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Case study: Word learning 

2 issues we explore: 
 
•  Can we automatically construct a word learning 

model from online resources? 

•  Can we generalize to multiple domains?   

Xu & Tenenbaum (2007) showed that a 
handcrafted Bayesian model can explain word 
learning in 3 domains.  
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x1 

Here are three ZIVS 

X = { } 
x2 x3 

Prob(       is a ZIV | X ) 
We want to compute: 

Word Learning 
as Bayesian Inference 
( Xu & Tenenbaum, 2007 ) 
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•  toy stimuli 

•  constructing hypothesis 
space based on pairwise 
similarity judgments 
requires O(n2) judgments 

Challenges for scaling 

challenges solutions 

•    

•    

•  automatically derived 
from WordNet structure 

  



WordNet 
( Miller, 1995; Fellbaum, 2010 ) 

Dalmatian Corgi Shih-Tzu 

Dog 

Canine 

Wolf 

Mammal 

Animal 

. . 

. 

“IS A” 

~82,000 nouns  
65K leaf nodes 

17K inner-nodes 



( Deng et al., 2009 ) 
14.2 million images 
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Large-scale Word Learning 

Here are three BLICKS 

Here are five FEPS 

Here are four ZIVS 
Is this a BLICK? 

Is this a ZIV? 

Is this a FEP? 



•  Replicate Xu & Tenenbaum (2007) using 
naturalistic images as stimuli and a word 
learning model based on WordNet 

 
•  Test how this approach generalizes to a 

new set of domains 

Experimental Validation 



1 subordinate 

3 subordinate 

3 basic-level 
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TRAINING SET 



2 subordinate 

2 basic-level 

4 superordinate 

TEST SET 
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Replicating Xu & Tenenbaum (2007) 
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Conclusions 

Integrating methods from Cognitive Science and 
Machine Learning has the potential to benefit both 
fields 
 
•  Extended a cognitive model of word learning to 

operate on large-scale data – evaluation with 
naturalistic stimuli and over more domains 

 
•  Step towards bringing machines closer to human 

performance in word learning 



Questions? 
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Toy dog 

Dog 

Hunting dog 

Canine 

Mammal 

. . 

. 

“IS A” 

Shih-Tzu 

. . 

. 

. . . 

1 0 1 1 

0 

1 1 

1 

1 

1 

0 

1 Pekinese 

Chihuahua 

Beagle 

1 

1 

1 

1 1 0 1 1 

Hypotheses 

O
bj

ec
ts

 


