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Abstract

Child-directed speech has a distinctive structure and may have
facilitatory effects on children’s language learning. We con-
sider these facilitatory effects from the perspective of Marr’s
levels of analysis: could they arise at the computational level
or must they be located at at the algorithmic or implementation
levels? To determine if the effects could be due to computa-
tional level benefits, we examine the question of what samples
from a language should best facilitate learning by identifying
the optimal linguistic input for an ideal Bayesian learner. Our
analysis leads to a mathematical definition of the “represen-
tativeness” of linguistic data, which can be computed for any
probabilistic model of language learning. We use this measure
to re-examine the debate over whether language learning can
be improved by “starting small” (i.e. learning from data that
have limited complexity). We compare the representativeness
of corpora with differing levels of complexity, showing that
while optimal corpora for a complex language are also com-
plex, it is possible to construct relatively good corpora with
limited complexity. We discuss the implications of these re-
sults for the level of analysis at which a benefit of starting small
must be located.
Keywords: language learning; child-directed speech;
Bayesian models; representativeness; starting small

Introduction
Child-directed speech is an important source of information
for children’s language acquisition. Hoff and Naigles (2002)
found that the amount of child-directed speech produced by
mothers was predictive of the vocabulary of their children,
and Cameron-Faulkner, Lieven, and Tomasello (2003) found
correlations between the grammatical frames mothers used in
speech to their children and the grammatical frames used by
the children. Child-directed speech also differs from adult-
directed speech in a number of ways. For example, Snow
(1972) found that speech to two year olds by caregivers has
simplified structure and involves more repetitions than speech
to older children or adults, and Sherrod, Friedman, Crawley,
Drake, and Devieux (1977) found that the mean length of ut-
terances spoken to a child changed in response to changes
in the child’s understanding. Overall, child-directed speech
tends to be simplified, more grammatically correct, and more
repetitive than adult-directed speech (Pine, 1994). This raises
an important question: Does the structure of child-directed
speech facilitate language acquisition?

There is some evidence for a facilitatory effect of child-
directed speech. Furrow, Nelson, and Benedict (1979)
found that children’s language development was positively
correlated with mothers’ use of simple constructions, and
Newport, Gleitman, and Gleitman (1977) found that acqui-
sition of certain syntactic features was facilitated by charac-
teristics of mothers’ speech, such as placement of particular

syntactic structures early in sentences. However, Newport
et al. (1977) also found that many measures of acquisi-
tion were unaffected by characteristics of caregivers’ speech,
and Huttenlocher, Vasilyeva, Cymerman, and Levine (2002)
found that exposing children to more complex speech resulted
in the children using more complex syntax.

Previous work has used specific computational models
such as associative learning and artificial neural networks to
explore the effects of simplified input on language learning
(Goldowsky & Newport, 1993; Elman, 1993; Rohde & Plaut,
1999). Elman (1993) found that training a simple recurrent
neural network to predict the next word in a sequence using a
corpus of limited complexity resulted in better generalization
than beginning with the full corpus. However, the effects of
“starting small” are far from clear: Rohde and Plaut (1999)
subsequently found a disadvantage for language learning that
begins with data of limited complexity when using similar
models and corpora.

Demonstrating an effect of starting small under specific as-
sumptions about learning leaves open the question of the level
of analysis at which there might be an advantage for child-
directed speech. Marr (1982) defined three levels at which
information processing systems can be analyzed: the compu-
tational level, where the analysis aims to identify the abstract
problem being solved and its ideal solution; the algorithmic
level, where the focus is on the representation and algorithm
being used to implement this solution; and the implementa-
tion level, which emphasizes the physical hardware on which
the algorithm is executed. Facilitatory effects of the structure
of child-directed speech could be caused by considerations at
any of these levels. At the computational level, data of this
kind could provide more statistical evidence for the struc-
ture of the language. Alternatively, constraints at the algo-
rithmic or implementation levels might limit the information-
processing capacities of children, making simplified input
necessary despite the lack of a computational level benefit.

