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Abstract reconstruct information from memory, and that this bias be-

Social hologists h dth | ¢ method to si came exaggerated through serial reproduction. Sincedgartl

Socialpoychologits ave used he replacemertinethod oS other researchers have also used ransmission chainsiny

pens when a group of people performing a task are gradually tigate how cultural biases affect the information belng1$Fa

replaced by new members. We provide a formal analysis of mitted (see Mesoudi, 2007, for a review). Recently, Griffith

i dhnamics of lural evluton by eplacement uider ¢, and Kalish (2007) formaly analyzed his process unde the

use a connection to a statistical inference algorithm — Gibbs assumption that the people in the chain are Bayesian agents.

iy e e ESTE o s, 2. T analyle s thal the il formaton dosat

Sog\glation-level trgnds resulting from cultural transm>i/ssion. overtime, with t.he outcome of transmission be'”g Qetemhlne

] o o purely by the biases of the learners. Xu and Griffiths (2007)
rﬁ%moé?gbsc l;g%glliﬁ\g/?lutlon, cultural transmission; replace- confirmed this prediction empirically for serial reprodioct,
using a strictly controlled set of transmission chains.

The science of cultural evolution studies the origin, per- The existence of a formal analysis of transmission chains
sistence, and change of the body of information shared byaises the possibility that similar analyses can be pertorm
the members of a society, such as knowledge, beliefs, an@r the other methods used to simulate cultural evolution in
norms. Research in this field has traditionally been dondhe laboratory. Our focus here is on the replacement method,
by anthropologists and sociologists, although there isng lo in Which a group of people perform a task together, and the
tradition in social psychology of reproducing processes ofnembers of the group are replaced one at a time (Gerard,
cultural evolution in the laboratory (Mesoudi, 2007). Re- Kluckhohn, & Rapoport, 1956). The replacement method
cently, researchers have begun to apply methods developddovides a complement to transmission chains, emphasizing
in research on biological evolution to the study of cultural transmission of information within a group rather than asro
change (Mesoudi, Whiten, & Laland, 2006; Boyd & Richer- generations. The method has been used to simulate patterns
son, 1985). In particular, mathematical models and compute0f persistence and change in group-based decision making,
simulations have proven to be powerful tools that can be useBroblem solving, and social organization (Mesoudi, 2007).
to uncover the dynamics of cultural evolution. For exam-By assuming that the people in the group are Bayesian agents,
ple, Bentley, Hahn, and Shennan (2004) argued that a randoW€ are able to characterize the asymptotic consequences and
genetic drift model can be used to explain cultural phenomdynamics of cultural evolution by replacement. As with san
enain Changes of baby names, prehistoric pottery Sty|es armission chains (Grlfflths & Kalish, 2007), these results ex-
technology patents. However, there is still a significant ga Ploit @ connection between cultural transmission and a sta-
between these formal models, which are applied at the levdistical inference algorithm known as Gibbs sampling. We
of whole populations, and the data that has been produceiése this analysis to make quantitative predictions for fabo
through the experimental investigation of cultural traissm tory data, capturing the way that confederates introduoed t
sion. In this paper, we formally analyze one of the methodg group influence the ize participants (Jacobs & Campbell,
that has been used to simulate cultural transmission in thé961), and for trends produced by cultural transmission in
laboratory, and show that the resulting model can account foentire populations (Bentley et al., 2004).
both experimental data and trends at the population level. ~ The plan of the paper is as follows. The next section

Social psychologists have studied cultural evolution us-Presents our formal analysis of the cultural evolution by re
ing several strictly controlled laboratory paradigms,tsas  Placement in its full generality, outlining the connectioe-
transmission chains, the replacement method, and the cofiveen this process and Gibbs sampling. We then give a
stant group method (Mesoudi, 2007). Transmission chaingetailed analysis of the predictions of the model using two
were originally used by Bartlett (1932) in his “serial repro Case studies, starting with laboratory data and then tgruin
duction” experiments. In these experiments, people wer@opulation-level trends. We close by discussing the inaplic
asked to reconstruct a stimulus from memory and the recorfions of our approach and future directions.
structions produced by one person was used as the stimulus .
seen by the next. Over time, the original stimulus became Analyzing the replacement method
distorted. Bartlett interpreted these results as indigathat  The basic structure of the replacement method is shown in
people are biased by their pre-existing knowledge when the¥igure 1. Each generation is composed of a fixed number of



