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5. EXPERIMENTS

3. THE BAYESIAN WORD LEARNING MODEL

We assume a set of examples of a novel concept detined by a novel word e We adopted the Imagenet hierarchy to automatically generate domains
(like “fep”). of hierarchical concepts.

1. MOTIVATION

e Learning Novel Concepts

— Learning a language is one of the classic problems that is solved bet-

ter by the human mind than by any computer. We assume a set ‘H of hidden hypotheses - concept candidates. e Five types of examples:

— Human learn the meanings of words accurately from just a handful
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The goal is to predict if a new example belongs to the concept or not. 1. One example from the most specific (Level 0) category.
of labelled examples. - . -
The probability could be computed as 2. Three examples from the most specific (Level 0) category.
B Itflsha 51g1;)11f1cantbchallenge to learn novel nouns - one simple aspect 3. Three examples from categories 10% of the path to the root (L1).
of the problem above. | . : _ . .
P K 4. Three examples from categories 25% of the path to the root (L2).
e Combining Cognitive Science with Vision P(Znew € C|X) = Z P(@new € Clhy) P (| X) 5. Three examples from categories 50% of the path to the root (L3).
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Learning a new word “DAK” from a few examples:

4. VISUAL GROUNDING

For an arbitrary image, we do not
know the basic concept (leaf node) as-
sociated to it.
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Solution: combining the hypothesis == [ g

i ‘ .- s
hierarchy with the computer vision | s s whecr
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Generalization Probability
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We adopt the state-of-the-art image classification pipeline, and produce Classical Concept Learning
probabilistic outputs. Human Behavior | i (without vision)
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The conditional is then computed as
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Generalization Probability
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Classical Vision

N
P(h|Z) < P(hg) H P(I,|hy) Y 1L0 3L0 3Ll (without concept learning)
Our Model

n=1

7. REMARKS

Possible Future Work: o ].T. Abbott, J.L. Austerweil, and T.L. Griffiths. Constructing a hypothesis space
from the Web for large-scale Bayesian word learning. In ACCSS, 2012.
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e [earn perceptual similarity (like distance metric learning). e Y.Jia, ]. Abbott, J. Austerweil, T. Griffiths, T. Darrell. Visually-Grounded Bayesian
e Learn attributes from human behavior. Word Learning. UC Berkeley EECS Tech Report 2012-202.



