes the data, and one that has no memory at all (Komarova et al., 2001;
Nowak et al., 2001, 2002; Komarova & Nowak, 2003). However, these previous analyses
assumed that all languages are equally similar to one another, and only allowed a very coarse
characterization of the biases of learners via the size of the set of languages being considered.
In the remainder of this paper, we derive analytic results that apply to a broad class of learning
algorithms which can incorporate a variety of biases for arbitrarily related sets of languages.
Our analysis is based upon the assumption that the learners are Bayesian agents.

3. Iterated learning with Bayesian agents

Bayesian agents use a principle of probability theory, called Bayes’ rule, to infer the process
that was responsible for generating some observed data. Assume that a learner has a prior
probability distribution, P (h), that encodes that learner’s biases by specifying the probability
the learner assigns to the truth of each hypothesis h ∈ H before seeing d. Bayes’ rule states
that the probability that an agent should assign to each hypothesis after seeing d—known as
the posterior probability, P (h|d)—is

P (h|d) = P (d|h)P (h)

P (d)
(16)

where P (d|h)—the likelihood—indicates how likely d is under hypothesis h, and P (d) is the
probability of d averaged over all hypotheses,

P (d) =
∑
h∈H

P (d|h)P (h) (17)

which is sometimes called the prior predictive distribution.
There are several arguments for exploring iterated learning with Bayesian agents. First,

Bayes’ rule is a fundamental principle of rational action in statistics and economics (e.g., Sav-
age, 1954; Robert, 1994; Jaynes, 2003), and is used in a variety of models of human cognition
(e.g., Anderson, 1990; Oaksford & Chater, 1998; Chater & Oaksford, 1999; Tenenbaum &
Griffiths, 2001). Consequently, our analyses will have a direct connection to formal models of
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learning and decision-making that are already used to explain human behavior. Second, algo-
rithms based on Bayesian inference are widely used for learning different aspects of language in
computational linguistics (e.g., Manning & Schütze, 1999), and previous work on iterated
learning has examined algorithms which have a direct Bayesian interpretation, such as min-
imum description length (Brighton, 2002; Smith et al., 2003). Finally, Bayes’ rule makes
the biases of learners explicit, encoding those biases in a prior probability distribution over
hypotheses. Using Bayesian agents thus provides us with a direct way to explore the influence
of the biases of learners on the consequences of iterated learning.

We can use Bayes’ rule to model language acquisition by assuming that each hypothesis h

is a language, and the data d are a set of utterances sampled from the target language.2 The
likelihood, P (d|h), indicates the probability of observing a particular set of utterances d if
the language h were the target. If we assume that the learners have accurate knowledge of the
production algorithm in use, the probability they should associate with d if the target language
is h is simply the probability of d under that production algorithm, PPA(d|h). Applying Bayes’
rule, we have

P (h|d) = PPA(d|h)P (h)

PPA(d)
(18)

where

PPA(d) =
∑
h∈H

PPA(d|h)P (h). (19)

The specific values of P (h|d) will be determined by the prior, P (h). The assumption that all
learners share the same learning algorithm (made above, to guarantee that our Markov chain
is homogeneous) requires that all learners share the same prior.

3.1. Interpreting priors, hypotheses, and data

The standard interpretation of the prior, P (h), as representing the extent to which the learner
believes in a hypothesis before seeing any data is perhaps not the best way to understand the
role that it plays under this view of language acquisition. The prior is better seen as determining
the amount of evidence that a learner would need to see in order to adopt a particular language.
Thinking of the prior as expressing the amount of evidence a learner would need in order to
choose a particular language makes it clear how it can encode the biases of learners: only
hypotheses with positive prior probability will enter into consideration, and hypotheses with
higher prior probabilities are easier to learn (requiring less evidence, and ultimately less data).

Our formal analyses will not make a commitment to the nature of the prior, the hypotheses,
or the data. Consequently, they are consistent with many different approaches to modeling
language acquisition, from artificial neural network models (Rumelhart & McClelland, 1986),
in which the hypotheses are continuous functions represented by the weights of a network
(MacKay, 1995; Neal, 1992), to parameter-setting models, in which hypotheses are con-
figurations of a small number of discrete parameters (Gibson & Wexler, 1994; Niyogi &
Berwick, 1996). The Bayesian framework is not supposed to be interpreted as a statement of
the mechanistic process by which language acquisition takes place, with learners maintaining
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a hypothesis space in their heads and updating a distribution over those hypotheses. Rather, it
is a computational level analysis (Marr, 1982), as is generally emphasized in rational models
of cognition (Anderson, 1990; Oaksford & Chater, 1998; Chater & Oaksford, 1999), focusing
on the abstract computational problem and a method for solving that problem. So long as the
actual process underlying language acquisition approximates this solution, our results will
have implications for understanding human behavior.

Finally, it is important to note that the prior distribution assumed by a learner should
not be interpreted as reflecting innate constraints specific to language acquisition. The prior
simply collects together all of the factors affecting how easily a learner will come to entertain
a particular hypothesis. There are many such factors other than language-specific innate
constraints: data from other domains that is independent of the observed linguistic data given
a hypothesis about the structure of language, but nonetheless affects the beliefs that the
learner entertains about that structure; information-processing constraints, such as limitations
on working memory; or the inductive bias associated with some kind of general-purpose
learning algorithm. Every learning algorithm assumes some kind of inductive bias, and this
bias is essential to the success of the algorithm (Geman, Bienenstock, & Doursat, 1992; Kearns
& Vazirani, 1994; Vapnik, 1995).

3.2. Applying Bayes’ rule with just two languages

We can illustrate how Bayes’ rule can be used to model language acquisition by returning
to the case where learners are faced with a choice between just two languages. For the purpose
of illustration, and in accord with previous work on iterated learning (Kirby, 2001; Brighton,
2002; Smith et al., 2003), we will assume that each language is a mapping from meanings
to utterances. The data d consist of a set of a single input, x, and corresponding output, y,
and hypotheses h are probability distributions over y for each x. The nth learner sees data,
dn−1 = (xn−1, yn−1), and then generates an output yn in response to a new input xn.

To keep the example as simple as possible, we will assume that outputs y can only take two
values, which we will denote 0 or 1. To slightly abuse an example introduced by Quine (1960),
we might imagine that both languages contain only a single utterance—“Gavagai!”—which
is made in response to the presence of some objects (y = 1), but not for others (y = 0). We
will use X to denote the set of objects, and G1 and G2 to denote the sets of values of x ∈ X
for which y = 1 for the languages L1 and L2, respectively. Using S to denote the subset of
the values of x on which the two languages agree, we have S = (G1 ∩ G2) ∪ (G1 ∩ G2). The
relationship among these sets is illustrated in Fig. 2.

Applying Bayes’ rule (Eq. 18) requires us to specify the production algorithm and prior.
We assume that the production of an (x, y) pair involves two stages: an object x is sampled
from the world according to some distribution P (x) that is constant across the two languages,
and a learner then produces the appropriate value of y with probability 1 − ε, where ε is small
(and definitely less than 0.5).3 Consequently, we have

PPA(d = (x, y)|h = i) =
{

P (x)(1 − ε) if y = I (x ∈ Gi)

P (x)ε otherwise
(20)
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Fig. 2. Sets involved in the two language example. X is the set of all objects in the domain, with each x ∈ X being
an object. G1 and G2 are the sets of objects that are likely to elicit a spontaneous utterance of “Gavagai!” from a
speaker of the languages L1 and L2, modeled as the output y associated with the input x taking value 1. y = 0 for
all objects outside the appropriate set. S is the set of objects on which the two languages agree, with speakers of
either language being equally likely to produce the same response.

where I (·) takes the value 1 when its argument is true, and 0 otherwise. As a prior, we will
assume that P (h = 1) = α and P (h = 2) = 1 − α, where 0.5 < α < 1 (i.e., both hypotheses
have positive prior probability, but L1 is favored by the prior).

