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Abstract

Social psychologists have used the replacement method to sim-
ulate cultural evolution in the laboratory, studying what hap-
pens when a group of people performing a task are gradually
replaced by new members. We provide a formal analysis of
the dynamics of cultural evolution by replacement under the
assumption that the people involved are Bayesian agents. We
use a connection to a statistical inference algorithm – Gibbs
sampling – to characterize the outcome of this process, and
show that this analysis can account for both laboratory data and
population-level trends resulting from cultural transmission.
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The science of cultural evolution studies the origin, per-
sistence, and change of the body of information shared by
the members of a society, such as knowledge, beliefs, and
norms. Research in this field has traditionally been done
by anthropologists and sociologists, although there is a long
tradition in social psychology of reproducing processes of
cultural evolution in the laboratory (Mesoudi, 2007). Re-
cently, researchers have begun to apply methods developed
in research on biological evolution to the study of cultural
change (Mesoudi, Whiten, & Laland, 2006; Boyd & Richer-
son, 1985). In particular, mathematical models and computer
simulations have proven to be powerful tools that can be used
to uncover the dynamics of cultural evolution. For exam-
ple, Bentley, Hahn, and Shennan (2004) argued that a random
genetic drift model can be used to explain cultural phenom-
ena in changes of baby names, prehistoric pottery styles and
technology patents. However, there is still a significant gap
between these formal models, which are applied at the level
of whole populations, and the data that has been produced
through the experimental investigation of cultural transmis-
sion. In this paper, we formally analyze one of the methods
that has been used to simulate cultural transmission in the
laboratory, and show that the resulting model can account for
both experimental data and trends at the population level.

Social psychologists have studied cultural evolution us-
ing several strictly controlled laboratory paradigms, such as
transmission chains, the replacement method, and the con-
stant group method (Mesoudi, 2007). Transmission chains
were originally used by Bartlett (1932) in his “serial repro-
duction” experiments. In these experiments, people were
asked to reconstruct a stimulus from memory and the recon-
structions produced by one person was used as the stimulus
seen by the next. Over time, the original stimulus became
distorted. Bartlett interpreted these results as indicating that
people are biased by their pre-existing knowledge when they

reconstruct information from memory, and that this bias be-
came exaggerated through serial reproduction. Since Bartlett,
other researchers have also used transmission chains to inves-
tigate how cultural biases affect the information being trans-
mitted (see Mesoudi, 2007, for a review). Recently, Griffiths
and Kalish (2007) formally analyzed this process under the
assumption that the people in the chain are Bayesian agents.
This analysis showed that the initial information dissipates
over time, with the outcome of transmission being determined
purely by the biases of the learners. Xu and Griffiths (2007)
confirmed this prediction empirically for serial reproduction,
using a strictly controlled set of transmission chains.

The existence of a formal analysis of transmission chains
raises the possibility that similar analyses can be performed
for the other methods used to simulate cultural evolution in
the laboratory. Our focus here is on the replacement method,
in which a group of people perform a task together, and the
members of the group are replaced one at a time (Gerard,
Kluckhohn, & Rapoport, 1956). The replacement method
provides a complement to transmission chains, emphasizing
transmission of information within a group rather than across
generations. The method has been used to simulate patterns
of persistence and change in group-based decision making,
problem solving, and social organization (Mesoudi, 2007).
By assuming that the people in the group are Bayesian agents,
we are able to characterize the asymptotic consequences and
dynamics of cultural evolution by replacement. As with trans-
mission chains (Griffiths & Kalish, 2007), these results ex-
ploit a connection between cultural transmission and a sta-
tistical inference algorithm known as Gibbs sampling. We
use this analysis to make quantitative predictions for labora-
tory data, capturing the way that confederates introduced to
a group influence the naı̈ve participants (Jacobs & Campbell,
1961), and for trends produced by cultural transmission in
entire populations (Bentley et al., 2004).

