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Case study: Word learning

Xu & Tenenbaum (2007) showed that a
handcrafted Bayesian model can explain word
learning in 3 domains.
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2 issues we explore:

* Can we automatically construct a word learning
model from online resources?

» Can we generalize to multiple domains?
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» constructing hypothesis
space based on pairwise
similarity judgments
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Challenges for scaling

challenges solutions
* small, hand-constructed N WordNet _
domains A lexical database for English
« toy stimuli - IMAGE
* constructing hypothesis » automatically derived
space based on pairwise from WordNet structure

similarity judgments
requires O(n?) judgments



WordNet

( Miller, 1995; Fellbaum, 2010)

~32,000 nouns

65K leaf nodes
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IMAGENET 14.2 million images

( Deng et al., 2009 )

"

: |
Shih-Tzu 2563 56.20% L
A Chinese breed of small dog similar to a Pekingese pictures  Popularity  Wordnet
Percentile IDs
- bitch (1)
.- jackal, Canis aureus (0)
| fox (11)
- wolf (6)
+. dog, domestic dog, Canis familiaric
- puppy (0)
- toy dog, toy (11)
- Chihuahua (0)
- toy terrier (0)
7 toy spaniel (4)
- King Charles spaniel (0)
- papillon (0)
“. English toy spaniel (1)
i Blenheim spaniel (0)
- Shih-Tzu (0)
- Pekinese, Pekingese, Peke (C
- Maltese dog, Maltese terrier,
- Japanese spaniel (0)
;- dalmatian, coach dog, carriage
- Great Pyrenees (0)
i hunting dog (101)
- Mexican hairless (0)
- lapdog (0)
- basenji (0)
- pug, pug-dog (0)
;- spitz (4)
+- corgi, Welsh corgi (2) |
Cardigan, Cardigan Welsh co LN 1
i Pembroke, Pembroke Welsh - >

i working dog (45) *Images of children synsets are not included. All images shown are thumbnails. Images may be subject to copyright.
- Leonberg (0) - 2|[3][4][s|[6]|[7][8][9][10] ... [73]]74]] Next

- pooch, doggie, doggy, barker, b
- Newfoundland, Newfoundland d

Treemap Visualization Images of the Synset Downloads
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Large-scale Word Learning

Is this a BLICK?
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Experimental Validation

* Replicate Xu & Tenenbaum (2007) using
naturalistic images as stimuli and a word
learning model based on WordNet

* Test how this approach generalizes to a
new set of domains
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TEST SET

2 subordinate

2 basic-level

4 superordinate
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Replicating Xu & Tenenbaum (2007)
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Conclusions

Integrating methods from Cognitive Science and
Machine Learning has the potential to benefit both

fields



Conclusions

Integrating methods from Cognitive Science and
Machine Learning has the potential to benefit both

fields

 Extended a cognitive model of word learning to
operate on large-scale data — evaluation with
naturalistic stimuli and over more domains

» Step towards bringing machines closer to human
performance in word learning
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