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The rapid development of machine learning has led to new opportunities for applying these
methods to the study of human decision making. We highlight some of these opportunities
and discuss some of the issues that arise when usingmachine learning tomodel the decisions
people make. We first elaborate on the relationship between predicting decisions and
explaining them, leveraging findings from computational learning theory to argue that, in
some cases, the conversion of predictive models to interpretable ones with comparable
accuracy is an intractable problem. We then identify an important bottleneck in using
machine learning to study human cognition—data scarcity—and highlight active learning
and optimal experimental design as a way to move forward. Finally, we touch on additional
topics such as machine learning methods for combining multiple predictors arising from
known theories and specific machine learning architectures that could prove useful for the
study of judgment and decision making. In doing so, we point out connections to behavioral
economics, computer science, cognitive science, and psychology.
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The study of how people make decisions has a
long and rich history (Baron, 2000; Hastie &
Dawes, 2009) drawing on a diverse set of research
methodologies such as normative models (Gilboa,
2009; Von Neumann & Morgenstern, 1947),
behavioral experiments (Kahneman & Tversky,
1979; Tversky &Kahneman, 1974), and computer
simulations (Gigerenzer & Goldstein, 1996).
Recently, a new research tool has become available
for the study of decision making: combining
machine learning (ML) models that excel in
prediction with large data sets of human choices.

This approach offers new ways to find predictive
patterns that underlie choices, preferences, and
decisions and is enjoying increasing popularity in
the judgment and decision-making community,
as well as more broadly in computer science
(Rosenfeld & Kraus, 2018), economics (Kleinberg,
Lakkaraju, et al., 2018; Mullainathan & Spiess,
2017), moral psychology (Agrawal et al., 2020;
Awad et al., 2018), and neuroscience (Yamins et al.,
2014). It appears that we are only beginning to
discover the potential of using ML models and
algorithms touncovernewaspectsofhumandecision
making.
The goal of this article is to point out

theoretical questions arising from the study of
human decisions and to demonstrate how ideas
from the analysis of machine learning algorithms
can shed light on these questions. In addition, we
highlight a number of practical considerations
based on our own experience that may be useful
to scholars of decision making who may want to
incorporate MLmethods into their own research.
Wemostly focuson supervised learning,wherein

we are given a set of labeled examples and seek a
model that predicts human behavior with low
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error on unseen examples (see Figure 1). This
model is expressed as a function mapping inputs
that correspond to choice problems to outputs that
correspond to human decisions. For instance,
given a training set consisting of people’s choices
between alternatives, we might seek a function
that, given a pair of alternatives, predicts the
probability of choosing each alternative for
individuals in the population from which we
are sampling. In the ideal scenario, this function
would achieve low prediction error when
evaluated on unseen decision problems (sets of
alternatives) that were not in the “training set”
from which the machine learning algorithm
learns—a measure of how well the model
generalizes. Often, the set of functions under
consideration is defined by a set of parameters
and the goal of the learning algorithm is to fit (i.e.,
estimate) these parameters based on the training
set to minimize the prediction error. A variety
of approaches can be applied to this problem,
corresponding to different choices of the set of
possible functions. A familiar example for many
researchers in the decision-making field is linear
regression, where the set of possible functions
comprises all linear combinations of features.
Another example that is widely used in computer
science but is less common in psychology
research is deep neural networks (LeCun et al.,
2015), which define a large class of nonlinear
functions parameterized by the architecture and
the weights assigned to simple units (“neurons”)
that are combined together to produce predictions.
A comprehensive survey of machine learning

is beyond the scope of this work. The interested

reader should consultmachine learning texts such
as Murphy (2012) or Hastie et al. (2009). More
background on the theoretical foundations of
machine learning can be found in Kearns and
Vazirani (1994), Shalev-Shwartz and Ben-David
(2014), and Hardt and Recht (2021).

Can Machine Learning Be Used to Generate
Novel Explanations of Human Decision

Making?

Scientific inquiry into how people make
decisions has a prediction component and an
explanation component (Fudenberg et al., 2022;
Plonsky et al., 2017). We want to predict which
decision people will make when faced with a
choice between alternatives, but we also want to
explain why people prefer one alternative to the
other. For example, prospect theory (Kahneman
& Tversky, 1979) provides formulas to predict
which of two lotteries are more likely to be chosen,
but also explains why people favor some gambles
more than others: people are more sensitive to
losses than to gains, overestimate the likelihood of
rare events, and may be influenced by a reference
pointwhenassessing thedesirabilityof anoutcome.
Machine learning models often excel at

prediction. Prediction is typically measured by
the error (e.g., mean squared error) on a test set
that is disjoint from the data used to train the
learning model. However, popular and effective
machine learning methods, such as neural net-
works often result in opaque and complicated
models that make it difficult to explain why a
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Figure 1
Modeling Human Decisions as a Prediction Problem

Note. A choice problem is represented as a set of inputs that are provided to a machine learning algorithm.
Human decision making is modeled as a function mapping these features to a decision (or a probability
distribution over decisions). The parameters of the machine learning algorithm, θ, are chosen to minimize the
difference between the estimated and true functions. ML = machine learning.
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certain prediction is made. This is unsatisfying:
while predictions are an important part of
scientific theories, we also want to be able to
come up with understandable and transparent
explanations for the decisions people make.