The plan of the paper is as follows. The next section
presents our formal analysis of the cultural evolution by re-
placement in its full generality, outlining the connectionbe-
tween this process and Gibbs sampling. We then give a
detailed analysis of the predictions of the model using two
case studies, starting with laboratory data and then turning to
population-level trends. We close by discussing the implica-
tions of our approach and future directions.

Analyzing the replacement method
The basic structure of the replacement method is shown in
Figure 1. Each generation is composed of a fixed number of



Figure 1: The replacement method. Each circle represents
a single person, with identity expressed by a letter. In each
generation, one member of the group is replaced. After four
generations, no original members of the group remain.

individuals (in this case, four), and each individual performs
a certain task, either together with the other group members
or just in awareness of the responses of the rest of the group.
After one iteration through the entire group, one member is
replaced by a newcomer who has the opportunity to observe
the actions of the other members of the group. Each replace-
ment represents one generation of cultural transmission, as
the newcomer is now exposed to the norms established by the
group. Using this method, researchers can observe how much
and to what degree old information is preserved and new in-
formation is introduced in the group across generations.

While a variety of tasks have been studied using the re-
placement method, we will focus on tasks that can be for-
mulated as an informed choice or inductive inference. In
such a task, a person receives some datax and has to in-
fer the processz responsible for producing those data. For
example, in one of the cases considered below,x is an ob-
servation of a visual stimulus, andz is the inferred extent
of movement of that stimulus. In a group ofn people, per-
son i not only receives the dataxi , but also has the oppor-
tunity to observe the responses of the other people in the
group,z−i = (z1, . . . ,zi−1,zi+1, . . . ,zn), using this information
to guide their responsezi .

The optimal solution to a problem of this kind is provided
by Bayesian inference. A single person acting alone could
express her expectations about the value ofz before seeing
x through aprior distribution p(z), and her beliefs about the
probability of seeing a particular value ofx for each value of
z through thelikelihood p(x|z). Her expectations aboutz af-
ter seeingx are expressed in theposteriordistributionp(z|x),
obtained via Bayes’ rule

p(z|x) =
p(x|z)p(z)

R

p(x|z)p(z)dz
(1)

where the denominator simply ensures that the posterior
probabilities sum to one. In a group setting, the expectations
of each person before seeing data will be influenced by the re-
sponses of the other people, with the prior depended on these
responses,p(zi |z−i). Bayes’ rule can still be applied in this
case, with the posterior distribution being

p(zi |xi ,z−i) =
p(xi |zi)p(zi |z−i)

R

p(xi |zi)p(zi |z−i)dzi
(2)

which is just Equation 1 with the appropriate prior.
With this formulation of the task, we can now analyze the

replacement method. We can describe the state of a group
with n members as a collection ofn variables,z = (z1, ...zn),
reflecting the responses of the people in the group. The pro-
cess illustrated in Figure 1 can be viewed as successive resam-
pling of the values of these variables as the person represented
by each variable is replaced. Assuming that each person se-
lects a response on the task by sampling from the posterior
distribution conditioned on the responses of the other group
members (Equation 2), the replacement method simply cycles
through the following procedure:

samplez(t+1)
1 from p(z1|x

(t+1)
1 ,z(t)

2 , ...,z(t)
n )

samplez(t+1)
2 from p(z2|x

(t+1)
2 ,z(t)

1 ,z(t)
3 , ...,z(t)

n )
. . .

samplez(t+1)
n from p(zn|x

(t+1)
n ,z(t)

1 , ...,z(t)
n−1)

where the superscript(t) indexes the generation, and a new

value for a variable,z(t+1)
i , is used in sampling the other vari-

ables immediately after being generated.
The procedure described in the previous paragraph is likely

to be familiar to readers familiar with Monte Carlo algo-
rithms. In statistics, a method known as Gibbs sampling (Ge-
man & Geman, 1984) is a popular tool for generating sam-
ples from the joint distribution of several random variables.
Each step of Gibbs sampling replaces the value of one of the
variables by drawing a sample from the distribution of this
variable conditioned on all the remaining variables. For ex-
ample, if we have variablesz = (z1, ...,zn), the joint distribu-
tion is p(z) = p(z1,z2, ...,zn). In each iteration, the algorithm
cycles through the variables and draws a new value for each
variablezi from the conditional distributionp(zi |z−i). This
process constructs a Markov chain that converges to the tar-
get distributionp(z). By iterating the process, the values ofz
ultimately behave as if they were sampled fromp(z).

