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Abstract 1998), “accessor variety” (Feng et al., 2004), and

boundary entropy (Cohen and Adams, 2001).
Developing better methods for segment- While methods based on local statistics are
ing continuous text into words is impor-  gyite successful, here we focus on approaches

tant for improving the processing of Asian  pa5ed on explicit probabilistic models. Formulat-
languages, and may shed light on how hu-jng an explicit probabilistic model permits us to
mans learn to segment speech. We pro-  ¢jeanly separate assumptions about the input and
pose two new Bayesian word segmenta-  nronerties of likely segmentations from details of
tion methods that assume unigram and bi-  5ig0rithms used to find such solutions. Specifi-
gram models of word dependencies re-  cq|ly, this paper demonstrates the importance of
spectively. The bigram model greatly out-  ¢ontextual dependencies for word segmentation
performs the unigram model (and previous  py comparing two probabilistic models that dif-
probabilistic models), demonstrating the  fer only in that the first assumes that the proba-
importance of such dependencies forword  pjjity of a word is independent of its local context,
segmentation. We also show that previous  yjle the second incorporates bigram dependen-
probabilistic models rely crucially on sub-  jes petween adjacent words. The algorithms we
optimal search procedures. use to search for likely segmentations do differ,
but so long as the segmentations they produce are
close to optimal we can be confident that any dif-
Word segmentation, i.e., discovering word boundferences in the segmentations reflect differences in

aries in continuous text or speech, is of interest fofhe probabilistic models, i.e., in the kinds of de-
both practical and theoretical reasons. Itis the firsendencies between words.
step of processing orthographies without explicit We are not the first to propose explicit prob-
word boundaries, such as Chinese. It is also onabilistic models of word segmentation. Two
of the key problems that human language learnersuccessful word segmentation systems based on
must solve as they are learning language. explicit probabilistic models are those of Brent
Many previous methods for unsupervised word(1999) and Venkataraman (2001). Brent's Model-
segmentation are based on the observation th&ased Dynamic Programming (MBDP) system as-
transitions between units (characters, phonemesumes a unigram word distribution. Venkatara-
or syllables) within words are generally more pre-man uses standard unigram, bigram, and trigram
dictable than transitions across word boundariedanguage models in three versions of his system,
Statistics that have been proposed for measuringhich we refer to as-gram Segmentation (NGS).
these differences include “successor frequencyDespite their rather different generative structure,
(Harris, 1954), “transitional probabilities” (Saf- the MBDP and NGS segmentation accuracies are
fran et al., 1996), mutual information (Sun et al.,very similar. Moreover, the segmentation accuracy
e ) ~of the NGS unigram, bigram, and trigram mod-
*This work was partially supported by the following

grants: NIH 1R01-MH60922, NIH RO1-DC000314, NSF els hardly differ, suggesting that contextual depen-
IGERT-DGE-9870676, and the DARPA CALO project. dencies are irrelevant to word segmentation. How-
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ever, the segmentations produced by both these l—-pg U-WU

methods depend crucially on properties of the pg U—W

search procedures they employ. We show this by P(w) W—w Vw € X"
exhibiting for each model a segmentation that is

less accurate but more probable under that model. Figure 1: The unigram NGS grammar.

In this paper, we present an alternative frame-
work for word segmentation based on the Dirich-wherew consists of the words; . . . w,, andpyg is

let process, a distribution used in nonparametrighe probability of the utterance boundary marker
Bayesian statistics. This framework allows us t0g. This model can be used to find the highest prob-

develop extensible models that are amenable tgpijlity segmentation hypothesisgiven the datal
standard inference procedures. We present twpy using Bayes' rule:

such models incorporating unigram and bigram
word dependencies, respectively. We use Gibbs P(h|d) o< P(d|h)P(h)
sampling to sample from the posterior distributionnGs assumes a uniform priét(h) over hypothe-

of possible segmentations under these models. geg 50 its goal is to find the solution that maxi-
The plan of the paper is as follows. In the nextpizes the likelihoodP(d|h).