We try to identify the level of analysis at which a benefit
from simplified input could be located by asking what char-
acteristics a sample of language should have in order to be
most useful for an ideal learner. If simpler corpora are better
for this ideal learner, then we can provide a computational-
level account of the benefit of starting small. If not, such an
effect must be located at a lower level. It is necessary to con-
sider the performance of ideal learners in order to rule out the
possibility that starting small provides a computational-level
advantage. If this were the case, it would not be necessary
to assume algorithmic level constraints are the cause of an



advantage for starting small, as has been done in previous re-
search.

We identify the optimal input for an ideal Bayesian lan-
guage learner by asking what data maximize the posterior
probability such a learner ascribes to the target language. This
is a special case of the problem of defining a “representative”
sample analyzed by Tenenbaum and Griffiths (2001). Conse-
quently, we define a Bayesian measure of representativeness,
and use this measure to give a mathematical characterization
of an optimal corpus. We present a general mathematical re-
sult characterizing representativeness for discrete probability
distributions, which are the basic component of any prob-
abilistic model of language. This result provides the basis
for a more detailed exploration of whether language of lim-
ited complexity might be as good or better for learning than
language of full complexity. We explore the implications of
this result by identifying the optimal input for four different
learning scenarios, involving estimating probabilistic gram-
mars with varying degrees of knowledge about the structure
of a language and estimating n-gram models.

Identifying Optimal Corpora
To understand the characteristics of an optimal sample of
language, we formalize the problem of language learning in
terms of Bayesian inference. Learning a probabilistic model
of language requires estimating the value of a set of pa-
rameters θ from observed linguistic data d. Assuming the
learner has some initial beliefs about the value of θ, expressed
through a prior probability distribution p(θ), the beliefs of a
rational learner after observing d are given by the posterior
distribution p(θ|d) obtained by applying Bayes’ rule,

p(θ|d) =
p(d|θ)p(θ)R
p(d|θ)p(θ)dθ

(1)

where the likelihood p(d|θ) indicates the probability of d un-
der the probabilistic model with parameters θ.

A Measure of Representativeness
Formalizing language learning in this way now allows us to
consider what corpora will most strongly support learning.
Assume that the true structure of the language is character-
ized by parameters θ∗; we consider a learner that is simply
learning this structure, although more complicated models
that also learn other parts of the language, such as seman-
tics, are possible. To maximize the probability of a learner
inferring θ∗ over other values of θ, a teacher should provide
data d that maximize p(θ∗|d). Examination of the right hand
side of Equation 1 shows that this can be done by maximizing

R(d,θ∗) =
p(d|θ∗)R

p(d|θ)p(θ)dθ
(2)

with respect to d, as the prior probability p(θ∗) is constant
and thus unaffected by the choice of d. Tenenbaum and Grif-
fiths (2001) suggested that R(d,θ∗) be considered a measure

of the “representativeness” of d relative to θ∗, being an indi-
cator of the strength of evidence that d provides in favor of
θ∗ relative to other values of θ. Intuitively, a sample is more
representative if it is both very probable under the true model
(the numerator of Equation 2) and not as probable under a
model selected at random (the denominator of Equation 2).

Representativeness for Discrete Distributions

In general, we may not be able to solve the integral in the de-
nominator of Equation 2 exactly. However, we can solve this
integral in the case where the model p(d|θ) is a discrete prob-
ability distribution, as is often true with probabilistic models
of language. For a multinomial with ordered outcomes, the
likelihood is p(d|θ) = ∏t

i=1(θ∗i )ki , where t is the number of
possible outcomes, θ∗i is the probability of outcome i, and
ki is the number of times the outcome i occurred. We place
a uniform Dirichlet prior on the distribution θ, reflecting no
strong expectations about the probabilities of different rules.
Thus, the integral in Equation 2 is in this case:

Z

∆

t

∏
i=1

θki
i dθ =

(∏t
i=1 ki!)

(t−1+∑t
i=1 ki)!

=
(∏t

i=1 ki!)
(t−1+n)!

(3)

where ∆ is the simplex of values such that ∑t
i=1 θi = 1, and n

is the total number of observations. The representativeness of
a corpus with respect to this model with a particular value of
θ is then:

R(d,θ) =
(t−1+n)!∏t

i=1 θki
i

(∏t
i=1 ki!)