The posterior distribution over hypotheses given an observed (x, y) pair breaks down into
three cases. The first case is where x ∈ S, and both languages make the same prediction
about the value of y. Consequently, PPA(d|h) is constant, and the posterior probability that
h = 1 is simply the prior probability, α. The second case is where x ∈ (G1 − G2) and y = 1,
or x ∈ (G2 − G1) and y = 0. The posterior probability that h = 1 is then

P (h = 1 | d) = (1 − ε)α

(1 − ε)α + ε(1 − α)
(21)

which will favor L1 over L2. The third case is when the values of y are reversed (that is, if
x ∈ (G1 − G2) and y = 0, or x ∈ (G2 − G1) and y = 1). The posterior probability that h = 1
is then

P (h = 1|d) = εα

εα + (1 − ε)(1 − α)
(22)

which will favor L1 only if ε > 1 − α.
This example illustrates how the prior probability of a language can be interpreted as the

amount of evidence that needs to be seen for a learner to choose that language. According to
Bayes’ rule (Eq. 16), the posterior probability of a language is simply the normalized product of
the likelihood and prior. If we see a set of utterances d such that P (d|h = 2) > P (d|h = 1),
then d provides evidence for L2 over L1. This is exactly the third case mentioned in the
previous paragraph, where the value of y for the observed x is consistent with L2 but not
L1. However, the posterior distribution will only favor L2 over L1 if P (d|h = 2)P (h = 2) >

P (d|h = 1)P (h = 1). Thus, if the prior strongly favors L1 over L2, we need to see evidence
that is strongly in favor of L2 to even consider it a possibility. Hence the condition on ε: the
observed data have to be sufficiently unlikely under the hypothesis that the target language is
L1 to overwhelm the prior.
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3.3. Summary

Bayesian inference allows us to characterize how learners should update their beliefs about
hypotheses in the light of data, and makes the inductive biases of learners explicit through
the use of a prior distribution. However, the idea that learners use Bayes’ rule does not
directly identify a learning algorithm of the form required for our analysis of iterated learning.
By our definition, a learning algorithm has to specify the probability with which a learner
selects a hypothesis after observing data d. In the remainder of the paper, we will analyze
iterated learning using two learning algorithms based on Bayesian inference: sampling from
the posterior distribution over hypotheses, and choosing the hypothesis with greatest posterior
probability.

4. Sampling from the posterior distribution

The simplest way to translate a posterior distribution over hypotheses into a learning
algorithm is to assume that learners sample hypotheses according to their posterior probability.
That is,

Psamp(h | d) = P (h | d) (23)

where P (h | d) is defined in Eq. 18. This approach postulates that learners engage in a form
of “probability matching,” with their choices directly reflecting their posterior distribution.
Probability matching is a robust phenomenon observed in human learning (reviews are pro-
vided by Myers, 1976 and Vulkan, 2000), and is commonly assumed in cognitive modeling.
Response probabilities are often taken as directly corresponding to posterior probabilities in
Bayesian models of cognition (e.g., Anderson, 1990; Steyvers, Tenenbaum, Wagenmakers,
& Blum, 2003), and a similar assumption appears in a variety of models of categorization
and choice behavior in the guise of Luce’s (1959) choice rule (Nosofsky, 1986, 1987; Ashby,
1992; Kruschke, 1992; Ashby & Maddox, 1993; Ashby & Alfonso-Reese, 1995).

Analyzing sampling from the posterior distribution can also be motivated from the per-
spective of Bayesian statistics. The posterior distribution encodes a great deal of information,
which can be lost by selecting only a single hypothesis. The best way to make accurate pre-
dictions is to use all of this information, averaging over hypotheses (e.g., Hoeting, Madigan,
Raftery, & Volinsky, 1999). Thus, a learner who has seen data dn−1 and wants to predict data
dn should compute

P (dn | dn−1) =
∑
h∈H

P (dn |h)P (h | dn−1) (24)

where dn and dn−1 are taken to be independent conditioned on h. This strategy of hypothesis
averaging is widely used in Bayesian models of cognition (e.g., Shepard, 1987; Anderson,
1990; Tenenbaum & Griffiths, 2001). While we generally assume that each learner selects a
single hypothesis, our analysis of the Markov chain on data that results from the assumption
that learners sample from the posterior distribution also applies to the case where learners
average over hypotheses, since the definition of the transition matrix R in Eq. 11 remains the
same whether h is sampled or summed out analytically.
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4.1. The evolution of hypotheses and data

We can now formally analyze the consequences of iterated learning, calculating the transi-
tion matrices and stationary distributions for the Markov chains on hypotheses and data. We
will consider these two cases in turn.

For the Markov chain on hypotheses, with transition matrix Q defined in Eq. 9, taking
θi = P (h = i) satisfies the definition of the stationary distribution given in Eq. 10, with
θ = Qθ . Specifically, we have

P (hn = i) =
∑

j

Psamp,PA(hn = i |hn−1 = j )P (hn−1 = j ) (25)

=
∑

j

∑
d∈D

Psamp(hn = i | d)PPA(d|hn−1 = j )P (hn−1 = j ) (26)

=
∑
d∈D

Psamp(hn = i | d)
∑

j

PPA(d|hn−1 = j )P (hn−1 = j ) (27)

=
∑
d∈D

Psamp(hn = i | d)PPA(d) (28)

=
∑
d∈D

PPA(d |hn = i)P (hn = i)

PPA(d)
PPA(d) (29)

= P (hn = i)
∑
d∈D

PPA(d |hn = i), (30)

where Eq. 28 uses Eq. 19 and Eq. 29 uses Eq. 23 and 18. Since PPA(d |hn = i) is a probability
distribution over d for any production algorithm PA, the sum in the last line evaluates to 1,
providing our result.

The stationary distribution of the Markov chain on hypotheses is thus the prior distribution.
Using the results on the convergence of Markov chains summarized in Section 2.1, this gives
a simple characterization of the asymptotic behavior of iterated learning: the probability that
a learner entertains a particular hypothesis h will converge to the prior probability of that
hypothesis, P (h), as the number of learners in the chain increases. Thus, in the case of
language evolution, the probability that a learner speaks a particular language will converge to
the prior probability of that language, and the distribution over languages will directly reflect
the inductive biases of the learners.

An analogous result can be obtained for the Markov chain on data. For the transition matrix
R defined in Eq. 11, taking ρi = PPA(d = i), the prior predictive distribution specified in Eq.
19, satisfies ρ = Rρ. Specifically, we have

PPA(dn = i) =
∑

j

Psamp,PA(dn = i|dn−1 = j )PPA(dn−1 = j ) (31)

=
∑

j

∑
h∈H

PPA(dn = i|h)Psamp(h | dn−1 = j )PPA(dn−1 = j ) (32)
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=
∑

j

∑
h∈H

PPA(dn = i |h)
PPA(dn−1 = j |h)P (h)

PPA(dn−1 = j )
PPA(dn−1 = j ) (33)

=
∑

j

∑
h∈H

PPA(dn = i |h)PPA(dn−1 = j |h)P (h) (34)

=
∑
h∈H

PPA(dn = i |h)P (h)
∑

j

PPA(dn−1 = j |h) (35)

=
∑
h∈H

PPA(dn = i |h)P (h), (36)

where Eq. 33 uses Eq. 23 and 18 and Eq. 35 uses the fact that PPA(dn−1 = j |h) sums to 1
over all dn−1. The result is the definition of P (dn = i) from Eq. 19.

This analysis of the behavior of the Markov chain on data complements our analysis of the
Markov chain on hypotheses, indicating that the stationary distribution is the prior predictive
distribution. Consequently, the probability that a learner produces data d converges to the
probability that d would be produced by sampling a hypothesis from the prior and then
sampling data according to that hypothesis. In the case of language evolution, this means that
the distribution over utterances produced by a learner will ultimately be the distribution we
would expect if learners were simply sampling languages according to their prior.

The stationary distributions of these two Markov chains indicate that iterated learning
converges to the prior when learners sample from their posterior distributions. An intuitive
explanation for this result is that the inference made by each learner provides another oppor-
tunity for the prior to affect the distribution over hypotheses. The data seen by the first learner
or the hypothesis they entertain will affect the conclusions drawn by the next few learners,
but is ultimately only a single piece of information, while the prior asserts its effect on each
iteration. Thus, the distribution over hypotheses should move closer to the prior on each iter-
ation. Since the only distribution over hypotheses that is invariant under this influence is the
prior itself (demonstrated formally through the fact that the prior is the stationary distribution
for the Markov chain on hypotheses), we should expect that iterated learning will remain at
that distribution once it has been reached.

4.2. Iterated learning by sampling and the Gibbs sampler

A deeper formal explanation for the consequences of iterated learning can be obtained
by noting a correspondence between iterated learning and a class of inference algorithms
used in Bayesian statistics. This requires considering another way of reducing the stochastic
process that iterated learning defines on both hypotheses and data to a Markov chain. If
we choose to group the hypothesis inferred by a learner and the data generated by that
learner into a single variable, we obtain the dependency structure shown in Fig. 1(e), which
is a Markov chain on hypothesis-data pairs. The state space of this Markov chain is the
Cartesian product of H and D, and the transition matrix has elements corresponding to
P (hn, dn |hn−1, dn−1) = PLA(hn | dn−1)PPA(dn |hn). Again, this Markov chain will converge
to a stationary distribution, provided it satisfies the conditions for ergodicity. Determining
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the stationary distribution is straightforward, as this Markov chain takes a form commonly
encountered in Markov chain Monte Carlo.