Section 3 we present the unigram version of OUkechnique delivers competitive results. However,
own model, the Gibbs sampling procedure we Usene true maximum likelinood solution is not com-
for inference, and experimental results. Section ‘betitive, since it contains no utterance-internal
extends that model to incorporate bigram depenyord boundaries. To see why not, consider the
dencies, and Section 5 concludes the paper.  sojution in whichpg = 1 and each utterance is a
single ‘word’, with probability equal to the empir-

2 NGSand MBDP ical probability of that utterance. Any other so-
The NGS and MBDP systems are similar in somdution will match the empirical distribution of the
ways: both are designed to find utterance bounddata less well. In particular, a solution with ad-
aries in a corpus of phonemically transcribed utditional word boundaries must hate- pg > 0,
terances, with known utterance boundaries. Botivhich means it wastes probability mass modeling
also use approximate online search proceduresinséen data (which can now be generated by con-
choosing and fixing a segmentation for each utterc@tenating observed utterances together).

ance before moving onto the next. In this section, Intuitively, the NGS model considers the unseg-
we focus on the very different probabilistic mod- mented solution to be optimal because it ranks all
els underlying the two systems. We show that thdypotheses equally probabéepriori. We know,
optimal solution under the NGS model is the un-however, that hypotheses that memorize the input
segmented corpus, and suggest that this problefiata are unlikely to generalize to unseen data, and
stems from the fact that the model assumes a un@re therefore poor solutions. To prevent memo-

form prior over hypotheses. We then present thdization, we could restrict our hypothesis space to
MBDP model, which uses a non-uniform prior but models with fewer parameters than the number of

is difficult to extend beyond the unigram case.  utterances in the data. A more general and mathe-
matically satisfactory solution is to assume a non-

2.1 NGS uniform prior, assigning higher probability to hy-

ipotheses with fewer parameters. This is in fact the

NGS assumes that each utterance is generated alal
route taken by Brent in his MBDP model, as we

dependently via a standardgram model. For : _ _
simplicity, we will discuss the unigram version of Shall see in the following section.

the model here, al_though our _argument ?s equally, o MBDP

applicable to the bigram and trigram versions. TheMBDP £ utt .
unigram model generates an utteran@xcording assumes a corpus of utterances Is gener-
to the grammar in Figure 1, SO ated as a single probabilistic event with four steps:

1. Generatd., the number of lexical types.

P(u) = pg(1 — pg)™! H P(w;) (1) 2. Generate a phonemic representation for each

i type (except the utterance boundary type, $).



3. Generate a token frequency for each type. distribution G, which consists of a set of pos-
4. Generate an ordering for the set of tokens. Siblé words (the lexicon) and probabilities asso-
ciated with those words.G is generated from

In a final deterministic step, the ordered tokensa DPg, Fy) distribution, with the items in the
are concatenated to create an unsegmented cdexicon being sampled fron#, and their proba-
pus. This means that certain segmented corporailities being determined bw,, which acts like
will produce the observed data with probability ~ the parameter of an infinite-dimensional symmet-
and all others will produce it with probability.  ric Dirichlet distribution. We provide some intu-
The posterior probability of a segmentation givenition for the roles ofoy and Py, below.
the data is thus proportional to its prior probability ~ Although the DP model makes the distribution
under the generative model, and the best segmef- explicit, we never deal withG’ directly. We
tation is that with the highest prior probability. take a Bayesian approach and integrate over all

There are two important points to note aboutpossible values ofz. The conditional probabil-
the MBDP model. First, the distribution ovdr ity of choosing to generate a word from a particu-
assigns higher probability to models with fewerlar lexical entry is then given by a simple stochas-
lexical items. We have argued that this is necestic process known as the Chinese restaurant pro-
sary to avoid memorization, and indeed the unsegeess (CRP) (Aldous, 1985). Imagine a restaurant
mented corpus is not the optimal solution undewith aninfinite number of tables, each with infinite
this model, as we will show in Section 3. Second, seating capacity. Customers enter the restaurant
the factorization into four separate steps makegnd seat themselves. Lgtbe the table chosen by
it theoretically possible to modify each step in-theith customer. Then

dependently in order to investigate the effects of ngjfﬁ

) ) . —! 0<k<K(z)
the various modeling assumptions. However, the P(z;|z_;) = i—1+ao 2)
mathematical statement of the model and the ap- iias k= K(z-)

proximations necessary for the search procedure (o) -

make it unclear how to modify the model in any Wherez—; = z1...zi_1, n; " is the number of
interesting way. In particular, the fourth step usesustomers already sitting at talieandK (z ;) is

a uniform distribution, which creates a unigram the total number of occupied tgbles. In our mod_el,
constraint that cannot easily be changed. Since o€ tables correspond to (possibly repeated) lexical
research aims to investigate the effects of differenfNtries, having labels generated from the distribu-
modeling assumptions on lexical acquisition, welion Fo. The seating arrangement thus specifies
develop in the following sections a far more flex-a distribution over word tokens, with each cus-
ible model that also incorporates a preference fofoMer representing one token. This model is an

sparse solutions. instance of the two-stage modeling framework de-
scribed by Goldwater et al. (2006), wifhy as the
3 Unigram Model generator and the CRP as the adaptor.
. Our model can be viewed intuitively ascache
3.1 The Dirichlet Process Model model each word in the corpus is either retrieved