Under the analysis given above, the replacement method
implements a Gibbs sampling algorithm for the distribution

p(z|x) =
p(z)∏i p(xi |zi)

R

p(z)∏i p(xi |zi)dz
(3)

wherep(z) is a joint distribution onz consistent with the set
of conditional distributionsp(zi |z−i), and we assume that the
set of observationsx = (x1, . . . ,xn) is constant over time (ie.
everybody receives the same observations). More precisely,
if there exists a joint distributionp(z) such thatp(zi |xi ,z−i) ∝



p(xi |zi)p(z) for all i, then the replacement method defines a
Markov chain onz with stationary distributionp(z|x) as de-
fined in Equation 3. Cultural evolution by replacement will
result in convergence to an equilibrium characterized by this
distribution regardless of the initial value ofz.

The requirement that the distributionsp(zi |z−i) be consis-
tent can be satisfied by assuming that each person estimates
an appropriate prior from the responses of the the members of
the group. If each person has a priorp(z|θ) with parameters
θ, then learneri can estimateθ from z−i by using Bayes’ rule

p(θ|z−i) =
p(θ)∏ j 6=i p(zj |θ)

R

p(θ)∏ j 6=i p(zj |θ)dθ
(4)

and then integrate overθ to obtain the prior

p(zi |z−i) =
Z

p(zi |θ)p(θ|z−i)dθ (5)

which can be used as in Equation 2. The resulting set of dis-
tributions p(zi |z−i) are consistent, with corresponding joint
distributionp(z) =

R

p(θ)∏i p(zi |θ)dθ.
These results give us a simple characterization of the

asymptotic consequences of cultural evolution by replace-
ment. First, the population will converge to the same equi-
librium, the distributionp(z|x), regardless of the initial value
of z. Second, we can say how the performance of the group
will relate to the performance of individuals at this equilib-
rium. Whenx consists of a set of observations andp(z)
is the result of a parameterized prior as outlined above, the
conclusions reached by a group will be more accurate than
those reached by an individual who sees only one observa-
tion. Specifically, the marginal distribution onzi at equilib-
rium is p(zi |x) = ∑z−i

p(z|x), as compared top(zi |xi) for an
individual acting alone. This means that personi has the op-
portunity to benefit from the observations of all of the other
people in the group, although the extent to which these ob-
servations increase accuracy will depend on howp(z) is de-
fined. Similar results also hold for variants of the replacement
method: using different schemes for determining the people
to be replaced or selecting them at random result in the same
stationary distribution (e.g., Liu, Wong, & Kong, 1995).

An important special case of our analysis is that where
there are no observationsx. In this case, each person sim-
ply responds based on the responses of the others, sampling
from p(zi |z−i). The stationary distribution of this process is
p(z), and in this case the group ultimately provides no ad-
vantage to the individual: the marginal distribution for each
individual at equilibrium is the same regardless of the sizeof
the group. However, the responses of individuals will be de-
pendent, meaning that the population as a whole can manifest
trends that are determined by the joint distributionp(z).

In the remainder of the paper, we show that this analy-
sis provides not just general results concerning the conse-
quences of cultural evolution by replacement, but also quan-
titative predictions of specific phenomena. We present two
case studies that illustrate how the model can be used to ac-
count for both laboratory data and population-level trends.

The first is a study in which group influence on people’s judg-
ments was investigated using a perceptual illusion (Jacobs&
Campbell, 1961). The results showed that biases were easily
introduced to the group by confederates, but would also dis-
appear after several generations as those confederates were
replaced by new naı̈ve subjects. The second case study shows
that the model can produce power-law distributions in choice
frequencies, using the example of baby names in the United
States (Bentley et al., 2004; Hahn & Bentley, 2003).