Bayesian statistics often requires working with complex probability distributions, which
can be hard to compute analytically. A standard solution to this problem is to apply the Monte
Carlo principle, drawing a set of samples from a distribution and performing calculations with
those samples rather than the distribution itself (excellent tutorials on Monte Carlo methods
are provided by Neal, 1993 and Mackay, 2003). However, sometimes even sampling from
a distribution can be difficult, particularly if the distribution is defined over a large state
space. This has led to the development of a variety of algorithms for generating samples
from probability distributions using Markov chains, which are known as Markov chain Monte
Carlo (MCMC) algorithms (an introduction to MCMC is given in Gilks, Richardson, &
Spiegelhalter, 1996).

The basic idea behind MCMC is to construct a Markov chain that has the distribution from
which one wants to sample as its stationary distribution. Thus, for a target distribution on a
variable v with k components, v = (v1, v2, . . . , vk), we would define a Markov chain with
a state space corresponding to the different values of v and a transition matrix designed to
produce the target distibution, P (v) as its stationary distribution. The MCMC algorithm then
samples a succession of states from this Markov chain, each being a set of values for v. Once
this has been done sufficiently many times for the Markov chain to converge to its stationary
distribution, the subsequent samples can be treated like samples from P (v) (although the fact
that these samples are drawn from a Markov chain means that they will be correlated, making
the effective sample size smaller than the total number of samples).

One of the most common methods that is used to construct Markov chains that converge
to a particular stationary distribution is Gibbs sampling (Geman & Geman, 1984). The Gibbs
sampler for a target distribution P (v) is the Markov chain defined by drawing each component
of v from its distribution conditioned on the current values of all other variables, with vi

being drawn from P (vi | v1, . . . , vi−1, vi+1, . . . , vk). There are a number of variants on this
procedure, but one standard method is to cycle through the variables in turn (this is called
a “systematic scan” Gibbs sampler). Thus, we would initialize the Markov chain by setting
v1, v2, . . . , vk to some arbitrary initial values, and then draw v1 from its distribution condi-
tioned on the current values of v2, v3, . . . , vk, then v2 conditioned on the current values of
v1, v3, . . . , vk (including the newly assigned value of v1), and so forth. Each complete sweep
through the variables constitutes one iteration of the Markov chain, and this procedure is
repeated until the Markov chain has converged to its stationary distribution and the desired
number of samples have been drawn.

To return to iterated learning, consider the Gibbs sampler for the target distribution
P (d, h) = PPA(d |h)P (h). The variable of interest is the hypothesis-data pair (d, h), hav-
ing components d and h, and the sampler would alternate between drawing h conditioned on
the current value of d and d conditioned on the current value of h. The corresponding condi-
tional distributions are Psamp(h|d) and PPA(d |h), respectively. Alternating between drawing
from these conditional distributions is exactly the procedure followed in iterated learning, with
the Markov chain defined by Gibbs sampling being that shown in Fig. 1 (e). Consequently, the
convergence results for the Gibbs sampler apply to iterated learning, with the distribution over
hypothesis-data pairs converging to PPA(d, h). This relationship can also be used to derive the
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results for the stationary distribution of the Markov chains on hypotheses and data presented
in Section 4.1.

This demonstration that iterated learning is a Gibbs sampler is, to our knowledge, the first
instance of a connection between Markov chain Monte Carlo and human cognition. In addition
to offering insight into why iterated learning converges to the prior, it provides a source of
further formal results about the dynamics of iterated learning, thus helping to characterize
the process of language change. The rate of convergence of Markov chains induced by Gibbs
sampling has been extensively analyzed by statisticians (Geman & Geman, 1984; Tanner &
Wong, 1987; Schervish & Carlin, 1992; Liu, Wong, & Kong, 1995). These analyses indicate
that the distance between the distribution over the state space after n iterations and the target
distribution decreases geometrically with n, using some standard measures of the distance
between probability distributions. The same result carries over to iterated learning, indicating
that each learner will bring us ever closer to the prior. The analysis of MCMC algorithms is
still an ongoing project in statistics, and any further results characterizing the properties of
Gibbs sampling will likewise have implications for iterated learning.

4.3. Sampling from the posterior with two languages

We can illustrate some of the results outlined above by returning to our example with
just two languages. In this case, the probability with which a learner chooses a particular
hypothesis, defined in Eq. 23, is given by the posterior distribution derived in Section 3.2. This
distribution was specified for three cases, corresponding to different kinds of data a learner
can see. We can also compute the probability of generating data that match each of these
three cases. For either language, the probability of generating an (x, y) pair such that x ∈ S is
simply s = ∑

x∈S P (x). The probability that we generate an (x, y) pair that corresponds to the
second case is (1 − s)(1 − ε) for hn−1 = 1 and (1 − s)ε for hn−1 = 2. Finally, the probability
that we generate an (x, y) pair that corresponds to the third case is (1 − s)ε for hn−1 = 1 and
(1 − s)(1 − ε) for hn−1 = 2.

Putting the results in the previous paragraph together with those from Section 3.2 gives us
the transition probabilities for the Markov chain on hypotheses, as specified in Eq. 9. Summing
over the three cases gives

q12 = αs + (1 − ε)α

(1 − ε)α + ε(1 − α)
(1 − s)ε + εα

εα + (1 − ε)(1 − α)
(1 − s)(1 − ε)

= α

[
s + (1 − s)(1 − ε)ε

(
1

α + ε − 2αε
+ 1

1 − α − ε + 2αε

)]
(37)

and

q21 = (1 − α)s + (1 − ε)(1 − α)

(1 − ε)(1 − α) + εp
(1 − s)ε + ε(1 − α)

ε(1 − α) + (1 − ε)α
(1 − s)(1 − ε)

= (1 − α)

[
s + (1 − s)(1 − ε)ε

(
1

α + ε − 2αε
+ 1

1 − α − ε + 2αε

)]
. (38)

These two values specify the transition matrix Q, since q22 = 1 − q12 and q11 = 1 − q21.
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Fig. 3. Dynamics of iterated learning by sampling from the posterior. Solid lines show the probability that a learner
chooses h = 1 as a function of the number of iterations, starting from a state where the first learner speaks either L1

or L2, with ε = 0.05 and ε = 0.001. In all cases, α = 0.6 and s = 0.5. The probability of choosing h = 1 rapidly
converges to the stationary probability, α, indicated by the dotted line.

Knowing the transition matrix allows us to characterize the dynamics and asymptotic
behavior of iterated learning. We can use Eq. 6 to compute the probability that a learner
acquires L1 at each iteration given that the first learner spoke a particular language, producing
the results shown in Fig. 3. We can compute the stationary distribution of the Markov chain
using Eq. 14. The bracketed term in Eq. 37 and 38 is constant across the two expressions,
so the stationary distribution has θ1 = α (unless s = 0 and ε = 0). Thus, as indicated by the
results outlined above and illustrated in Fig. 3, the probability that a learner chooses h = 1
converges to its prior probability, α. From Eq. 15, we find that the second eigenvalue is

λ2 = 1 −
[
s + (1 − s)(1 − ε)ε

(
1

α + ε − 2αε
+ 1

1 − α − ε + 2αε

)]
(39)

which is less than 1 unless s = 0 and ε = 0. Consequently, the Markov chain will be ergodic
if there is any agreement between the languages or any noise in production, since this makes
it possible to move between languages. When s = 0 and ε = 0 there is no agreement and no
noise, so it is impossible for a speaker of one language to generate data that are consistent
with the other language. In this case, both languages act as sinks and the Markov chain is not
ergodic. Fig. 3 shows that the rate of convergence increases as ε increases, since this makes it
easier to move between languages, and this is reflected in the effect of ε on λ2.

4.4. Summary

When learners sample from their posterior distribution over hypotheses, the consequences
of iterated learning are determined entirely by the biases of the learners. The probability
that a learner entertains a particular hypothesis will converge to the prior probability of that
hypothesis, and the probability that a learner produces particular data will converge to the
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probability distribution over data produced by choosing a hypothesis from the prior, and then
generating data from that hypothesis. The asymptotic outcome of iterated learning thus does
not depend on the amount or structure of the data seen by the learners, or the properties
of the hypotheses those learners consider, except insofar as those factors influence the prior
probabilities assumed by the learners. Before considering further conclusions we might draw
from this case, we will examine the consequences of what seems like a small change to
our assumptions, considering what happens when learners choose the hypothesis that has
maximum posterior probability rather than sampling.