Our goal is a model of language that prefersfrom a cache or generated anew. Summing over
sparse solutions, allows independent modificatiorall the tables labeled with the same word yields
of components, and is amenable to standard searthe probability distribution for théth word given
procedures. We achieve this goal by basing oupreviously observed words _;:
model on theDirichlet procesgDP), a distribution n(W=i)
used in nonparametric Bayesian statistics. Ourun- P(w;|w_;) = —
igram model of word frequencies is defined as

o Po(w;)
i—l—|—0£0 i—l—|—0£0

3

(3)

(W—s)

whereny, is the number of instances af ob-
w;| G ~G served inw_;. The first term is the probability
G|ag, Py ~ DP(ayg, Py) of generatingw from the cache (i.e., sitting at an

occupied table), and the second term is the proba-
where theconcentration parametery, and the bility of generating it anew (sitting at an unoccu-
base distribution”, are parameters of the model. pied table). The actual table assignments only
Each wordw; in the corpus is drawn from a become important later, in the bigram model.



There are several important points to note about ha: = i hay: o i
this model. First, the probability of generating a o~ o~
particular word from the cache increases as more w W u
instances of that word are observed. This rich- 11)1=AU12U13 %‘W/ o
get-richer process creates a power-law distribution N\
on word frequencies (Goldwater et al., 2006), the w3

same sort of distribution found empirically in nat- _
ural language. Second, the parametgrcan be Figure 2: The two hypotheses considered by the

used to control how sparse the solutions found by'nigram sampler. Dashed lines indicate possible
the model are. This parameter determines the totadditional structure. All rules except those in bold

probability of generatingnynovel word, a proba- are partofi™.
bility that decreases as more data is observed, but
never disappears. Finally, the parametgrcan sampled from their conditional posterior distribu-
be used to encode expectations about the natut#n given the current values of all other variables
of the lexicon, since it defines a probability distri- in the model. The sampler defines a Markov chain
bution across different novel words. The fact thatwhose stationary distribution i®(h|d), so after
this distribution is defined separately from the dis-convergence samples are from this distribution.
tribution on word frequencies gives the model ad- Our Gibbs sampler considers a single possible
ditional flexibility, since either distribution can be boundary point at a time, so each sample is from
modified independently of the other. a set of two hypothesed,; and hy. These hy-
Since the goal of this paper is to investigate thepotheses contain all the same boundaries except
role of context in word segmentation, we choseat the one position under consideration, whiese
the simplest possible model féy, i.e. a unigram has a boundary anfg, does not. The structures are
phoneme distribution: shown in Figure 2. In order to sample a hypothe-
n sis, we need only calculate the relative probabili-
Py(w) = py(l — p#)”—l Hp(mi) (4) ties ofhy andhy. Sinceh; andh, are the same ex-
i=1 cept for a few rules, this is straightforward. Liet
be all of the structure shared by the two hypothe-

where word w consists of the phonemes ) _
ses, including:~ words, and let! be the observed

my...my, and py is the probability of the

word boundary#. For simplicity we used dat@. Then
a un?form dist_ribut_ion over phonemes, and P(hi|h=d) = P(wi|h™d)
experimented with different fixed values pf .1 (h)

A final detail of our model is the distribution _ Py aoPy(w1) (5)
on utterance lengths, which is geometric. That is, n- +ag

we assume a grammar similar to the one shown igyhere the second line follows from Equation 3
Figure 1, with the addition of a symmetric Be§3( and the properties of the CRP (in particular, that it
prior over the probability of thé/ productions; s exchangeablewith the probability of a seating
and the substitution of the DP for the standardconfiguration not depending on the order in which
multinomial distribution over théV” productions.  customers arrive (Aldous, 1985)). Also,

3.2 Gibbs Sampling P(hs|h™,d)
Having defined our generative model, we are left = P(r, wy, ws|h™, d)

with the problem of inference: we must determine  _ P(r|h=, d)P(ws|h™, d)P(ws|ws, h™, d)
the posterior distribution of hypotheses given our ’ ’ Y