Predicting laboratory data
One of the classic social psychology studies on group influ-
ence was Sherif’s (1936) experiment, in which participants
were asked to estimate how far a lighted dot moved in the
darkness when the dot actually did not move at all. The
“auto-kinetic effect” refers to the reliable visual illusion that
the dot was moving. Sherif’s classic finding was that when
group members who were confederates gave exaggerated es-
timates of the amount of movement, naı̈ve participants were
strongly influenced and reported similar estimates. Jacobs
and Campbell (1961) studied the persistence of this bias us-
ing the replacement method. The groups initially consisted
of all näıve participants or a number of confederates plus one
näıve participant. After each generation the “oldest” group
member was replaced by a new naı̈ve participant. The biases
introduced by the confederates decreased with each genera-
tion and entirely disappeared after six generations had passed
since the removal of the last confederate. Figure 2 (a-c) shows
the data for four-person groups with three initial confederates,
and three-person groups with two and zero confederates.

Gibbs sampling with Gaussian distributions
We model the auto-kinetic effect experiment as a special case
of the framework introduced above, where the distributions
involved are Gaussian. Using Gaussian distributions simpli-
fies the model and also allows us to analytically compute the
probabilities required to simulate the process of replacement.
In this task,x is the observed apparent motion of the stimu-
lus, andz is the estimate of the amount that it moves. We as-
sume that each participant has a prior distributionp(z|θ) that
is Gaussian with meanµ and varianceσ2

z, whereθ = {µ,σz}
are the parameters of the prior, and that the likelihoodp(x|z)
is also Gaussian, with meanz and varianceσ2

x. Intuitively, µ
andσz express each person’s expectations about the amount
of motion they are likely to see for this stimulus, whileσx

reflects how much noise is assumed to be in the perceptual
observations. By inferringµ and σz from the responses of
the other people in the group, people can hope to form a bet-
ter estimate of the amount of motion, but they also become
susceptible to biases introduced by confederates.

Following the framework outlined above, evaluating
p(zi |z−i) requires computing the posterior distribution onµ
and σ2

z given z−i , which in turn requires specifying a prior
on µ andσ2

z. We used an uninformative prior, making mini-
mal a priori commitments to the values ofµ andσ2

z. Under
this prior, p(zi |z−i) is a Studentt distribution, with a mean



Figure 2: (a-c) Data from Jacobs and Campbell (1961). The heavy lines in the top left corners of the figures indicate the biased
responses of confederates. The lighter lines are the responses of näıve participants, each of whom stayed in the group for four
generations. (a) The experimental condition of 4-person groups with 3 initial confederates. (b) The experimental condition of
3-person groups with 2 initial confederates. (c) The control condition with 3-person groups with no confederates. (d-f) Model
simulations for each condition. The correlation between data and simulation is 0.89.

that is the average ofz−i , scale parameter(1+1/n)1/2 times
the standard deviation ofz−i , and (n− 1) degrees of free-
dom (Gelman, Carlin, Stern, & Rubin, 1995). The result-
ing posterior required for Gibbs sampling,p(zi |xi ,z−i) has no
simple form, so we used an importance sampler to generate
from this distribution (see, e.g. Neal, 1993). Specifically,
we drew 1000 samples from the priorp(zi |z−i) and weighted
these samples by the Gaussian likelihoodp(xi |zi) to construct
an approximation to the posteriorp(zi |xi ,z−i).