5. Choosing hypotheses with maximum posterior probability

While it may be the simplest, sampling from the posterior distribution is not the only way
to define a learning algorithm based on Bayesian inference. An alternative is to assume that
learners select the hypothesis with the maximum posterior probability (known as maximum a
posteriori or MAP estimation). If we let H∗(d) denote the set of hypotheses h∗ such that

h∗ = arg max
h

P (h | d) = arg max
h

PPA(d|h)P (h) (40)

for some dataset d, this learning algorithm is associated with the probability distribution

PMAP(h | d) =
{

1/|H∗(d)| h ∈ H∗(d)

0 otherwise
(41)

where |H∗(d)| is the size of the set of hypotheses with maximum posterior probability.
The strategy of selecting the hypothesis with the greatest posterior probability can be

justified from the perspective of Bayesian decision theory, as it maximizes the probability
of selecting the hypothesis from which the data were generated (e.g., Robert, 1994). Thus,
MAP estimation is the scheme with the greatest fidelity of transmission of hypotheses across
generations. It is also consistent with the approach taken in previous work on iterated learning.
Some of this work has explicitly approached language acquisition as a problem of Bayesian
inference (Kirby et al., 2004), while other work has considered algorithms based on minimum
description length (Brighton, 2002; Smith et al., 2003). The principle of maximizing the
posterior probability is equivalent to minimizing the length of the representation of a language
in a particular encoding scheme (this idea is explored in detail in Chater, 1996, and Li &
Vitanyi, 1997). Other learning algorithms, such as gradient descent algorithms for artificial
neural networks, can also be interpreted as a form of MAP estimation (Neal, 1992; MacKay,
1995).

Unfortunately, iterated learning by MAP estimation is more difficult to analyze than iterated
leaning by sampling from the posterior. However, as with sampling, it can be reduced to an
inference algorithm that is used in statistics, and for which some analytic results exist. We
will establish this correspondence and summarize the relevant results, and then turn to a more
detailed analysis of the case of iterated learning with just two languages that we have used
throughout the paper. This example helps to highlight the differences between MAP estimation
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and sampling, and provides some intuitions about the consequences of iterated learning by
MAP estimation.

5.1. Iterated learning by MAP estimation and the stochastic EM algorithm

The correspondence between iterated learning by sampling and the Gibbs sampler suggests
that we might be able to analyze other cases of iterated learning by identifying corresponding
algorithms used in statistics. This strategy provides us with a way to analyze iterated learning
by MAP estimation, which corresponds to a variant on the expectation-maximization (EM)
algorithm (Dempster, Laird, & Rubin, 1977), which is widely used in modern statistics and
machine learning. An introduction to the EM algorithm is given by Bilmes (1997), and a more
detailed treatment appears in McLachlan & Krishnan (1997).

The EM algorithm is typically used to obtain the maximum-likelihood estimate of the
parameters of a model that contains latent variables—variables that are involved in generating
data, but are not themselves observed. A classic example is a clustering problem, where we
observe the locations of a set of points, but do not know the clusters from which those
points were generated or the parameters that characterize each cluster. The EM algorithm
makes it possible to estimate the cluster parameters even though we do not know the cluster
assignments. It alternates between two steps: an expectation (E) step, in which the probability
distribution over cluster assignments is computed, and a maximization (M) step in which the
parameters of the clusters are updated based on the probabilities with which the different
points are assigned to those clusters.

More formally, assume we have observed data x, latent variables z, and we use h

to represent a hypothesis about the parameters of the model.4 In the clustering problem
mentioned in the previous paragraph, x is the location of the points, z the cluster assignments,
and h the cluster parameters. Our goal is to obtain a maximum-likelihood estimate of
h, choosing the hypothesis that maximizes P (x|h) (or, equivalently, the log-likelihood
log P (x|h)). However, this is made complicated by the involvement of the latent variables,
since typically it is far easier to find the parameters that maximize P (x, z|h) than P (x|h).
If we knew the values of the latent variables, we could find h easily, and if we knew h, we
could work out the distribution on the latent variables. The EM algorithm exploits this by
alternating between adjusting the distribution on the latent variables and the values of the
parameters. On iteration n of the algorithm, the E step involves computing the posterior
distribution over z given x and the previous choice of h, P (z|x, hn−1), and then taking the
expectation of log P (x, z|hn) with respect to this distribution for each hypothesis hn, to
give

EP (z|x,hn−1)[log P (x, z|hn)] =
∑

z

P (z|x, hn−1) log P (x, z|hn). (42)

In the M step, we choose the value of hn that maximizes this expectation. This procedure
is guaranteed to produce a series of estimates of hn for which P (x|hn) is non-decreasing
(Dempster, Laird, & Rubin, 1977; Neal & Hinton, 1998). If the set of hypotheses under
consideration is continuous, the EM algorithm converges to a local maximum (or saddle-point)
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of P (x|h). With discrete hypothesis spaces, the maximum-likelihood solution is one fixed
point, but the algorithm can also converge on other, suboptimal, hypotheses (Friedman, 1998).

Performing the expectation in Eq. 42 can be difficult, leading to the development of ap-
proximate EM algorithms. In Monte Carlo EM (Wei & Tanner, 1990), the expectation is
approximated using samples from P (z|x, hn−1), with

EP (z|x,hn−1)[log P (x, z|hn)] ≈ 1

mn

mn∑
�=1

log P
(
x, z(�)|hn

)
(43)

where mn is the number of samples on iteration n, and z(�) is the �th sample of the latent
variables z. The number of samples, mn, typically increases with n, producing similar con-
vergence guarantees to those of the standard EM algorithm (Sherman, Ho, & Dalal, 1999;
Fort & Moulines, 2003). However, some authors have also advocated algorithms in which mn

remains constant. The case where mn = 1 for all n is called stochastic EM (Celeux & Diebolt,
1985; Diebolt & Ip, 1996).

The additional variability introduced by sampling in stochastic EM means that it is less likely
to get stuck in sub-optimal solutions, although the output of the algorithm is a distribution
over hypotheses rather than a single hypothesis. The sequence of hypotheses produced by
stochastic EM form a homogeneous Markov chain, and conditions for the ergodicity of this
chain have been established (Ip, 1994, 2002; Diebolt & Ip, 1996; Nielsen, 2000). Empirical
and theoretical results indicate that the stationary distribution over hypotheses produced by this
Markov chain is approximately centered on the maximum-likelihood solution, with a variance
that increases as a function of the rate at which the hypotheses change across iterations (Celeux
& Diebolt, 1985, 1988; Celeux, Chauveau, & Diebolt, 1995; Diebolt & Ip, 1996; Ip, 1994;
Nielsen, 2000). A more precise characterization of the consequences of stochastic EM can
be given in special cases, such as estimating parameters for the kind of clustering problem
introduced above (Diebolt & Celeux, 1993; Nielsen, 2000), but there are no explicit results
characterizing the asymptotic behavior of stochastic EM when the set of hypotheses is discrete.

The EM algorithm and its variants can also be used to perform MAP estimation simply by
replacing log P (x, z|hn) with log P (x, z|hn)P (hn) in Eq. 42 or 43. The resulting algorithm
converges to a local maximum of the joint probability P (x|h)P (h) rather than the likelihood
P (x|h). Since the posterior distribution P (h|x) is directly proportional to P (x|h)P (h), this
is a MAP solution. The stochastic EM algorithm for MAP estimation with mn = 1 would
thus take hn to be the value of h that maximizes P (x, z|h)P (h) when z is drawn from the
distribution P (z|x, hn−1), and converge to a stationary distribution approximately centered at
the maximum of P (h|x).

With this background in place, the correspondence between iterated learning by MAP
estimation and stochastic EM can be stated: iterated learning corresponds to stochastic EM in
a model where the data passed from one generation to the next, d, plays the role of the latent
variable, z, and there are no observations, x. In this case, the stochastic EM algorithm reduces
to taking hn to be the hypothesis that maximizes PPA(d|hn)P (hn) when d is drawn from the
distribution PPA(d|hn−1). This is exactly the procedure followed in iterated learning using
MAP estimation. Consequently, results characterizing the behavior of stochastic EM apply to
this form of iterated learning. Since this correspondence applies to the case where there are
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no observations, x, the MAP solution is simply the maximum of the prior (with no x, the joint
distribution of x and h is just P (h)). Thus, the stationary distribution over hypotheses produced
by iterated learning by MAP estimation should be approximately centered on the maximum
of the prior, with a variance that increases as a function of the rate at which hypotheses change
across generations.

The relationship between iterated learning by MAP estimation and stochastic EM provides
a rough characterization of the consequences of iterated learning: the probability that a learner
acquires a particular language will converge to a distribution that emphasizes languages with
high prior probability. Unlike sampling, this distribution will be affected by the properties of
the languages involved and the amount of information transmitted between learners, with these
factors determining the amount of variation around the high probability languages exhibited
by the stationary distribution. As with our previous observation about the relationship between
iterated learning by sampling and the Gibbs sampler, this correspondence establishes a route
by which results in statistics can be used to gain a deeper understanding of the processes of
language evolution.