) . . T (h7)

input corpus. To do so, we use Gibbs sampling, _ Nt 5 Nwy + g Py (w2)

a standard Markov chain Monte Carlo method n-+1+7 n- + o

(Gilks et al., 19'96). _Gibbs _sampling is an itera- ngls‘) + I(ws = w3) + agPy(ws) .
tive procedure in which variables are repeatedly ‘ =11+ o (6)

INote, however, that our model could be extended to Iearrwherenr is the number of branching rules =

bothp and the distribution over phonemes. . _ . .
2The Beta distribution is a Dirichlet distribution over two U— WUinh", and[(') is an indicator func-

outcomes. tion taking on the value 1 when its argument is



true, and O otherwise. The. term is derived b
integrating over all possible values @f, and not: 60

(a) Varying P(#)

ing that the total number d¥ productions inh™
isn~ + 1. 55)
Using these equations we can simply proc o LF
through the data, sampling each potential bor %/l —F | | | |
ary point in turn. Once the Gibbs sampler c 0.1 0.3 0.5 0.7 0.9
verges, these samples will be drawn from the (b) Varying o,
terior distributionP(h|d). 60
3.3 Experiments 55
In our experiments, we used the same co —o—LF
that NGS and MBDP were tested on. The «  |L—F

pus, supplied to us by Brent, consists of 9 t 2z 5 10 20 50 100 200 500
trgnscribed utterances (33399 wo.rds) of Ch“”'Figure 3: Word (F) and lexicon (LF) F-score (a)
dlrecEeBd sptee_:chRfrtom thfgge)”_‘smtz;]n'RgtHnleLrDEOSras a function ofp, with o = 20 and (b) as a
us (Bernstein-Ratner, in the ; : _
(Fj)atabase (MacWhinney and Snow, 1985). The utf-unCtlon ofao, With py = 5.
terances have been converted to a phonemic rep-
resentation using a phonemic dictionary, so thabut begins to degrade precision after a point. Due
each occurrence of a word has the same phonemio the negative correlation between token accuracy
transcription. Utterance boundaries are given irand lexicon accuracy, there is no single best value
the input to the system; other word boundaries aréor eitherp.. or ap; further discussion refers to the
not. solution forp, = .5, 9 = 20 (though others are
Because our Gibbs sampler is slow to convergegualitatively similar).
we used annealing to speed inference. We began In Table 1(a), we compare the results of our sys-
with a temperature of = 10 and decreasedl in  tem to those of MBDP and NGSAlthough our
10 increments to a final value of 1. A temperaturesystem has higher lexicon accuracy than the oth-
of v corresponds to raising the probabilitiesiaf  ers, its token accuracy is much worse. This result
andhs to the power of% prior to sampling. occurs because our system often mis-analyzes fre-
We ran our Gibbs sampler for 20,000 iterationsquently occurring words. In particular, many of
through the corpus (with = 1 for the final 2000) these words occur in common collocations such
and evaluated our results on a single sample aswhat’s thatanddo yoy which the system inter-
that point. We calculated precision (P), recall (R),prets as a single words. It turns out that a full 31%
and F-score (F) on the word tokens in the corpusof the proposed lexicon and nearly 30% of tokens
where both boundaries of a word must be correctonsist of these kinds of errors.
to count the word as correct. The induced lexicon Upon reflection, it is not surprising that a uni-
was also scored for accuracy using these metricgram language model would segment words in this
(LP, LR, LF). way. Collocations violate the unigram assumption
Recall that our DP model has three parametersn the model, since they exhibit strong word-to-
T,p4, andoyg. Given the large number of known word dependencies. The only way the model can
utterance boundaries, we expect the value td  capture these dependencies is by assuming that
have little effect on our results, so we simply fixedthese collocations are in fact words themselves.
7 = 2 for all experiments. Figure 3 shows the ef- why don’t the MBDP and NGS unigram mod-
fects of varying ofp, andag.® Lower values of els exhibit these problems? We have already
py cause longer words, which tends to improve reshown that NGS's results are due to its search pro-
call (and thus F-score) in the lexicon, but decreasgedure rather than its model. The same turns out

token accuracy. Higher values af, allow more  to be true for MBDP. Table 2 shows the probabili-
novel words, which also improves lexicon recall,

- “We used the implementations of MBDP and NGS avail-
3It is worth noting that all these parameters could be in-able at http://www.speech.sri.com/people/anand/ taioea
ferred. We leave this for future work. sults for those systems.