Generation where the denominator simply ensures that the posterior
3 4 probabilities sum to one. In a group setting, the expeatatio

of each person before seeing data will be influenced by the re-
sponses of the other people, with the prior depended on these
responsesp(z|z_;). Bayes’ rule can still be applied in this
case, with the posterior distribution being

oo p(lz)p(zi|z-)
P, 2-1) = o2 palz 1) a2 @)

which is just Equation 1 with the appropriate prior.
With this formulation of the task, we can now analyze the
replacement method. We can describe the state of a group
with n members as a collection afvariablesz = (z,...z,),
reflecting the responses of the people in the group. The pro-
cessillustrated in Figure 1 can be viewed as successiveresa
Figure 1: The replacement method. Each circle representgling of the values of these variables as the person repieden
a single person, with identity expressed by a letter. In eaclipy each variable is replaced. Assuming that each person se-
generation, one member of the group is replaced. After foutects a response on the task by sampling from the posterior
generations, no original members of the group remain. distribution conditioned on the responses of the other grou
members (Equation 2), the replacement method simply cycles
through the following procedure:

individgals (in th?s case, four), apd each individual perfe samplez&t“) from p(zl|x(1t+1)7zg)7...,z,<f))

a certain task, either together with the other group members {t+1) 1) @) ©

or just in awareness of the responses of the rest of the group. SamPplez; "~ from p(z|x; .2, 257, ..., z0")

After one iteration through the entire group, one member is o

replaced by a newcomer who has the opportunity to observe samplezﬁ”l) from p(z| ,2(10, ---,qutll)

the actions of the other members of the group. Each replacgynere the superscrift) indexes the generation, and a new

ment represents one generation of cultural transmissisn, Qalue for avariable;(t“), is used in sampling the other vari-
the newcomer is now exposed to the norms established by th . . .
les immediately after being generated.

group. Using this method, researchers can observe how mucéh . . . .
and to what degree old information is preserved and new in; The procedure described in the previous paragraph s likely

Lo . . to be familiar to readers familiar with Monte Carlo algo-
formation is introduced in the group across generations. . - . :
) ) - ) rithms. In statistics, a method known as Gibbs sampling (Ge-
While a variety of tasks have been studied using the re

man & Geman, 1984) is a popular tool for generating sam-

placement method, we will chus on task_s th_at can be for'ples from the joint distribution of several random variable
mulated as an informed choice or inductive inference.

, ; INEach step of Gibbs sampling replaces the value of one of the
such a task, a person receives some datad has to in-

. ) variables by drawing a sample from the distribution of this
fer the procesg responsible for producing those data. Foriapie conditioned on all the remaining variables. For ex
example, in one of the cases considered beloig, an ob-

X i _ : ) ample, if we have variables= (z,...,z,), the joint distribu-
servation of a visual stimulus, ardis the inferred extent

. tionis p(z) = p(z1,22, ...,zn). In each iteration, the algorithm
of movement of that stimulus. In a group ofpeople, per- .y jes through the variables and draws a new value for each
soni not only receives the data, but also has the oppor-

: : variablez from the conditional distributiorp(z|z_;). This
tunity to observe the responses of the other people in thg,,asq constructs a Markov chain that converges to the tar-
group,z_i = (21, ...,z -1,Z+1, - -, Zn), Using this information

X : get distributionp(z). By iterating the process, the valueszof
to guide their responsa. o ~uliimately behave as if they were sampled frpfz).

by Bayesian inference. A single person acting alone couldmplements a Gibbs sampling algorithm for the distribution
express her expectations about the value b&fore seeing

x through aprior distribution p(z), and her beliefs about the p(2) i p(%i|z)

probability of seeing a particular value gfor each value of P(zlx) = [ p(z) i p(x|z)dz ®)

zthrough thdikelihood p(x|z). Her expectations abouataf-

ter seeing are expressed in thosteriordistributionp(zjx), ~ wherep(z) is a joint distribution orz consistent with the set

obtained via Bayes’ rule of conditional distributiong(z|z—;), and we assume that the

set of observations = (xg,...,X,) iS constant over time (ie.
p(xz)p(2) everybody receives the same observations). More pregisely