. (4)

The optimal corpus is that which maximizes this quantity.
We can find an exact expression for the frequencies an opti-

mal corpus would have by maximizing the quantity in Equa-
tion 4 with respect to ki. Since the logarithm is monotonic,
the corpus that maximizes R(d,θ) is also the corpus that max-
imizes logR(d,θ), so we perform our maximization with this
transform. Additionally, this is a constrained optimized prob-
lem since n must equal ∑t

i=1 ki. We enforce this constraint
with a Lagrange multiplier, and replace the factorials using
Stirling’s approximation to obtain the objective function:

L = (t−1+n) log(t−1+n)+1− t

+
t

∑
i=1

ki log(θi)− ki log(ki)+λ(n−
t

∑
i=1

ki) (5)

where λ is the Lagrange multiplier. To determine the opti-
mum of this objective function, we differentiate with respect
to ki, set the derivative to zero, and solve for ki. This shows
that the optimal value is ki = nθi. Rounding to the nearest in-
teger, this corresponds to what one might intuitively expect:
The most representative corpus is that in which the relative
frequencies of the outcomes match their probabilities under
the target multinomial.



 
 
 
 
 
















 
 
 
 
 
















Figure 1: The context-free grammars used in our simulations. On the left, the true grammar; on the right, the overly general
grammar with added rules, used in the third simulation. Bolded expansions are those present in the expanded grammar but not
in the true grammar. In addition to these rules, subject-verb agreement is enforced, resulting in a much larger PCFG.

Representativeness for Probabilistic Grammars
The results for the representativeness of samples from multi-
nomial distributions can be used to characterize optimal cor-
pora for any probabilistic language model with discrete ele-
ments, such as an n-gram model. These results also gener-
alize naturally to a representativeness measure for more so-
phisticated probabilistic models of language, such as prob-
abilistic grammars. A probabilistic context-free grammar
(PCFG; Baker, 1979) defines a probability distribution over
sentences via a set of expansion rules for non-terminals (e.g. a
noun phrase consists of a determiner followed by a noun)
and distributions over those rules indicating the probability
of a given non-terminal being expanded to a particular se-
quence (see Figure 1). The distributions over rules are in-
dependent multinomials, allowing us to build on the repre-
sentativeness analysis above. In this case, the parameters θ
describe the multinomial distributions associated with each
expansion rule.

When the structure of sentences (i.e. the sequence of ex-
pansion rules used in generating each sentence) is known, the
representativeness of a corpus follows directly from our re-
sult for multinomials. Since each rule is associated with an
independent multinomial, the representativeness is the prod-
uct of the representativeness for each multinomial. Thus, a
representative corpus is one in which the relative frequencies
with which expansion rules are used match the probabilities
associated with those expansion rules in the grammar.

When the structure of sentences is unknown, p(d|θ) is ob-
tained by marginalizing over possible structures. For PCFGs,
this can be done efficiently using a dynamic program; in our
simulations, we used Mark Johnson’s implementation of this
algorithm.1 However, since there is not a closed form for
this marginalization, we cannot calculate the denominator of
Equation 2 exactly. In this case, we can use a Monte Carlo
method to approximate the integral and obtain an estimate of
the representativeness of a corpus.

Starting Small
As described in Elman (1993), “starting small” involves
showing a learner only a limited number of “complex” sen-
tences from a language first, and gradually exposing the

1Version last updated 2 September 20007, and available at
http://www.cog.brown.edu/∼mj/Software.htm

learner to the full language. A sentence is complex if it con-
tains a recursive rule; for example, in both Elman (1993) and
Rohde and Plaut (1999), complex sentences are those that
contain relative clauses. Both Elman (1993) and Rohde and
Plaut (1999) used neural networks that learned to predict the
next word in the sentence. Elman (1993) found that start-
ing small was essential for his model; when a corpus of full
complexity was used, the learner was never able to predict
the next word with satisfactory accuracy. Rohde and Plaut
(1999) found, in contrast, that in most cases starting small
resulted negative impacts on performance, and none of their
simulations showed any advantage to starting small.