Simulating the replacement method We simulated the
study conducted by Jacobs and Campbell (1961) using the
Gibbs sampling model presented in the previous section. We
assumed that each participant forms a single estimate of the
amount of movement at each generation, sampling this value
from their posterior distribution, and that all participants re-
ceive the same perceptual observationx. The value ofx was
set to 2.9 inches, the ultimate estimate arrived at by individu-
als exposed to the autokinetic effect. The only free parameter
in the model wasσx, which was set at 4.0 inches for all three
conditions. Figure 2 (d-f) shows the results of the simula-
tions for these three conditions. Each point is the mean of ten

replications for each condition.
These simulations show that the Markov chain converges

faster with smaller group sizes and fewer confederates. When
more näıve participants with their unbiased priors and new
observations of the state of the world are introduced in the
group over several iterations, the Markov chain decreases the
initial influence of the confederates. These predictions are
consistent with the findings of Jacobs and Campbell (1961),
capturing both the qualitative decrease in biased responding
and the quantitative rate at which this decrease occurs, with
the correlation between simulation and empirical data being
0.89.

Predicting population-level trends
While the replacement method has largely been used to study
cultural evolution in the laboratory, the underlying process
provides a plausible model of cultural transmission in large
populations. The idea that each person in the population is
eventually replaced by a new person provides a useful sim-
plification of the true process of cultural evolution. Indeed,
exactly the same assumption is made in the Moran model,
which is widely used to simulate biological evolution in fi-



Table 1: Power-law distributions of baby names through the
20th century. Exponentsγ for power-law distributions were
fit to log-log plots of probability vs. frequency for the top
1000 baby names (from Hahn & Bentley, 2003).

Years γ (males) γ (females)
1900-1909 1.79 1.88
1910-1919 1.79 1.86
1920-1929 1.69 1.86
1930-1939 1.77 1.86
1940-1949 1.64 1.86
1950-1959 1.63 1.71
1960-1969 1.64 1.88
1970-1979 1.70 1.93
1980-1989 1.71 1.84
1990-1999 1.61 1.75

nite populations (see Ewens, 2004). In this section we show
that this kind of model can produce power-law distributions
in the frequencies with which people make particular choices,
a phenomenon that has been used to support the application
of models of biological evolution to cultural evolution (Bent-
ley et al., 2004). While this phenomenon has been noted in
several datasets, we will focus on the case of baby names.

The name given to newborn babies is an example of a cul-
tural trait that changes over time as a result of cultural trans-
mission. Most parents pick a pre-existing name for their
child, although some parents choose to invent a new one.
Over generations, some names become more frequent and
others decline in prevalence. Assuming names to be equiv-
alent in desirability, Hahn and Bentley (2003) argued that the
process by which names are transmitted is analogous to the
biological mechanism of random drift. The basis for this ar-
gument was the observation that the frequencies with which
names appear in the population follow a power-law distribu-
tion: the probability that a name appears with frequencyk
is roughly p(k) ∝ k−γ for someγ, meaning that most names
are infrequent but a few names have very high frequencies.
They reported that for each decade of the twentieth century,
the frequency distributions of baby names used in the United
States obey power-law distributions with slopes that are con-
sistent throughout the century (Table 1). Hahn and Bentley
then showed that a model of genetic drift in a finite popula-
tion could produce similar trends, provided the frequencies of
names were accumulated over a number of generations.

Producing power-law distributions via replacement

The replacement method can produce power-law frequency
distributions with exponents matching those found in hu-
man populations, without requiring accumulation of frequen-
cies over multiple generations or any other additional mecha-
nisms. Stochastic processes based on the principle of prefer-
ential attachment have been shown to produce outcome fre-
quencies that obey power-law distributions (Mitzenmacher,

2003). The principle of preferential attachment is based on
the assumption that the probability that a particular outcome
takes on a particular value depends upon the frequency of that
value in the choices of other people. If values that have been
chosen by more people are more probable, then the high fre-
quencies associated with a power-law distribution can be pro-
duced through the resulting “rich-get-richer” process.

