
SOME GENERALIZATIONS ON COUNTING BINARY
STRINGS

JOSHUA T. ABBOTT

NEW COLLEGE OF FLORIDA

Abstract. Extending R. Grimaldi’s work on binary strings and Ja-

cobsthal numbers for the language A = {0, 01, 11}, we will examine

some general properties for counting binary languages. We focus
mainly on counts for the number of strings of length n inside the

Kleene closure of a given language. We will discuss how these counts

are affected when adding additional elements to a language. We
also present counts for the number of 0’s and 1’s inside these binary

strings of length n.

Key Phrases: binary strings, Jacobsthal numbers, symbol codes

1. Introduction - Trivial Generalizations of an

Starting with the alphabet Σ = {0, 1}, let A be the language {0, 01, 11},
a subset of Σ∗, the Kleene closure of Σ, as in Grimaldi[1]. Let an count the
number of distinct binary strings of length n in A∗, the Kleene closure of
A. Then an = an−1 + 2an−2, for all n ≥ 3, with a1=1, a2=3; because to
obtain a string of length n, we either append 0 to the right of a string of
length n-1 in A∗, or we append 01 or 11 to the right of a string of length n-2
in A∗. Since the initial conditions can be determined easily, we could solve
this recurrence relation to obtain an = Jn, the nth Jacobsthal number. The
rest of this paper will only be concerned with finding recurrence relations
in general for binary languages.

Let Ac be the bitwise complement of a language A. For example, if
A = {0, 01, 11} as before, then Ac = {1, 10, 00}, and by an analogous ar-
gument as given before, ac

n = ac
n−1 + 2ac

n−2. Thus, A and Ac share the
same an, the number of binary strings of length n. It is also rather trivial
to note if Σ ⊆ A, then an = 2n.

One last simple general result is if A = { x1, x2, ... , xm } with
|x1| = |x2| = ... = |xm| = β, then

an =
{
m

n
β n(modβ) ≡ 0

0 else

2. Some Non-trivial Generalizations of an

Definition 2.1. A code C over an alphabet Σ is uniquely decipherable if
whenever c1,...,ck, d1,...,dj are codewords in C and

c1...ck = d1...dj

then k = j, and ci = di, for all i = 1,...,k.

A code is analogous to a language, with codewords being the elements
of the language. We will use the terms code and language interchangeably.

Proposition 2.1. If A is a language with ki elements of length i, then
an ≤

∑
kian−i

with equality iff A is uniquely decipherable.

Proof. The summation
∑
kian−i is simply a count of appending strings

of length ki to the previous strings of length an−i. If the language A is
uniquely decipherable, then every string in A∗ can be decomposed in exactly
one way; thus an =

∑
kian−i in this case. Otherwise, if A is not uniquely

decipherable, there are multiple decompositions of strings in A∗, thus an is
strictly less than

∑
kian−i. �

Example 2.1. Let A = {0, 01, 11} as in Grimaldi[1]. Then k1 = 1,
k2 = 2, and an ≤ (1)an−1 + (2)an−2. Further, A is uniquely decipherable,
so an = an−1 + 2an−2.

Theorem 2.1 (McMillan’s Theorem). If C = { c1, c2, ... , cq } is a
uniquely decipherable binary code with li = length(ci), then its codeword
lengths l1, l2, ..., lq must satisfy Kraft’s inequality:

q∑
k=1

1
2lk
≤ 1

Proof. Refer to [2] for a standard proof of this theorem. �

Example 2.2. Let A = {0, 01, 11} as in Grimaldi[1]. Then l1 = 1, l2 = 2,

l3 = 2, q = 3, and
q∑

k=1

1
2lk

=
1
2

+
1
4

+
1
4

= 1.

Since the summation equals 1, adding more elements to A violates Kraft’s
inequality and will result in a language that is not uniquely decipherable,
and thus the count a

′

n for this resulting language will be strictly less than∑
kia

′

n−i.

There exist methods to compute an if A is not uniquely decipherable.
We present the following three cases.

Case 1 (Linear Dependence): We can find a linearly independent set
from the elements of the language A by removing the linearly dependent
elements to yield language A

′
with an equivalent count an ≡ a

′

n.

Example 2.3. A = {0, 00} can be reduced to A
′

= {0}, and thus an =
an−1, with a1 = 1, clearly.

