Question: The order in which people observe data
has an effect on their subsequent judgments and
inferences. How do we model this phenomenon?

What we know: Most Bayesian models of human
behavior do not produce these effects. However,
approximation methods for Bayesian inference have
been shown to predict certain order effects.

What we don’t know: How do the parameters of
these approximation methods influence predictions
of order effects?

Our contribution: We investigate the role of certain
parameters in a sequential Monte Carlo method
known as a particle filter. In a simple causal learning
task, we find a particular parameter setting is
responsible for producing different order effects.

Order Effects in Causal Learning
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Primacy effects: initial information has greatest
impact on later judgments. Produced when
judgment question asked only at the end of the trial
sequence. (Dennis and Ahn, 2001)

Recency effects: most recent information has
greatest impact on later judgments. Produced when

judgment question asked after every 10 trials.
(Collins and Shanks, 2002)

Bayesian model of Causal Learning
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Particle Filters

Assume we have a sequence of unobserved latent variables z,,..., z,
where z,., is modeled as a Markov process and each z holds a pair of
strength estimates s, and s;. Additionally, we have a sequence of
observations y,,..., y, representing the covarying events. The posterior
distribution P(z,.|y,.;) can be obtained recursively as:
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Importance sampling can be used recursively to approximate this
distribution by sampling from P(z,,,|z,) for each value of z, weighting
each value of z,,, by P(y,,,|z,.,,), and then resampling from this weighted
distribution. This algorithm, in which a set of samples is constantly
updated to reflect the information provided by each observation, is
known as a particle filter. The samples are referred to as particles.
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Order Effects and Particle Filter Parameters

How do different methods of resampling influence order effects?
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A Closer Look at Rejuvenation

How are we getting a primacy effect when we don’t
rejuvenate and a recency effect when we do?

We get a better understanding of the predictions of
Models 3 and 4 by focusing on the predictions of 50
particles at each trial t.
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In Model 3, the diversity of the particle set narrows
after resampling, resulting in a primacy effect.

In Model 4, the diversity is much broader after the
MH rejuvenation step, producing a recency effect.

Modeling Human Data

Using Model 3 with a stronger prior for generative
causes, we obtain results similar to reported
primacy effects with a small number of particles.

If we add the MH rejuvenation step after every 10
trials, we additionally obtain results similar to
reported recency effects with a small number of
particles.
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Conclusions

e Different resampling methods in a particle filter
can produce different order effects in a causal
learning task and provide a more consistent
explanation of observed order effects in behavioral
data.

* Two key elements interacting: filtering, in which
we observe one data point at a time, and
rejuvenation, in which we consider all previously
observed data. This interaction may explain why
people produce order effects.
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