We can define a simple rich-get-richer process that seems
appropriate for selecting baby names. Letz be the set of
names of a collection ofn people. Assume that this set of
names changes over time through the replacement of the old-
est person with a new baby, and the namezi for this new baby
is chosen based on the namesz−i of all other members of the
population. We can make popular names more probable, but
still allow for the possibility of choosing a completely new
name, by sampling a name according to the distribution

p(zi = j|z−i) =







n
z−i
j −a

n−1+b if nz−i
j > 0

K(z−i)a+b
n−1+b otherwise

(6)

wherea andb are parameters of the process,nz−i
j is the num-

ber of babies with namej in z−i , andK(z−i) is the total num-
ber of name types. The parameters are constrained such that
0≤ a < 1 andb≥ 0, and varying these parameters varies the
extent to which parents are likely to choose a new name.

While there are presumably many ways to definep(zi |z−i)
that might seem reasonable, using Equation 6 makes the out-
come of cultural evolution by replacement particularly sim-
ple to analyze. This is the conditional distribution associated
with a particular stochastic process known as the Pitman-Yor
process (Pitman & Yor, 1997), and converges to

P(z) = aK(z) Γ(K(z)+ b
a)

Γ(b
a)

Γ(b)

Γ(n+b)

K(z)

∏
k=1

Γ(nz
k−a)

Γ(1−a)
(7)

whereΓ(·) is the generalized factorial function (Boas, 1983).
The induced distribution over the frequencies of different
names follows a power-law distribution with slope valueγ =
1+ a, providedn is large (Pitman, 2006). Thus, it is possi-
ble for cultural evolution by replacement to produce power-
law frequency distributions that exhibit the same properties
as human choice data, such as choices of baby names.

Simulating cultural evolution We implemented the pro-
cedure outlined above to examine the properties of the sta-
tionary distribution with large but finiten. The simulation
was initialized by arbitrarily assigning numerical names to a
population ofn = 10,000 individuals. Each individual in the
starting population had a unique name. At each step of the
process, a new individual was assigned a name according to
the probabilityp(zi = j|zi−1) defined in Equation 6. We let
the simulation run for 500,000 iterations. The parametersa
andb were set as 0.7 and 4 respectively.

Figure 3 is a log-log plot that shows the power-law distri-
bution generated by Gibbs sampling, showing the frequencies
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Figure 3: Power-law distribution generated by replacement.
The horizontal axis represents the number of names of type
k in the total sample of individuals, and the vertical axis rep-
resents the probabilityP(k) that a certain name would fall
within the bin at that frequency level. The exponent value
that best fit the plot was 1.79, consistent with the slopes re-
ported in Hahn and Bentley (2003).

of names in the final 10,000 samples. A power-law distri-
bution will appear as a straight line in a log-log plot, since
logp(k) = −γ logk+C. As can be seen from the figure, the
distribution over names converges to a power-law distribution
with exponentγ = 1.79, which is consistent with the values
found in baby name data as reported by Hahn and Bentley
(see Table 1). The results demonstrate that cultural evolution
by replacement provides an alternative to the biological mod-
els used by Hahn and Bentley (2003) to explain the dynam-
ics of cultural transmission of baby names. The model may
provide a viable sampling scheme to explain the way individ-
uals choose a name for their child. Moreover, the dynamics
captured by the model may not be restricted to the case of
baby names. Rather, the replacement method may help ex-
plain the emergence of power-law distributions in other cul-
tural domains that have previously been modeled simply by
applying ideas from biology (Bentley et al., 2004).

Conclusions

We have presented a formal analysis of the replacement
method used to study cultural evolution study and have shown
that this analysis can account for both empirical work, such
as the auto-kinetic effect study, and real world data, such as
changes in baby names. The replacement method is partic-
ularly useful in studying group dynamics across overlapping
generations, and this analysis complements previous work ex-
amining the outcome of transmission chains. By connecting

the process of cultural evolution to statistical inferencealgo-
rithms such as Gibbs sampling, our results provide a link to a
large literature in statistics and computer sciences that could
provide further insight into the dynamics and consequences
of the transmission of knowledge. Most significantly, they
begin to lay the groundwork for an approach to cultural evo-
lution that links laboratory data and population-level trends,
and provides an alternative to simply applying models from
the study of biological evolution to the literatures of social
psychology and anthropology.
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