5.2. MAP estimation with two languages

Identifying iterated learning by MAP estimation with the stochastic EM algorithm provides
an abstract characterization of its behavior. To obtain a deeper understanding of this process,
we will return to the example of iterated learning with two languages introduced in Section
2.3 and embellished on in Sections 3.2 and 4.3. In this simple case, we can determine the
consequences of iterated learning by MAP estimation directly, and give analytic results for
the stationary distribution and the rate of convergence that provide some valuable intuitions.

We established the fundamentals of Bayesian iterated learning with just two languages in
Section 3.2. We need only change the learning algorithm that is used to translate the posterior
distribution into the choice of a hypothesis, replacing sampling with maximizing. The same
three cases are relevant. When x ∈ S the posterior probability that h = 1 is simply the prior
probability, α. By assumption, α > 0.5, so the MAP hypothesis is h = 1. Thus, we should
select h = 1 with probability 1. In the second case, h = 1 is likewise dominant, as α > 0.5
and ε < 0.5. However, in the third case, which hypothesis has highest posterior probability
depends on the relative values of α and ε. We can write the transition probabilities as

q12 = s + (1 − s)ε + R

(
εα

εα + (1 − ε)(1 − α)

)
(1 − s)(1 − ε)

and

q21 = R

(
ε(1 − α)

ε(1 − α) + (1 − ε)α

)
(1 − s)(1 − ε)

where R(·) is a rounding function, taking the value 1 when its argument is greater than 0.5, 0
when its argument is less than 0.5, and 0.5 when its argument is exactly 0.5.

Table 1 gives the values of q12, q21, θ1, and λ2 under different conditions on the relationship
between α and ε. L1 is almost always favored over L2, with the stationary probability that
h = 1, θ1, being greater than 0.5 for any s > 0 because L1 is always chosen when x ∈ S.
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Table 1
Properties of the Markov chain on hypotheses for iterated learning with MAP estimation

Condition q12 q21 θ1 λ2

ε < 1 − α s + (1 − s)ε (1 − s)ε s+(1−s)ε
s+2(1−s)ε (1 − s)(1 − 2ε)

ε = 1 − α s + (1 − s)(1 + ε)/2 (1 − s)ε/2 s+(1−s)(1+ε)/2
s+(1−s)(1+2ε)/2 (1 − s)(1 − 2ε)/2

ε > 1 − α 1 0 1 0

When ε > 1 − α, there is so much uncertainty that L1 is also able to dominate, being selected
on every iteration after the first (hence λ2 = 0, indicating the fastest rate of convergence
possible). More interesting results are obtained when ε < 1 − α. In this case, the preference
for L1 gradually decreases as ε increases, as higher values of ε make it more likely that we
will observe data that are consistent with L2 being generated by speakers of L1. In fact, θ1 is
completely independent of α so long as ε < 1 − α, implying that a broad range of inductive
biases will result in exactly the same stationary distribution. The relationship between s, ε, and
θ1 is shown in Fig. 4, under the assumption that ε < 1 − α. The second eigenvalue, λ2, also
decreases as ε increases, indicating that convergence to the stationary distribution becomes
faster in the presence of more noise.

The differences between the results for MAP estimation outlined in this section and the
results for sampling presented in Section 4.3 are instructive. When learners sample from their

Fig. 4. Stationary probability that h = 1 as a function of agreement betwen languages, s, and level of production
noise, ε, in iterated learning with MAP learners. The stationary probability is unaffected by the prior probability
that h = 1, α, provided ε < 1 − α.
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posterior distributions, the stationary probability that h = 1 is simply the prior probability,
α, for almost any amount of overlap between languages, s, and production noise, ε. The
consequences of iterated learning are thus determined entirely by the prior. When learners use
MAP estimation, the stationary probability that h = 1 is stable over a large range of values of α

(for 0.5 < α < 1 − ε), but depends directly on s and ε. The consequences of iterated learning
are thus the same for many priors, being determined by the overlap between languages and
the amount of production noise.

5.3. Summary

While iterated learning by MAP estimation is harder to analyze than sampling from the
prior, we can obtain some insight into its consequences by observing a correspondence with the
stochastic EM algorithm and by analyzing specific cases. The results of these analyses indicate
that iterated learning by MAP estimation still favors languages with higher prior probability,
but the stationary distribution depends on the nature of the hypotheses and the amount of noise.
The correspondence with stochastic EM provides a rough characterization of the stationary
distribution of iterated learning by MAP estimation, indicating that this distribution should
be approximately centered on the hypotheses with greatest prior probability, but will exhibit
variance around these hypotheses. Analyzing the case of just two languages provides an
illustration of these general trends: the stationary distribution favors the language with greatest
prior probability, L1, but the extent to which this is the case depends on the amount of noise
in the data, as represented by ε. When ε is higher, it is easier to move between hypotheses,
and it is easier to generate data that result in the acquisition of L2.

6. An example: The emergence of compositionality

The results presented in the last two sections provide a characterization of the consequences
of iterated learning when Bayesian learners either sample from their posterior distribution or
select the hypothesis with the greatest posterior probability. In order to explore the implications
of these results for language evolution, we chose to examine their predictions in a setting that
is closer to that used in previous work on iterated learning. To this end, we simulated iterated
learning in a simplified version of a scenario that has been used in several papers exploring
the emergence of compositionality (Kirby, 2001; Brighton, 2002; Smith et al., 2003).

As in our two-language example, we model language acquisition as learning a mapping
between meanings and utterances. The data d consist of a set of m inputs, x = {x1, . . . , xm},
and m corresponding outputs, y = {y1, . . . , ym}, and hypotheses h are probability distributions
over y for each x. The nth learner sees data, (xn−1, yn−1), and then generates outputs yn in
response to new inputs xn. Meanings and utterances each vary along two binary dimensions.
This yields a total of four meanings and four utterances, each corresponding to the set
{00, 01, 10, 11}.

In a compositional language, the mapping between meanings and utterances depends upon
their parts: the two dimensions of meanings are mapped onto the two dimensions of utterances
(for simplicity, we assumed that the order is preserved), and the only uncertainty is in which
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values map to one another. There are 22 = 4 such languages. In a holistic language, the mapping
between meanings and utterances is arbitrary, and a single word is chosen to represent each
meaning without any constraints. There are 44 = 256 such languages. H thus contains 260
hypotheses, each a mapping between meanings and utterances. For each h ∈ H, we define the
probability distribution over outputs y given the input x to be

P (y | x, h) =
{

1 − ε x maps to y in h
ε
3 otherwise

(44)

where ε is the error rate of production, as in our example with just two languages. The prior
probability of each hypothesis is

P (h) =
{

α
4 h refers to a compositional language
1−α
256 h refers to a holistic language

. (45)

This is a hierarchical prior, allocating a probability of α to the set of compositional languages
and 1 − α to the set of holistic languages, and then spreading this probability uniformly over
the hypotheses within those sets.

Since every language is simply a mapping from meanings to utterances, H includes four
holistic languages that each give the same mapping as one of the four compositional languages.
These languages make the same predictions about inputs and outputs, as determined by Eq. 44,
and thus cannot be discriminated by any data. Any advantage of the compositional languages
over their holistic counterparts results from the prior defined in Eq. 45. If compositional and
holistic languages are equally probable a priori (α = 0.5), then the relatively small number of
compositional languages means that any particular compositional language is more probable
than any particular holistic language. Consequently, it would be very unlikely to see a holistic
language that just happened to produce a compositional mapping. As α becomes smaller, it
becomes less likely that one would see a compositional language at all, and a holistic language
that just happened to produce a compositional mapping becomes more plausible.

The transition matrix for the Markov chain on hypotheses, Q, for each algorithm can
be obtained by summing over all (x, y) pairs. Since there are (2222)m such pairs, this is
intractable for large m. Consequently, matrices for m > 4 were computed approximately
using Monte Carlo, with 1000 samples for each hypothesis. We computed transition matrices
for α ∈ {0.01, 0.5}, ε ∈ {0.01, 0.05}, and m ∈ {1, 2, . . . , 10} for both sampling and MAP. We
will discuss the results for the two algorithms in turn.