(a) P R F LP LR LF pus, theimprovements of the DP model are by far
NGS 67.7 70.2 68.9529 51.3 52.0 the most striking.

MBDP 67.0 69.4 682 53.6 51.3 524

DP 61.9 47.6 53.857.0 57.5 572 4 Bigram Model

(b) P R F LP LR LF
NGS 76.6 85.8 81.0 60.0 52.4 55.9
MBDP 77.0 86.1 81.3 60.8 53.0 56.6 The results of our unigram experiments suggested
DP 942 97.1 956 86.5 62.2 72.4 that word segmentation could be improved by
taking into account dependencies between words.
Table 1: Accuracy of the various systems, withTo test this hypothesis, we extended our model
best scores in bold. The unigram version of NGSo incorporate bigram dependencies usingia

4.1 The Hierarchical Dirichlet Process Model

is shown. DP results are with, = .5 andag =  erarchical Dirichlet process(HDP) (Teh et al.,
20. (a) Results on the true corpus. (b) Results or2005). Our approach is similar to previowsgram
the permuted corpus. models using hierarchical Pitman-Yor processes
(Goldwater et al., 2006; Teh, 2006). The HDP is
Seg: True None MBDP NGS  DP appropriate for situations in which there are multi-

NGS 2045 909 210.7 210.8 183.0 ple distributions over similar sets of outcomes, and
MBDP 208.2 321.7 217.0 218.0189.8 the distributions are believed to be similar. In our
DP 222.4 393.6 231.2 231.&00.6 case, we define a bigram model by assuming each
word has a different distribution over the words
Table 2: Negative log probabilities (x 1000) un- that follow it, but all these distributions are linked.
der each model of the true solution, the solutionThe definition of our bigram language model as an
with no utterance-internal boundaries, and the soHDP is
lutions found by each algorithm. Best solutions

under each model are bold. wi|w;_1 = w, Hy ~ Hy Yw
Hylon, G ~ DP(ay,G) Yw
ties under each model of various segmentations of Glag, Py ~ DP(ag, )

the corpus. From these figures, we can see that

the MBDP model assigns higher probability to the.l.hat is, P(w;|w;_1 — w) is distributed accord-
solution found by our Gibbs sampler than to the.

lution found by Brent’ . tal h|ng to H,,, a DP specific to wordv. H,, is linked
solution found by Brents own Incremental Search,, o pps for all other words by the fact that they
algorithm. In other words, Brent's modabespre-

tor the | locati lution. but hi share a common base distributiGihwhich is gen-
er the lower-accuracy collocation solution, buthis . 4 trom another DP.

search algorithm instead finds a higher-accurac ) ) .
g 9 y As in the unigram model, we never deal with

but lower-probability solution. . . .
P y w OF G directly. By integrating over them, we get

We performed two experiments suggesting that ™ %.~ =~ . . .
Pel P 99 g a distribution over bigram frequencies that can be
our own inference procedure does not suffer from .
. ) o . understood in terms of the CRP. Now, each word
similar problems. First, we initialized our Gibbs

typew is associated with its own restaurant, which

sampler in three different ways: with no utterance- o
) ) . represents the distribution over words that follow
internal boundaries, with a boundary after every . )
. . w. Different restaurants are not completely inde-
character, and with random boundaries. Our re- .
) . .. pendent, however: the labels on the tables in the
sults were virtually the same regardless of initial-

ization. Second, we created an artificial corpus b);estaurants are all chosen from a common base
’ ’ distribution, which is another CRP.

randomly permuting the words in the true corpus, ,
leaving the utterance lengths the same. The ar- 10 uUnderstand the HDP model in terms of a

tificial corpus adheres to the unigram assumptioffammar, we conside§ as a special word type,
of our model, so if our inference procedure worksS0 tha:]wi ranges ovek: U {85 ﬁfter o.bse.rvmg
correctly, we should be able to correctly identify W —i’ the HDP grammar is as shown in Figure 4,
the words in the permuted corpus. This is exactly———— o o
hat we found, as shown in Table 1(b). While all This HDP formulation is an oversimplification, since it
what w J : does not account for utterance boundaries properly. The

three models perform better on the artificial cor-grammar formulation (see below) does.
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whereh_; = (w_;,z_;); lg, ts-, andt,, are the Figure 5: Word (F) and lexicon (LF) F-score (a)
total number of tables (across all words) labeledas a function ofg, with o; = 10 and (b) as a
with §, non$, andw;, respectively = tg + ts+  function ofay, with iy = 1000.
is the total number of tables; and,,,, , .,,) is the
number of occurrences of the bigrafm; 1, w;). P R F LP LR LF
We have suppressed the supersctigt ;) nota- NGS 68.1 68.6 68.3 545 57.0 55.7
tion in all cases. The base distribution shared by HDP 79.4 74.0 76.6 679 58.9 63.1
all bigrams is given byP;, which can be viewed as
a unigram backoff where the unigram probabilitiesTable 3: Bigram system accuracy, with best scores
are learned from the bigram table labels. in bold. HDP results are withy, = .5, ap =