p(zx) = [ p(x|2)p(z)dz (@) ifthere exists a joint distributiop(z) such thatp(z|x;,z—;) O
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p(xi|z)p(z) for all i, then the replacement method defines aThe firstis a study in which group influence on people’s judg-
Markov chain orz with stationary distributiom(z|x) as de- ments was investigated using a perceptual illusion (Ja&obs
fined in Equation 3. Cultural evolution by replacement will Campbell, 1961). The results showed that biases were easily
result in convergence to an equilibrium characterized Iy th introduced to the group by confederates, but would also dis-
distribution regardless of the initial value bf appear after several generations as those confederates wer
The requirement that the distributiop$z|z_;) be consis- replaced by new rige subjects. The second case study shows
tent can be satisfied by assuming that each person estimatist the model can produce power-law distributions in choic
an appropriate prior from the responses of the the members dfequencies, using the example of baby names in the United
the group. If each person has a pria(z|0) with parameters States (Bentley et al., 2004; Hahn & Bentley, 2003).
6, then learner can estimat® from z_; by using Bayes’ rule

Predicting laboratory data
P(®) Mji P(zi|0)

Blz_;) = 4 One of the classic social psychology studies on group influ-
POz JP(®)M;xi p(z|6)d® @ ence was Sherif's (1936) experiment, in which participants
and then integrate ovérto obtain the prior were asked to estimate how far a lighted dot moved in the
darkness when the dot actually did not move at all. The
p(z|z-i) = / p(z|0)p(6|z_i)dO (5)  “auto-kinetic effect” refers to the reliable visual illusi that

the dot was moving. Sherif's classic finding was that when
which can be used as in Equation 2. The resulting set of dngroup members who were confederates gave exaggerated es-
tributions p(z|z-) are consistent, with corresponding joint timates of the amount of movement,ivia participants were
distributionp(z) = [ p(8) [1; p(z(6) d6. strongly influenced and reported similar estimates. Jacobs

These results give us a simple characterization of theind Campbell (1961) studied the persistence of this bias us-
asymptotic consequences of cultural evolution by replaceing the replacement method. The groups initially consisted
ment. First, the population will converge to the same equi-of all naive participants or a number of confederates plus one
librium, the distributionp(z|x), regardless of the initial value ngve participant. After each generation the “oldest” group
of z. Second, we can say how the performance of the groupgnember was replaced by a newiveparticipant. The biases
will relate to the performance of individuals at this eduli  introduced by the confederates decreased with each genera-
rium. Whenx consists of a set of observations apfZ)  tion and entirely disappeared after six generations haseggas
is the result of a parameterized prior as outlined above, theince the removal of the last confederate. Figure 2 (a-aysho
conclusions reached by a group will be more accurate thathe data for four-person groups with three initial confedes,
those reached by an individual who sees only one observaind three-person groups with two and zero confederates.
tion. Specifically, the marginal distribution @ at equilib- ] ] ] ] S
rium is p(z[x) = 3, . p(z|x), as compared tp(z|x) for an Gibbs sampling with Gaussian distributions
individual acting alone. This means that persdras the op- We model the auto-kinetic effect experiment as a specia cas
portunity to benefit from the observations of all of the otherof the framework introduced above, where the distributions
people in the group, although the extent to which these obinvolved are Gaussian. Using Gaussian distributions simpl
servations increase accuracy will depend on hpfw) is de-  fies the model and also allows us to analytically compute the
fined. Similar results also hold for variants of the replaeetn  probabilities required to simulate the process of replamsm
method: using different schemes for determining the peoplén this task,x is the observed apparent motion of the stimu-
to be replaced or selecting them at random result in the samles, andz is the estimate of the amount that it moves. We as-
stationary distribution (e.g., Liu, Wong, & Kong, 1995). sume that each participant has a prior distribuiidr6) that

An important special case of our analysis is that wherds Gaussian with meapmand variances?, where® = {|,0,}
there are no observations In this case, each person sim- are the parameters of the prior, and that the likelihp(xiz)
ply responds based on the responses of the others, sampliigalso Gaussian, with mearand variances?. Intuitively, u
from p(z|z—;). The stationary distribution of this process is ando; express each person’s expectations about the amount
p(z), and in this case the group ultimately provides no ad-of motion they are likely to see for this stimulus, whilg
vantage to the individual: the marginal distribution focka reflects how much noise is assumed to be in the perceptual
individual at equilibrium is the same regardless of the size observations. By inferringt and o, from the responses of
the group. However, the responses of individuals will be dethe other people in the group, people can hope to form a bet-
pendent, meaning that the population as a whole can manifettr estimate of the amount of motion, but they also become
trends that are determined by the joint distributju(z). susceptible to biases introduced by confederates.