We use the analysis of representativeness for an ideal lan-
guage learner given in the previous section to explore the lo-
cus of a potential effect of starting small. Since our analysis
focuses solely on the statistical evidence a corpus provides
in favor of a particular language, we can examine whether a
potential benefit of starting small could arise at the computa-
tional level, or must be a consequence of specific information-
processing constraints associated with human learning. Thus,
we consider two questions: First, does starting small result in
particularly good corpora for language learning? And sec-
ond, can a corpus of limited complexity be as good as a cor-
pus without limited complexity? Clearly, if a starting small
corpus is optimal, then such a corpus is as or more represen-
tative than a more complex corpus. However, even if a limited
complexity corpus is non-optimal, it might be as representa-
tive as corpora generated by other means. In particular, we
compare corpora of different complexity generated by maxi-
mizing representativeness and generated randomly.

As in the analysis in the previous section, we consider two
types of corpora: those in which sentence structure is known
and those in which structure is unknown. In two simulations,
we assume that the learner knows the rules of the grammar,
but does not know the frequencies with which they occur. Our
third simulation introduces ambiguity about the rules of the
grammar, and the fourth considers the possibility that chil-
dren are not learning a grammar but simply distributions over
which words follow one another. We used a PCFG similar
to that in Elman (1991). The only instance of recursion was
in the relative clause, which occurred in 75% of sentences
generated from the grammar, and the grammar enforced the
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Figure 2: Representativeness of corpora with known struc-
ture. As the number of complex sentences increases, the rep-
resentativeness of the corpora increases non-linearly.

agreement of subjects and verbs2. Figure 1 shows the gram-
mar prior to integrating the constraint of verbal agreement;
the final grammar consisted of 63 rules and 23 nonterminals.

Representativeness with Known Structure
We first considered the problem of learning from a corpus in
which the structures of the sentences are known, allowing us
to use the closed form given in Equation (4) to exactly com-
pute the representativeness of the corpus. We sought to quan-
tify how representative a corpus could be given the constraint
on complexity and discover how this compared to randomly
generated corpora as well as more complex corpora.

To investigate this question, we generated several types
of corpora. All corpora were created by choosing a subset
of sentences from a large corpus generated by the grammar.
Random corpora were generated by selecting this subset ran-
domly, subject to a constraint on the number of complex sen-
tences. Optimized corpora were collections of sentences cho-
sen to maximize representativeness. An ε-greedy perturba-
tion process was used to maximize representativeness. First,
an initial corpus of the target complexity was randomly se-
lected. This corpus was perturbed by adding additional sen-
tences, and then pruning sentences from the augmented cor-
pus. With small probability, a sentence was chosen randomly
to add or prune. Otherwise, a sentence was chosen by check-
ing the effect of adding or pruning each possible sentence and
greedily adding or pruning the sentence that resulted in the
corpus with the largest representativeness. Twenty perturba-
tions of ten sentences each were performed; results were not
sensitive to small variations in these parameters.

For both the random and optimized conditions, we created
corpora with constrained complexity. Corpora were gener-
ated with complexity ranging from 0% to 100% complex sen-
tences, at 5% intervals. A complex sentence was any sentence
containing a relative clause. Additionally, random and opti-
mized corpora were generated with no complexity constraint.
Each corpus contained 100 sentences.

As shown in Figure 2, this procedure succeeds in finding
subsets of sentences that are significantly more representa-

2Grammar creation was facilitated by the Simple Language Gen-
erator (Rohde, 2003)

tive than randomly generated corpora of the same complex-
ity. However, the limitation on complexity greatly affects
representativeness. While limiting complexity significantly
impacts the representativeness of only one rule, that which
allows the introduction of the relative clause, this impact is
severe enough to outweigh the representativeness of the other
rules. Thus, an optimized sample of severely limited com-
plexity is much less representative than a random sample in
which complexity is not constrained. When the limit is not
as severe, though, optimized corpora with somewhat limited
complexity and random corpora with greater complexity have
equal representativeness, due to the fact that the severity of
the complexity constraint has a non-linear effect on represen-
tativeness (Figure 2). For corpora of unconstrained complex-
ity, the results mirror the results for corpora with constrained
complexity equal to the true base rate of complex sentences
for the grammar (75%). The average representativeness of
randomly selected corpora was 65.7±4.9, with 76.3%±4.9
complex trees, while the average representativeness of cor-
pora selected for representativeness was 87.7±8x10−5, with
80.1%±10.3 complex trees.