We can perform inference on this HDP bigram1000, anda; = 10.
model using a Gibbs sampler similar to our uni-
gram sampler. Details appear in the Appendix.

contrast, our HDP model performs far better than
4.2 Experiments our DP model, leading to the highest published ac-
{:uracy for this corpus on both tokens and lexical
tems. Overall, these results strongly support our
hypothesis that modeling bigram dependencies is
important for accurate word segmentation.

We used the same basic setup for our experimen
with the HDP model as we used for the DP model
We experimented with different values afy and
a1, keepingp, = .5 throughout. Some results
of these_ experiments are plgtted in Figure_ 5. Withs  conclusion

appropriate parameter settings, both lexicon and

token accuracy are higher than in the unigranin this paper, we have introduced a new model-
model (dramatically so, for tokens), and there isbased approach to word segmentation that draws
no longer a negative correlation between the twoon techniques from Bayesian statistics, and we
Only a few collocations remain in the lexicon, andhave developed models incorporating unigram and
most lexicon errors are on low-frequency words.bigram dependencies. The use of the Dirichlet
The best values af, are much larger than in the process as the basis of our approach yields sparse
unigram model, presumably because all uniguesolutions and allows us the flexibility to modify
word types must be generated \ig, but in the individual components of the models. We have
bigram model there is an additional level of dis-presented a method of inference using Gibbs sam-
counting (the unigram process) before reachingling, which is guaranteed to converge to the pos-
Py. Smaller values ofy lead to fewer word types terior distribution over possible segmentations of
with fewer characters on average. a corpus.

Table 3 compares the optimal results of the Ourapproach to word segmentation allows us to
HDP model to the only previous model incorpo- investigate questions that could not be addressed
rating bigram dependencies, NGS. Due to searclsatisfactorily in earlier work. We have shown that
the performance of the bigram NGS model is notthe search algorithms used with previous models
much different from that of the unigram model. In of word segmentation do not achieve their ob-



T (wy w1 ) + o1 Py (wl\h*, d) ‘ N (w1 wy) + I(wl =w1 = wr) + o1 Py (wr\ h™, d)

P(hi|h~,d) =
( 1| ) ) N, + Q1 Ny, + 1+ ag
Plholh-.d) — Nwywe) T a1 Py (wo| h™, d) uwp,w3) + I(w; = wy =ws3) + a1 Py (w3|h™, d) .
’ N, + Q1 Nuw, + 14+ g

N(wswy) T I (w; = w3, wy =w,) + I(wy = w3 =w,) + a1 Py (w,| h™, d)
My +1—|—I(w2:w4)+a1

Figure 6: Gibbs sampling equations for the bigram modelcaiints are with respect to.

jectives, which has led to misleading results. InJ. Saffran, E. Newport, and R. Aslin. 1996. Word segmenta-
particular, previous work suggested that the use tion: The role of distributional cuesJournal of Memory
’ . ) and Language35:606—621.

of word-to-word dependencies has little effect on guage
word segmentation. Our experiments indicate inM. Sun, D. Sh_eﬂ, and B. Tlso_u. 199ds.h Cginesftta \(/jvord_ seg-

: . H mentation without using lexicon an and-crafted training
stea_ld_ that bigram dependgnmes can be crucial for - InProceedings of COLING-ACL
avoiding under-segmentation of frequent colloca-

tions. Incorporating these dependencies into ou¥- Teh. M. Jordan, M. Beal, and D. Blei. 2005. Hierarchical
Dirichlet processes. Idvances in Neural Information

model greatly improved segmentation accuracy, Processing Systems.IMIT Press, Cambridge, MA.

and led to better performance than previous ap- o _ _
proaches on all measures. Y. Teh. 2006. A Bayesian interpretation of interpolated

kneser-ney. Technical Report TRA2/06, National Univer-
sity of Singapore, School of Computing.
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