6.1. Results for sampling from the posterior

The first column of Fig. 5 shows a portion of some of the transition matrices produced
by sampling from the posterior. The second column shows 1000 iterations for four Markov
chains (initialized by choosing h1 uniformly at random), while the third and fourth columns
(labeled “Chain” and “Prior”) show the distribution over hypotheses from a single sample of
10000 iterations from those chains and the prior P (h), respectively. Our theoretical results
predict that the asymptotic probability that a learner infers a particular language depends only
on its prior probability, and not on other properties of the language. This was confirmed by
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Fig. 5. Markov chains on hypotheses for the evolution of compositionality when learners sample from their
posterior distribution. Different rows correspond to different parameter values. For each set of parameters, the
first column shows a portion of the transition matrix, Q, with four compositional languages (labeled C) and
four holistic languages (labeled H). Columns are hn−1, rows are hn, and darker grey indicates a higher value of
qij = P (hn = i|hn−1 = j ). The second column shows a sample of 1000 iterations from this matrix, the third shows
the relative frequency of hypotheses across 10000 iterations, and the fourth shows the prior, P (h). The quantities
in the third and fourth columns are subjected to a square root transformation in order to make the full range of
variation apparent.

our simulations, as can be seen by comparing Fig. 5(b) and (d). The Markov chain shown
in Fig. 5(b) used α = 0.5, and compositional languages appear with high frequency. The
Markov chain shown in Fig. 5 (d) used α = 0.01, and compositional languages appear only
infrequently. As shown in the third and fourth columns of the figure, the relative frequencies
of the different languages correspond closely to their prior probabilities. Thus, compositional
languages are favored by iterated learning only if they have high prior probability.

The results shown in Fig. 5(a)–(c) illustrate that the asymptotic probability that a language
is spoken is not affected by the amount of data seen by the learners. While the Markov chain
develops a greater tendency to remain in the same state as m increases, indicated by the
strong diagonal in the transition matrices and the length of the streaks in the samples, the
relative frequencies of the different languages remain the same. These relative frequencies
match the corresponding prior probabilities, consistent with our mathematical analysis. Thus,
the emergence of languages with particular properties does not require a bottleneck on the
amount of information passed from one generation to the next.
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Fig. 6. Quantities derived from Markov chains on hypotheses for learners sampling from the posterior, as a function
of number of datapoints, m, prior on composite languages, α, and error rate, ε. (a) Second eigenvalue of transition
matrix, λ2. (b) Stability ratio. The dotted line shows the stability ratio as m → ∞.

While the amount of data seen by the learners does not influence the asymptotic conse-
quences of iterated learning by sampling from the posterior, it does affect other properties
of the underlying Markov chain. Figure 6(a) shows how λ2 is affected by α, ε, and m. As α

brings P (h) away from uniformity, it increases the probability that successive learners will
share the same hypothesis. This increase in the fidelity of transmission means that it will take
longer to move from an initial hypothesis to a hypothesis with higher probability under the
stationary distribution. As a consequence, convergence to the stationary distribution will be
slower, and λ2 increases as α increases.

Changing ε and m also decreases the rate of convergence (and increases λ2), as the data
received by each learner become more informative. Decreasing ε increases the probability
that a learner produces a set of utterances consistent with their current hypothesis, and thus the
probability that the next learner will infer the same hypothesis. As a consequence, movement
between hypotheses is slower, convergence takes longer, and λ2 increases. Increasing m

increases the amount of information available to learners, reducing the chance that a misleading
set of utterances will be generated. Consequently, the probability that successive learners
choose the same hypothesis increases, slowing movement between hypotheses, decreasing
the rate of convergence, and increasing λ2. With large m, it is likely that a single hypothesis
will be maintained across several generations, as can be seen in Fig. 5(c).

The parameters α, m, and ε also influence the relative stability of compositional and holistic
languages, assessed via the ratio of the mean probability that a particular compositional
language would appear as both hn−1 and hn (i.e., the mean of qii where i is a compositional
language) to the corresponding mean probability for holistic languages. The effects of m, α,
and ε on this ratio are shown in Fig. 6(b). The stability ratio is strongly affected by α: if
the prior probability of a compositional language is high, it is more likely that a learner will
acquire that language, and consequently that language is more stable. The magnitude of this



468 T. L. Griffiths, M. L. Kalish/Cognitive Science 31 (2007)

Fig. 7. Markov chains on hypotheses for the evolution of compositionality with MAP estimation. Different rows
correspond to different parameter values. For each set of parameters, the first column shows a portion of the
transition matrix, Q, with four compositional languages (labeled C) and four holistic languages (labeled H).
Columns are hn−1, rows are hn, and darker grey indicates a higher value of qij = P (hn = i | hn−1 = j ). The second
column shows a sample of 1000 iterations from this matrix, the third shows the relative frequency of hypotheses
across 10000 iterations, and the fourth shows the prior, P (h). The quantities in the third and fourth columns are
subjected to a square root transformation in order to make the full range of variation apparent.

effect is modulated by the number of datapoints, m, with α having the greatest effect when m

is small. As m increases, the data begin to overcome the influence of the prior.5

6.2. Results for MAP estimation

Fig. 7 shows the same quantities as Fig. 5 for learners choosing the MAP hypothesis.
The results are quite different from the corresponding cases for learners sampling from
the posterior: the influence of the prior on the behavior of the Markov chains is significantly
increased. Since every compositional language is also contained in the set of holistic languages,
learners never choose a compositional language when holistic languages have greater prior
probability (i.e., when α = 0.01). The effect is less marked when compositional languages
have higher prior probability (i.e., with α = 0.5), since there are many holistic languages
which are not dominated by compositional languages, but the holistic languages are still far
less common than in the chains produced by sampling with the same values of m and ε.
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Fig. 8. Quantities derived from Markov chains on hypotheses for learners using MAP estimation, as a function of
number of datapoints, m, prior on composite languages, α, and error rate, ε. (a) Second eigenvalue of transition
matrix, λ2. (b) Stability ratio. The stability ratios for α = 0.01 are constant at zero, since compositional hypotheses
are never chosen, and infinite for m < 3 and m < 2 when ε = 0.05 and 0.01 respectively for α = 0.5, since in
these cases holistic languages are never chosen.

A second qualitative difference from the results for sampling is that there are fewer transi-
tions between languages in the chains favoring compositional languages (i.e., with α = 0.5).
This occurs because if the compositional languages are the only hypotheses under consid-
eration, moving from one language to another requires generating data that are consistent
with that language. Because the compositional languages do not overlap, this requires errors
in production. The probability of such errors is set by ε, and the chance of a compositional
languge producing data that are more consistent with another compositional language than
itself decreases as m increases. Because of this, the second eigenvalue of the transition matrix,
λ2, for the chains with α = 0.5 is consistently close to 1, as shown in Fig. 8(a). The values
of λ2 when α = 0.01 are more comparable to those produced by sampling from the posterior,
since it is easier to move between holistic languages.

Finally, unlike sampling from the posterior, m affects the asymptotic consequences of
iterated learning by MAP estimation. Looking just at the cases with α = 0.5, when m = 1
only compositional languages appear in the chain. This is because the evidence provided by
a single utterance is insufficient to overwhelm the higher prior probability of compositional
languages. The probability of holistic languages under the stationary distribution is thus zero.
While it is not shown here, the same phenomenon occurs with m = 2. When m = 3, it finally
becomes possible to generate data that result in selection of holistic languages, and these
languages have non-zero probabilities under the stationary distribution. This trend is more
pronounced when m = 10, with holistic languages appearing more often, albeit for short
intervals before returning to a compositional language. As with sampling from the posterior,
increasing m also reduces the ratio of the stability of compositional to holistic languages,
following the trend shown in Fig. 8(b).
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6.3. Summary

The simulations summarized in this section allowed us to analyze the consequences of
iterated learning by sampling from the posterior and by MAP estimation in a setting more
comparable to previous research. The results of these simulations bear out the predictions
produced by our theoretical analyses: both forms of Bayesian learning result in a distribution
over languages that reflects the inductive biases of learners, with the influence of the prior
being emphasized by MAP estimation. This setting also makes it possible for us to examine
the effect of the number of utterances, m, seen by each learner. As expected, this has no
effect on the distribution over languages ultimately produced by sampling from the posterior,
although it does affect the rate of convergence to this distribution. In contrast, when learners
use MAP estimation the dominance of languages with high prior probability is attenuated with
larger values of m, as it becomes possible to generate sets of utterances that provide strong
evidence for a language with low prior probability.

7. Population dynamics and iterated learning

The results we have discussed so far characterize the consequences of iterated learning
in a setting where each generation consists of a single learner. However, several prominent
analyses of language evolution have focused a different setting, examining how the proportion
of an unbounded population that speaks a particular language changes in continuous time
(Komarova et al., 2001; Nowak et al., 2001, 2002). Our results can be extended into this
setting, indicating how iterated learning will affect the asymptotic proportion of a population
that learns a particular language.