In the remainder of the paper, we show that this analy- Following the framework outlined above, evaluating
sis provides not just general results concerning the consep(z|z_;) requires computing the posterior distribution pn
quences of cultural evolution by replacement, but also guanand 62 given z_;, which in turn requires specifying a prior
titative predictions of specific pnenomena. We present twan p ando?. We used an uninformative prior, making mini-
case studies that illustrate how the model can be used to amal a priori commitments to the values pfando2. Under
count for both laboratory data and population-level trendsthis prior, p(z|z—;) is a Student distribution, with a mean



Human Data
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Figure 2: (a-c) Data from Jacobs and Campbell (1961). Theyhazes in the top left corners of the figures indicate thesbi
responses of confederates. The lighter lines are the respmf néve participants, each of whom stayed in the group for four
generations. (a) The experimental condition of 4-persaugs with 3 initial confederates. (b) The experimental ¢t of
3-person groups with 2 initial confederates. (c) The cdrdomdition with 3-person groups with no confederates. )(Mbdel
simulations for each condition. The correlation betweeta dad simulation is 0.89.

that is the average af ;, scale parametdtl + 1/n)%/? times  replications for each condition.
the standard deviation of_;, and (n— 1) degrees of free- These simulations show that the Markov chain converges
dom (Gelman, Carlin, Stern, & Rubin, 1995). The result-faster with smaller group sizes and fewer confederates. When
ing posterior required for Gibbs sampling(z|x,z_ij) hasno  more nédve participants with their unbiased priors and new
simple form, so we used an importance sampler to generatebservations of the state of the world are introduced in the
from this distribution (see, e.g. Neal, 1993). Specifically group over several iterations, the Markov chain decredwes t
we drew 1000 samples from the pripfz|z_;) and weighted initial influence of the confederates. These predictiores ar
these samples by the Gaussian likelihgdg |z ) to construct  consistent with the findings of Jacobs and Campbell (1961),
an approximation to the posteripfz|x,z_;). capturing both the qualitative decrease in biased respgndi
and the quantitative rate at which this decrease occurg, wit
Simulating the replacement method We simulated the the correlation between simulation and empirical datagdein
study conducted by Jacobs and Campbell (1961) using th@.89.
Gibbs sampling model presented in the previous section. We .. .
assumed that each participant forms a single estimate of the Predicting population-level trends
amount of movement at each generation, sampling this valu#/hile the replacement method has largely been used to study
from their posterior distribution, and that all particigame-  cultural evolution in the laboratory, the underlying prese
ceive the same perceptual observatiormThe value ofk was  provides a plausible model of cultural transmission in déarg
set to 2.9 inches, the ultimate estimate arrived at by iddivi populations. The idea that each person in the population is
als exposed to the autokinetic effect. The only free paramet eventually replaced by a new person provides a useful sim-
in the model wa®y, which was set at 4.0 inches for all three plification of the true process of cultural evolution. Indee
conditions. Figure 2 (d-f) shows the results of the simula-exactly the same assumption is made in the Moran model,
tions for these three conditions. Each point is the meanrof tewhich is widely used to simulate biological evolution in fi-



2003). The principle of preferential attachment is based on
Ghe assumption that the probability that a particular ooteo

takes on a particular value depends upon the frequency bf tha
value in the choices of other people. If values that have been
chosen by more people are more probable, then the high fre-

Table 1. Power-law distributions of baby names through th
20th century. Exponentgfor power-law distributions were
fit to log-log plots of probability vs. frequency for the top
1000 baby names (from Hahn & Bentley, 2003).