Representativeness with Unknown Structure
The previous simulation assumed that our corpus consisted of
the structure of the sentences, from which we could directly
compute the representativeness of a given corpus. However,
one might alternatively assume that a language learner has
only the sentences as data and must consider all possible
structures. We examine this possibility by using the same cor-
pora of sentences as in the previous simulation, but assuming
the structure of each sentence is unknown.

As mentioned in the previous section, when the structure of
sentences is unknown we need to resort to Monte Carlo ap-
proximation to compute representativeness. We used impor-
tance sampling (Neal, 1993); our proposal distribution was a
Dirichlet distribution with parameters equal to the true distri-
bution in the grammar multiplied by ten. Results are averages
of 30 iterations of 10,000 samples each; in the case of random
corpora, sampling was done for each of ten corpora with the
same constraints on complexity. Given that variance for the
optimized corpora was much smaller, sampling was done for
only one optimized corpus of each level of complexity. We
consider the same four levels of complexity as Elman (1993)
and Rohde and Plaut (1999): 0%, 25%, 50%, or 75% of the
total corpus size. Additionally, we consider corpora of un-
constrained complexity.

Figure 3 shows that the general trends from the previ-
ous simulation hold, with a few variations. The separation
between the optimized corpora and the random corpora is
smaller than when the structure is known. This is partially due
to the way the corpora were created. Presumably, if it was fea-
sible to optimize over corpora with unknown structure, fur-
ther separation might be attained. However, these results do
suggest that optimizing the input sentences would not greatly
help a learner who must consider all possible structures of
sentences. Consistent with the previous simulations, repre-
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Figure 3: Representativeness of corpora with unknown struc-
ture. Limiting the complexity of a corpus limits its represen-
tativeness, with the most extreme limitation having the great-
est effect.
sentativeness increases non-linearly with complexity. Again,
the least complex corpora are not as representative as those
that match the base rate of complexity in the grammar.

Using an Overly General Grammar
One might consider the above assumptions too strong: What
if the exact structure of the grammar is not known? In this
variation, we instead assume the learner has an overly general
grammar that includes rules not present in the true grammar
(see Figure 1). For example, rather than having only the op-
tion of expanding a transitive verb phrase to a verb followed
by a noun phrase, the learner’s grammar also has the possi-
bility of expanding such a phrase to a noun phrase followed
by a verb phrase. This simulates learning a grammar with
unknown structure while maintaining a tractable hypothesis
space (in this case, not knowing the word order in the lan-
guage, but knowing the relevant syntactic classes). The extra
rules give the learner a larger hypothesis space to consider,
and our previous hypothesis space is the subset of the new
space in which the probability of each of our newly added
expansions was zero. By using an overly general grammar,
we introduce much more ambiguity as to the structure of
any given sentence. Thus, one might expect different results
than in the previous simulation, where the number of possible
derivations for any given sentence was relatively small.

The procedure for calculating representativeness in the
case of an overly general grammar was very similar to the
previous case. We again are considering representativeness
for sentences with unknown structure, and thus used impor-
tance sampling to calculate the integral. The proposal dis-
tribution for sampling was modified so that expansions with
the added rules (not present in the true grammar) would be
considered. We again used a Dirichlet distribution, but the
parameters were equal to ten times the true parameters plus
one. Thus, rules that had zero probability in the true grammar
had a parameter of one in the Dirichlet prior.

As shown in Figure 4, even with a grammar with extra
rules, the results are very similar to the previous simula-
tion. Optimizing the corpora has the strongest effect when
the complexity is somewhat limited, but for the greatest rep-
resentativeness, it is still best to use a corpus with greater
complexity. This result suggests that even if a learner does
not know the true grammar, it is still better to provide a cor-
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Figure 4: Representativeness of corpora with unknown struc-
ture using a grammar with extra rules.

pus of full complexity rather than a “starting small” corpus.
However, several concerns remain. The way in which we gen-
eralized the grammar was limited to switching the orders of
verb phrases and noun phrases. This adds significant ambi-
guity to the grammar, but is not equivalent to considering any
arbitrary grammar. For example, one could imagine a gram-
mar that had over-general rules for producing relative clauses.
In that case, it is still unclear whether representativeness in a
corpus of severely limited complexity could equal the rep-
resentativeness of a more complex corpus. To fully explore
the problem, we would need a tractable way to consider all
(infinite) possible grammars that could produce the data.