Let pi denote the proportion of a population of learners entertaining hypothesis i at a given
moment t , and qij denote the probability that a learner chooses hypothesis i after seeing data
generated from hypothesis j , as defined in Eq. 9. If we assume that each learner learns from
a random member of the population at the previous instant, then the population proportions
evolve as

dpi

dt
=

∑
j

fjqijpj − φ pi, (46)

where fj is the fitness of speakers of language j in a population with proportions p = (pi),
φ = ∑

k fkpk, is the mean fitness, and the second term on the right hand side ensures that∑
i pi = 1. This is the “language dynamical equation” explored by Nowak et al. (2001, 2002).

In such models, fitness is typically assumed to be a function of how well speakers of a particular
language can communicate with the population at large, implementing a selection pressure for
communication. If we assume that all speakers have equal fitness, fj = 1, Eq. 46 simplifies to

dpi

dt
=

∑
j

qijpj − pi, (47)

which is a linear dynamical system. A special case of this model was analyzed by Komarova
and Nowak (2003).
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The asymptotic behavior of this linear dynamical system is straightforward to analyze. By
setting dpi

dt
equal to zero, we find that the population proportions will be in equilibrium for

p such that pi = ∑
j qijpj , which is the same as the condition used to define the stationary

distribution θ in Eq. 7. Consequently, this system has an equilibrium at p = θ . The properties of
this equilibrium depend on the eigenvalues of the matrix Q − I, where I is the identity matrix.
As mentioned above, the largest eigenvalue of Q will be 1, since Q is a stochastic matrix.
Under conditions analogous to those for the ergodicity of the Markov chain on hypotheses,
this largest eigenvalue will be unique. In this case, Q − I will have a single eigenvalue of
0, and the real components of the remaining eigenvalues will be negative. It follows that the
equilibrium θ defined above is a sink, a unique asymptotically stable equilibrium to which the
population proportions will converge (Hirsch & Smale, 1974).6

Iterated learning with infinite populations evolving in continuous time thus displays similar
asymptotic behavior to iterated learning with discrete generations of single learners. The
key difference is in the nature of the quantities that converge: with discrete generations of
single learners, the probability that a particular learner entertains hypothesis i converges to θi ;
with an infinite population evolving in continuous time, it is the proportion of the population
that entertains hypothesis i that converges to θi . Consequently, the results from the previous
sections characterize the consequences of iterated learning not just for individuals, but for
populations. This provides an additional justification for the use of the iterated learning model
in studying language evolution: if the stationary probability corresponds to the proportion
of the population that learn a particular language, estimates of the stationary distribution
produced by running simulations with discrete generations consisting of a single learner can
be generalized to the level of populations.

8. Discussion

Studying iterated learning with Bayesian agents provides the opportunity to determine the
influence of the inductive biases of learners on language evolution. Our results indicate that
these inductive biases have a strong effect on the consequences of iterated learning. When
learners sample from their posterior distributions, the probability that a learner acquires a
particular language converges to the prior probability assigned to that language as iterated
learning proceeds. When learners choose the hypothesis with greatest posterior probability,
iterated learning produces in convergence to a distribution in which hypotheses with high prior
probability dominate, although the exact distribution depends on the amount of information
transmitted between learners. Furthermore, these results apply not just to the probability that
individual learners acquire a language, but to the proportion of the members of a population
who will acquire that language.

Our analyses provide simple conditions for determining when a particular property of
languages will emerge from iterated learning with Bayesian agents: that property will emerge
if it is favored by the prior. In the remainder of the paper, we explore some questions raised
by these results. First, we summarize the assumptions behind our analysis, and consider
their appropriateness. We then highlight some further results suggested by our analyses, and
consider how our results relate to previous work on iterated learning. Finally, we return to
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some of the larger issues mentioned at the start of the paper, discussing their implications for
explaining linguistic universals and language change.

8.1. Summary of assumptions behind analyses

Since the assumptions behind our analyses were introduced incrementally, it is worth taking
a moment to summarize those assumptions, and to consider their appropriateness in modeling
language evolution. Our formulation of iterated learning as a homogeneous Markov chain
relied upon two assumptions:

Assumption 1 All learners use the same learning algorithm, LA, and production algorithm,
PA.

Assumption 2 We have a sequence of discrete generations of learners, with one learner per
generation who receives data produced by the previous learner.

These assumptions are standard in applications of the iterated learning model (e.g., Kirby,
2001; Brighton, 2002; Smith et al., 2003). In Section 7, we showed that Assumption 2 can be
replaced with

Assumption 2 We have an infinite (or large) population of learners evolving in continu-
ous time, where each learner receives data from a randomly selected member of the
population at the previous instant.

which is consistent with models of population dynamics that have been applied to language
evolution (Komarova et al., 2001; Nowak et al., 2001, 2002).

When the learning algorithm is specified by Bayesian inference, Assumption 1 requires
that all learners share the same set of hypotheses H and the same prior distribution over those
hypotheses, P (h). We also assumed

Assumption 3 All learners have knowledge of the probability distribution over utterances d

produced by use of the production algorithm PA for the language h.

This assumption is used in specifying how Bayes’ rule is applied in language acquisition in Eq.
18. Essentially, it requires consistency between learning and production: that learners produce
utterances from the same probability distribution that they use in evaluating languages. Again,
assumptions of this kind are common in formulations of iterated learning in terms of minimum
descripton length (Brighton, 2002; Smith et al., 2003) or Bayesian inference (Kirby et al.,
2004).

Finally, our characterization of the dynamics and asymptotic behavior of iterated learning
required specification of the learning algorithm (as either sampling, specified by Eq. 23, or
MAP estimation, specified by Eq. 41), and the ergodicity of the underlying Markov chain. As
discussed in Section 2.1, ergodicity is straightforward to check for a finite Markov chain, and
most of the examples we have discussed are ergodic. The possibility remains that non-ergodic
Markov chains play an important role in language evolution, but our results indicate that many
of the properties emphasized in previous work on iterated learning are consistent with the
asymptotic behavior of ergodic Markov chains.
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8.2. Language evolution and algorithms for statistical inference

A key feature of our analysis of iterated learning by both sampling and MAP estimation was
its correspondence to an algorithm used for statistical inference. In Section 4.2, we showed
that iterated learning by sampling from the posterior is a form of Gibbs sampling, a procedure
that is used for estimating the form of complex probability distributions. In Section 5.2, we
showed that iterated learning by MAP estimation corresponds to a variant of the EM algorithm,
a procedure that is used for estimating the parameters of a model that contains latent variables.
The fact that this correspondence exists in both cases suggests that there may be a more general
relationship between iterative estimation procedures and cultural evolution.

In some ways, the existence of a relationship between estimation algorithms and cultural
evolution should come as no surprise, since such relationships are well known in the context of
biological evolution. For example, the standard model of population dynamics by selection in
a single locus model with no mutation and constant fitness for different alleles corresponds to
gradient ascent on the mean fitness of the population (e.g., Rice, 2004). Biological evolution
may provide a good cautionary tale in terms of reading too much into such relationships, since
the conditions identified in the previous sentence are relatively restrictive and not particularly
biologically plausible: with multiple loci, mutation, and a fitness function that depends on
the composition of the population the simple story of optimization that is often associated
with biological evolution is no longer true. Similarly, allowing for the effects of selection
(removing the assumption of uniform fitness) could easily disrupt the connections between
cultural evolution and statistical inference that we have identified in this paper.

Despite this need for caution, it seems that there is a great deal of further potential for the
relationship between iterated learning and algorithms for statistical inference to yield insight
into processes of language evolution. Statisticians have explored a great many variants on the
EM algorithm, some of which have natural interpretations in the context of iterated learning.
In particular, Monte Carlo EM algorithms where mn > 1 (as opposed to stochastic EM, where
mn = 1) are directly applicable to cases of iterated learning, and have been studied extensively
(Sherman, et al., 1999; Fort & Moulines, 203). Statisticians have also investigated a version of
the stochastic EM algorithm in which the samples of latent variables from previous iterations
are also incorporated, providing a natural way of modeling language evolution when learners
are exposed to linguistic data produced by more than one previous generation (Celeux &
Diebolt, 1992; Celeux et al., 1995; Delyon, Lavielle, & Moulines, 1999).

8.3. Relationship to previous work on iterated learning

Previous work on iterated learning has emphasized the emergence of structured languages
from general-purpose learning algorithms, and argued that this is partly due to the “infor-
mation bottleneck” imposed by the finite nature of the data that is used to transmit language
between generations (Kirby, 1999, 2001; Brighton, 2002; Smith et al., 2003; Kirby et al.,
2004). Our results indicate that these effects depend to a surprising extent on the choice of
learning algorithm. If learners sample from the posterior distribution, their inductive biases
need to strongly favor structured languages in order for these languages to emerge, and the
amount of data communicated between generations has no effect on the asymptotic probability
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that learners will speak a particular langauge. However, if learners use a learning algorithm
equivalent to selecting the hypothesis with greatest posterior probability, their biases can be
emphasized, and the asymptotic distribution over languages is affected by the amount of
information transmitted between generations.