Years y(males) y (females) guencies associated with a power-law distribution can be pr
1900-1909 1.79 1.88 duced through the resulting “rich-get-richer” process.
1910-1919 1.79 1.86 We can define a simple rich-get-richer process that seems
1920-1929 1.69 1.86 appropriate for selecting baby names. lzebe the set of
1930-1939 1.77 1.86 names of a collection ofi people. Assume that this set of
1940-1949 1.64 1.86 names changes over time through the replacement of the old-
1950-1959 1.63 1.71 est person with a new baby, and the nagrfer this new baby
1960-1969 1.64 1.88 is chosen based on the nanzes of all other members of the
1970-1979 1.70 1.93 population. We can make popular names more probable, but
1980-1989 1.71 1.84 still allow for the possibility of choosing a completely new
1990-1999 1.61 1.75 name, by sampling a name according to the distribution
n%’i —a 7
| | o pa=ilz)=4 natm TN 20
nite populations (see Ewens, 2004). In this section we show KE]Z_—il)j‘gb otherwise

that this kind of model can produce power-law distributions

in the frequencies with which people make particular ch&ice |\ herea andb are parameters of the proceagﬁi is the num-
a phenomenon that has been used to support the applicatiqy; ¢ pabies with namgin z_;, andK (z_) is the total num-
of models of biological evolution to cultural evolution (Be o1 of name types. The parameters are constrained such that
ley et al., 2004). While this phenomenon has been noted i@ <a< 1andb > 0, and varying these parameters varies the
several datasets, we will focus on the case of baby names. oyiant to WhichBarents are likely to choose a new name.

The name given to newborn babies is an example of a cul- \yhije there are presumably many ways to defia|z_)
tural trait that changes over time as a result of culturaigra 4 might seem reasonable, using Equation 6 makes the out-
mission. Most parents pick a pre-existing name for their,ome of cultural evolution by replacement particularly sim
child, although some parents choose to invent a new ongyje 15 analyze. This is the conditional distribution asated

Over generations, some names become more frequent algh, 5 particular stochastic process known as the Pitman-Yo
others decline in prevalence. Assuming names to be eqU5rocess (Pitman & Yor, 1997), and converges to
alent in desirability, Hahn and Bentley (2003) argued that t ' '

process by which names are transmitted is analogous to the b K(2) -/ nz
biological mechanism of random drift. The basis for this ar- P(z) = ak® r(K(ZL+ a)_T(0) (-2
gument was the observation that the frequencies with which r@ r+b i rd-a
names appear in the population follow a power-law distribu- . . ) .

tion: the probability that a name appears with frequekcy whergr(-) is thg ge.ner.ahzed factorial functloq (Boas, _1983).
is roughly p(k) O kY for somey, meaning that most names The induced distribution over the frequgnmes of different
are infrequent but a few names have very high frequencied}ames follows a power-law distribution with slope vaiue
They reported that for each decade of the twentieth century: T & Providedn is large (Pitman, 2006). Thus, it is possi-
the frequency distributions of baby names used in the United?!€ for cultural evolution by replacement to produce power-
States obey power-law distributions with slopes that are co 12 frequency distributions that exhibit the same prosti
sistent throughout the century (Table 1). Hahn and Bentlef*S human choice data, such as choices of baby names.

then showed that a model of genetic drift in a finite pOpula—Simulating cultural evolution We implemented the pro-
tion could produce similar trends, provided the frequesioie  cedure outlined above to examine the properties of the sta-
names were accumulated over a number of generations.  tionary distribution with large but finite. The simulation
was initialized by arbitrarily assigning numerical namest
population ofn = 10,000 individuals. Each individual in the
The replacement method can produce power-law frequencgtarting population had a unique name. At each step of the
distributions with exponents matching those found in hu-process, a new individual was assigned a name according to
man populations, without requiring accumulation of fregue the probabilityp(z = j|zi_1) defined in Equation 6. We let
cies over multiple generations or any other additional naech the simulation run for 500,000 iterations. The parameters
nisms. Stochastic processes based on the principle ofrprefeandb were set as 0.7 and 4 respectively.

ential attachment have been shown to produce outcome fre- Figure 3 is a log-log plot that shows the power-law distri-
guencies that obey power-law distributions (Mitzenmacherbution generated by Gibbs sampling, showing the frequsncie

(7

Producing power-law distributions via replacement



10 ‘ ‘ the process of cultural evolution to statistical infereatgo-
rithms such as Gibbs sampling, our results provide a link to a
large literature in statistics and computer sciences thatdc
107 | provide further insight into the dynamics and consequences
of the transmission of knowledge. Most significantly, they
begin to lay the groundwork for an approach to cultural evo-
02 | lution that links laboratory data and population-levehtts,

and provides an alternative to simply applying models from
the study of biological evolution to the literatures of saci
psychology and anthropology.
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