Representativeness with N-Grams
The above simulations assume the learner learns a PCFG, but
existing neural network models formulate language learning
as learning to predict the next word based on previous words.
This corresponds to a model where the learner learns distri-
butions over n-grams rather than rules, and thus we can apply
the same mathematical tools to analyze the representativeness
of corpora according to an n-gram model.

To calculate representativeness, we can use exact counts
as in the first simulation. An n-gram is a sequence of two
(bigram) or three (trigram) words, and we assume a language
model that estimates the probability of the next word given
the previous one or two words. Our target distribution is now
the correct proportions for each n-gram, which we estimate
by computing the n-grams on the large corpus from which
the other corpora were drawn.

Despite the fact that the model of the language has changed
significantly, similar results hold in this case as in the other
cases. Figure 5 shows the representativeness of the same cor-
pora used in the other simulations with respect to n-grams:
the random corpora of full complexity are still more repre-
sentative than optimized corpora with limited complexity.

Summary
In our analysis, we have shown that starting small limits the
degree of representativeness of the corpora and that the ef-
fect on representativeness is greatest when the limitations are
particularly severe. These results hold regardless of the varia-
tions we considered. While our task is not exactly the same as
in Elman (1993) or Rohde and Plaut (1999), it has bearing on
this debate. From a computational level perspective, the only



0

200

400

600

800
Corpora Representativeness Using Bigrams

 

 

0%
 C

om
plex

25
%

 C
om

plex

50
%

 C
om

plex

75
%

 C
om

plex

Unco
nstr

ain
ed

 

Com
plex

ity

Optimized Corpora
Random Corpora

0

200

400

600

800

1000

1200
Corpora Representativeness Using Trigrams

 

 

0%
 C

om
plex

25
%

 C
om

plex

50
%

 C
om

plex

75
%

 C
om

plex

Unco
nstr

ain
ed

 

Com
plex

ity

Optimized Corpora
Random Corpora

Figure 5: Representativeness of corpora using an n-gram model.

concern for such learning is whether the corpora are repre-
sentative, and we have shown that starting small (at least in
the extreme form) is not compatible with maximizing repre-
sentativeness. However, if for mechanistic reasons one needs
to start small, the above results suggest that starting “smaller”
can result in similar representativeness in an optimized corpus
to that of a random corpus of full complexity.

Discussion
We have shown how the concept of Bayesian representative-
ness can be applied to language in order to characterize an
optimal sample and presented a case study of how represen-
tativeness changes with constraints on the sample. Mathemat-
ically, the Bayesian representativeness of language structures
matches our intuitive sense of representativeness: a sample of
language is most representative if the actual number of occur-
rences of each structure matches the expected number. While
we cannot give a closed form expression for the representa-
tiveness of a corpus where the sentences structures are not
given, simulations show that the trends concerning represen-
tativeness given constraints on complexity hold for these cor-
pora as well. Finally, it is suggestive that given a grammar
with overly general rules, we still find a disadvantage for cor-
pora of limited complexity.

Our results suggest that if there is a beneficial effect of
starting small, it is not located at the computational level: the
statistical evidence a corpus provides in favor of the target
language falls off as its complexity deviates from the com-
plexity of the language. However, our results do show how
it might be possible to start small in response to mechanistic
information-processing constraints and still not impede learn-
ing, as it is possible to construct limited-complexity corpora
that provide as much evidence as a random sample from the
language. While suggestive, we note that these conclusions
are tempered by the models we considered, and in particular
the space of alternative hypotheses we allow the learner.

Overall, our analysis provides insight into what optimal
linguistic input should look like in several interesting cases.
A variety of next steps are possible. First, a more detailed ex-
ploration of the nature of an optimal sample given unknown
rules would illuminate whether the preliminary results we
have found hold given a larger space of possible grammars.
Additionally, comparing our theoretical results to actual cor-
pora of language acquisition would indicate whether child-
directed speech is more representative than randomly selected
adult-directed speech. This would suggest a pedagogical role

for child-directed speech. This work provides a foundation
for addressing these more advanced questions.
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