Our analysis of the consequences of iterated learning with learners who sample from
their posterior distributions initially seems to provide a counter-example to the idea that the
information bottleneck is involved in the emergence of structured languages. Specifically, it
shows that sensible learning algorithms exist that can produce structured languages, without
an information bottleneck effect. However, in this case, structured languages will emerge only
if they are strongly favored by the inductive biases of the learning algorithms being used.
Thus, while these results show that iterated learning need not always exhibit an information
bottleneck effect, they do not undermine the argument that such effects might play a central role
in the emergence of linguistic structure when learners use general-purpose learning algorithms
that assert only a weak preference for structured languages.

The case where learners select hypotheses with greatest posterior probability provides
closer parallels with previous work on iterated learning. Indeed, as pointed out in Section
5, many of the algorithms that have been examined in previous work can be construed as a
form of MAP estimation. This analysis potentially indicates how structured languages could
emerge using general-purpose learning algorithms that embody only a weak preference for
such structure. The relationship between this form of iterated learning and the stochastic EM
algorithm implies that the stationary distribution over languages will center around those
languages with highest prior probability. Since the maximum of the prior is a relative notion,
the prior need not strongly favor languages for them to dominate the stationary distribution.
For example, in the case of iterated learning with two languages explored in Section 5.2, the
prior probability that h = 1, α, could be manipulated over a wide range for a fixed value of ε,
and have no effect on the stationary probability that h = 1, θ1. Thus, learners having a weak
preference for L1, with α only slightly greater than 0.5, would result in emergence of L1

with exactly the same probability as having a strong preference, with α only slightly less than
1 − ε. This example illustrates how MAP learning can emphasize the weak biases of learners.

While these results provide some suggestive connections, there is still much work to be
done in understanding the effects identified in previous work on iterated learning. In particular,
the correspondence between iterated learning and stochastic EM leaves some unknowns about
the factors influencing the stationary distribution over languages. In the example explored in
Section 6, we obtained results consistent with an information bottleneck effect arising from
MAP estimation, with the preference for compositional languages being emphasized when m

was small. Obtaining systematic results connecting the stationary distribution with the size
of the bottleneck is an important topic for future research. Some preliminary work exploring
bottleneck effects with MAP learners appears in Dowman, Kirby, and Griffiths (2006).

8.4. Implications for explaining linguistic universals

In Section 1, we outlined two possible explanations for linguistic universals: the traditional
idea that these universals are the result of strong constraints that are specific to language learn-
ing, and the alternative hypothesis that iterated learning might be able to produce languages
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with the structural properties of human languages even if learners use general-purpose learn-
ing algorithms. Unfortunately, our formal results do not indicate which of these explanations
is more plausible. However, they do help to fill in some gaps in the traditional argument, and
provide some insight into the kind of questions that need to be asked to resolve the debate.

Advocates of the traditional explanation of linguistic universals in terms of constraints
arising from an innate language faculty can seize upon our results for learners who sample from
the posterior distribution, which dictate a one-to-one correspondence between the inductive
biases of learners and the languages that ultimately manifest in a population. These results
provide an important missing piece of the traditional story, indicating how soft constraints on
individual learning can influence the languages spoken by a population. If the prior distribution
is taken as reflecting innate constraints specific to language learning (a view which we do
not encourage, as mentioned in Section 3), then our results show that iterated learning can
act as the engine by which these constraints result in universals. Those who prefer the idea
that linguistic universals can be produced by iterated learning exaggerating the weak biases
expressed in general-purpose learning algorithms can take heart from our results for learners
who use MAP estimation, which illustrate that iterated learning can potentially emphasize
weak biases. The information bottleneck also provides a further factor that could contribute
to this effect.

Even though our present results have something to offer for both sides of the debate, they do
place some important constraints on possible explanations. In particular, our analysis suggests
two questions that we might pursue in order to evaluate the plausibility of different explanations
for linguistic universals. The first question is whether human language learners are better
approximated as sampling from the posterior distribution or selecting the hypothesis with
greater posterior probability. We provided some empirical arguments for the appropriateness
of sampling in Section 4, but this is an issue that has not been explored in depth in the
case of language learning (although see Hudson-Kam & Newport, 2005). If learners are
closer to sampling than maximizing, strong constraints are necessary. If they are closer to
maximizing, then the weak biases of general-purpose learning mechanisms might be sufficient.
The second question is whether we can identify general-purpose learning algorithms that
have inductive biases (albeit weak ones) consistent with the properties of human languages.
Our results indicate that only languages favored by the prior will be produced by iterated
learning, regardless of whether learners sample or maximize. In previous work, the inductive
biases of different algorithms have largely been investigated by running iterated learning
simulations (Kirby, 2001; Brighton, 2002; Smith et al., 2003). The connection between biases
and universals indicated by our results suggests a more productive mode of analysis might be
to investigate these biases directly, determining which kinds of languages are easier to learn
with different prospective general-purpose learning algorithms.

8.5. Conclusion

Iterated learning is one of the basic mechanisms by which languages are passed from person
to person, and generation to generation. Understanding the consequences of iterated learning
is thus a crucial step towards understanding the process of language change. In this paper, we
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have laid out a framework for analyzing iterated learning, making it possible to characterize
both the dynamics and asymptotic behavior of processes in which learners learn from other
learners. The formulation of iterated learning in terms of Markov chains on hypotheses and
data makes it straightforward to determine the distribution over languages that should be
expected to arise at any iteration (and the change in this distribution across iterations), as
well as the asymptotic probability that any particular language will be chosen by a learner.
The connection between the stationary distribution of the Markov chain on hypotheses and
the equilibrium of population dynamics based on iterated learning also makes it possible to
generalize the conclusions reached with sequences of individual learners to the level of the
population. These results strengthen the contributions that use of the iterated learning model
can make to our understanding of language change.

We have used this framework to provide a detailed account of the consequences of iterated
learning with Bayesian learners. The use of Bayesian inference makes it possible to explicitly
identify the inductive biases of our learners, and to demonstrate that these biases strongly
affect the outcome of iterated learning. Formally establishing the basic predictions that result
from iterated learning paves the way towards being able to develop more complete models of
language evolution, exploring the interaction between iterated learning and forces of cultural
and biological selection. It also provides insight into the plausibility of different explanations
of linguistic universals, providing new terms in which to formulate the debate about the
relationship between linguistic universals and the inductive biases of learners.

Going beyond language evolution, our analysis of iterated learning with Bayesian learners
provide conditions under which information transmitted via iterated learning will ultimately
come to mirror the structure of the mind of the learners. This information will be influenced
by the inductive biases of learners, regardless of the source of those biases and whether the
learners sample from the posterior or use MAP estimation. This correspondence suggests
that we should look closely at the universal properties of human languages, since, under this
account, they should reflect the biases behind human language learning. More generally, our
results suggest that any information transmitted by a process of iterated learning—not just
languages, but also legends, religious concepts, and social norms—will ultimately come to be
tailored to match people’s inductive biases, providing a formal justification for treating these
phenomena as a source of clues about the assumptions that guide human thought.

Notes

1. We will assume that H and D are both finite sets. This is not a necessary assumption,
but simplifies the statement of the results we present in this paper.

2. A similar use of Bayes’ rule to characterize the role of inductive biases in language
acquisition in the context of iterated learning appears in Kirby, Smith, and Brighton
(2004).

3. This definition of ε treats it as the error rate of production, but it could equivalently
be considered the error rate of perception. Under either of these interpretations, it
characterizes the variation in the perceptual data available to the learner.
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4. We use x and z simply to denote vector-valued random variables in this section. The
choice of these variable names matches much of the literature on the EM algorithm, and
should not be connected with the use of x and z in other sections.

5. A small influence of the prior remains even at asymptote due to the presence of holistic
hypotheses that are equivalent to compositional hypotheses. These hypotheses cannot
be separated by any amount of data, so the stability ratio approaches 64

62+1/α
as m → ∞.

If H did not include hypotheses that make equivalent predictions about the data, the
stability ratio would approach 1 as m → ∞. Consequently, the decrease in the stability
ratio as a function of m for the cases where α = 0.01 is due to the specific structure of
H, rather than being a general trend.

6. The fact that Q − I has an eigenvector with eigenvalue 0 indicates that this system has
a one-dimensional linear subspace of equilibrium solutions, corresponding to multiples
of the corresponding eigenvector. The uniqueness of θ as an equilibrium follows from
the fact that θ is the only multiple of this eigenvector that is a probability distribution,
with

∑
i θi = 1.
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