Example 2.4. A = {0, 10, 11, 001110} can be reduced to A
′

= {0, 10, 11},
since 001110 = 2(0) + (10) + (11). A

′
is uniquely decipherable, thus

an = an−1 + 2an−2.

Case 2 (Symmetry): If there exist elements (x)(y) and (y)(x) in A,
with either x or y also also an element in A, then there is a function f (n)
to account for the strings in A∗ that have multiple decompositions. Thus
an =

∑
kian−i − f(n).

Example 2.5. Let A = {0, 01, 10}. We see 010 ∈ A∗ decomposes as both
(0)(10) and (01)(0). The resulting f(n) = an−3 and thus an = an−1 +
2an−2 − an−3.

Case 3 (Least Common Multiple): If there exist elements x,y in A
such that z ∈ A∗ can be decomposed as (x)(y) or (y)(x), or a string z

′ ∈ A∗
that can be decomposed as either i copies of (x) or j copies of (y), then
there is a function g(n) to account for the strings in A∗ that have multiple
decompositions. Thus an =

∑
kian−i − g(n).

Example 2.6. Let A = {1, 00, 000}. We see 00000 ∈ A∗ decomposes
as both (00)(000) and (000)(00), and 000000 ∈ A∗ decomposes as both
(00)(00)(00) and (000)(000) . As a result, g(n) = an−3 − an−4 and thus
an = an−1 + an−2 + an−3 − (an−3 − an−4) = an−1 + an−2 + an−4.

The methods used in these cases or a combination of them result in an
exact computation for an.

3. Zeros and Ones in the an Binary Strings

Let zn and wn count the number of zeros and ones respectively that
occur among the an binary strings of length n in A∗.

Example 3.1. Let A = {0, 01, 11} as in Grimaldi[1]. Then zn = (zn−1 +
an−1) + (zn−2 + an−2) + (zn−2) where (zn−1 + an−1) takes the previous
count of zeros and sums this with the number of elements in an−1 since
we are adding one 0 to each, (zn−2 + an−2) takes the penultimate count
of zeros and sums this with the number of elements in an−2 since we are
adding a two bit string 01 which has just one 0, and (zn−2) accounts for
adding the two bit string 11 to every element in an−2, but since there are
no new zeros in 11, we simply use the previous zero count zn−2.
wn = (wn−1)+(wn−2+an−2)+(wn−2+2an−2) is constructed from a similar
argument as given above.

It is clear that wn + zn = nan and thus wn + zn ≤ n
∑
kian−i. There is

an interesting underlying structure to these counts that may reveal methods
of finding exact counts for wn and zn.

Proposition 3.1. Let mj count the number of occurrences of 0 in strings
of length j in A, and let ki count the number of elements of length i in A.
Then

zn ≤
∑

(kizn−i) +
∑

(mjan−j)
with equality iff A is uniquely decipherable.

In lieu of a proof, consider a deeper discussion of the previous example
(3.1). As previously shown, zn = (zn−1 + an−1) + (zn−2 + an−2) + (zn−2).
Rearranging the terms, we get zn = (zn−1 +2zn−2)+(an−1)+(an−2). Sim-
ilarly, as previously shown, wn = (wn−1)+(wn−2 +an−2)+(wn−2 +2an−2),
and rearranging terms we get wn = (wn−1 + 2wn−2) + (3an−2). Recall that
an = an−1 + 2an−2 for this language. So wn and zn can be constructed
from the count an and terms that account for the number of zeros and ones
respectively in the an−i strings. A formal proof is analogous to counting
argument given for Proposition 2.1.

We have not developed methods to derive exact counts for wn and zn,
but conjecture they are similar to the methods used in the three cases given
for computing an.

4. Conclusion

We have reviewed methods to compute an for arbitrary binary languages
and also a bound for counting the number of zeros and ones in these an

strings. The examples given should help clarify the efficacy of the methods
and motivate deeper investigation.

5. References

1.) Grimaldi, R., Binary Strings and the Jacobsthal Numbers. Congres-
sus Numerantium, Volume 174, 2005, Pp. 3-22.

2.) Roman, S., Coding and Information Theory. Published by Springer,
1992.

E-mail address: joshua.abbott@ncf.edu

