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1. MOTIVATION
• Learning Novel Concepts

– Learning a language is one of the classic problems that is solved bet-
ter by the human mind than by any computer.

– Human learn the meanings of words accurately from just a handful
of labelled examples.

– It is a significant challenge to learn novel nouns - one simple aspect
of the problem above.

• Combining Cognitive Science with Vision

– Bayesian word learning answers the challenge using Bayesian infer-
ence to identify the intended referent of a novel noun.

– Such cogscience models do not have a perceptual component and,
instead, assume a fixed set of perfectly-recognized stimuli.

– We show that integrating Bayesian word learning with computer vi-
sion leads to a system capable of approximating how people learn
nouns directly from images.

2. WORD LEARNING
Learning a new word “DAK” from a few examples:

3. THE BAYESIAN WORD LEARNING MODEL
• We assume a set of examples of a novel concept defined by a novel word

(like “fep”).

• We assume a setH of hidden hypotheses - concept candidates.

• The goal is to predict if a new example belongs to the concept or not.

• The probability could be computed as

P (xnew ∈ C|X ) =
K∑

k=1

P (xnew ∈ C|hk)P (hk|X )
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4. VISUAL GROUNDING

• For an arbitrary image, we do not
know the basic concept (leaf node) as-
sociated to it.

• Solution: combining the hypothesis
hierarchy with the computer vision
classifier.

• We adopt the state-of-the-art image classification pipeline, and produce
probabilistic outputs.

• The conditional is then computed as

P (In|hk) = EP (xn|In) [P (xn|hk)] =
L∑

x=1

Ax,x̂nP (xn|hk)

P (hk|I) ∝ P (hk)
N∏

n=1

P (In|hk)

5. EXPERIMENTS
• We adopted the Imagenet hierarchy to automatically generate domains

of hierarchical concepts.

• Five types of examples:

1. One example from the most specific (Level 0) category.
2. Three examples from the most specific (Level 0) category.
3. Three examples from categories 10% of the path to the root (L1).
4. Three examples from categories 25% of the path to the root (L2).
5. Three examples from categories 50% of the path to the root (L3).
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6. RESULTS
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7. REMARKS

Possible Future Work:

• Learn unknown hypotheses / hierarchy from human be-
havior.

• Learn perceptual similarity (like distance metric learning).

• Learn attributes from human behavior.
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