From Prediction to Explanation

Can we leverage the superior power of
machine learning models to improve our
understanding of how and why people make
decisions? This question has received attention
recently both with respect to decision making
(Fudenberg et al., 2022), as well as more
generally for the social sciences (Hofman
et al., 2021; Watts et al., 2018). For example,
Fudenberg et al. (2022) have studied how to use
machine learningmodels to test the completeness
of theories: whether a current theoretical model
captures all the variance in human behavior or is
missing certain features. Those missing features
can help us generate new explanations (Agrawal
et al., 2020). Several studies have found that
neural networks achieve lower prediction error
when compared to theory-based computational
models of human decision making (Ger et al.,
2024; Peterson et al., 2021; Song et al., 2021).
ComparingMLmodels to theory-basedmodels is
an underexplored avenue for gaining new insights
into human behavior and has the potential to
improve the accuracy of existing theories and
reveal newfeatures that explainpeople’sdecisions.
In one illustration of this approach, Peterson

et al. (2021) proposed amethod for understanding
the theory about human behavior that a neural
network may be implicitly discovering from a
large data set. They used psychological theories
of decision making to constrain the architectures
of neural networks, making it possible to see
how different assumptions influenced prediction
performance. This is a way to evaluate the
psychological theories—it makes it possible to
find the best-performing model that satisfies the
assumptions of the theory—but can also be used
to provide insight into the behavior of neural
networks in predicting decisions. If a theory-based
model makes assumptions that parallel those
discovered by an unconstrained neural network,
then they will exhibit similar performance.
Furthermore, the theory-based model will be
able to reach this level of performance from less
data. Peterson et al. (2021) used this approach to
show that a modified version of prospect theory,

wherein loss aversion and probability weighting
become dependent on context, could perform as
well as an unconstrained neural network in
predicting human decisions.
The field of explainable machine learning is

vast and covering it is beyond the scope of this
article. Some examples of methods that are used
to derive explainable machine learning models
are local interpretable model-agnostic explana-
tions (Ribeiro et al., 2016), partial dependence
plots (Friedman, 2001), and Shapley Additive
Explanations (Lundberg & Lee, 2017). Applying
these methods to “black-box” models of human
decision making has received, to our knowledge,
little attention.

Theoretical Barriers to Explaining
Human Decisions

Machine learning has been used to find new
variables that predict and explain behavior. In
Plonsky et al. (2017), the authors were able to
extract novel “psychological features” to predict
choice between gambles, and Fudenberg and
Liang (2019) used decision trees to uncover new
regularities explaining human play in two-player
matrix games. Despite these successes, there are
reasons to believe that prediction and explanation
are qualitatively different problems (Shmueli,
2010). Here, we elaborate on one source of
disparity that has received less attention, based
on the computational complexity of extracting
explainable models from black-box models.
Our argument is based on the difference

between proper and improper learning (Kearns
& Vazirani, 1994; Pitt & Valiant, 1988; Turán,
1994).Todefinewhatwemeanbyproper learning,
we relyon thePAC(probably-approximatecorrect)
learning framework (Valiant, 1984). The input to
the learning algorithm is a training data set of
independently identically distributed samples
ðz1, hðz1ÞÞ, : : : ðzm, hðzmÞÞ where h is an unknown
function1 from a class of functions H known the
learner, and the zi’s belong to an n-dimensional
space (e.g., the set of all Boolean vectors {0, 1}n).
Roughly speaking, in PAC-learning our goal is to
output in polynomial time a function f from the
family of functionsH that with probability2 at least
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1 Typically the range of all functions in H is {0, 1}. This
setting is often referred to as PAC-learning binary classifiers.

2 The probability is takenwith respect to the distribution of the
samples as well as the randomness of the learning algorithm.
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1−δ results with a prediction error of at most ε
where ε, δ ∈ ð0, 1Þ are parameters that can be
specified. Importantly, for a learning problem to be
PAC-learnable, we insist the learning algorithm A
is proper: It must output (given a data set of
samples) a function that belongs to H. We also
require that the training algorithm A runs in time
that is a polynomial function of the dimension of
the input as well as 1

ε ,
1
δ and a size parameter s that

measures the size of a representation of functions
from H (Kearns & Vazirani, 1994).
The generic way to design learning algo-

rithms for PAC-learning is empirical risk
minimization: find a function f ∈ H that
perfectly fits the training data set3. Such a
function will minimize the error of the chosen
learning model on the training data set. That is,
find f ∈H such that for every 1 ≤ i ≤ m, f ðziÞ =
hðziÞ. Assumingm is large enough and assuming
some statistical properties of the hypothesis
classH, finding such an f efficiently guarantees
that f will satisfy the PAC-learning require-
ments (Blumer et al., 1989).
For many choices of hypothesis classes, the

computational complexity of finding a function
f in H that perfectly fits the training data set is
NP-hard and hence likely to be intractable (Pitt
& Valiant, 1988; Turán, 1994). One way around
such an intractability result is to relax the
requirement that f belongs to H and return
instead a function g that is not required to belong
toH. We still require that the prediction error of
g is atmost ε for an accuracy parameter ε and that
the running time of the (improper) learning
algorithm A′ is polynomial in the parameters of
the problem. We also insist that g can be
computed efficiently (in polynomial time in the
input dimensions). This weaker requirement on
the learned function results in what is called an
improper learning algorithm. When such an
algorithm exists, we say that the problem is
predictable (Turán, 1994). For an illustration
of proper versus improper learning please see
Figure 2.
Let us illustrate the concepts of proper and

improper learning with an example that is related
to learning rules that govern decisions between
gambles. Consider the problem of learning
the attractiveness of a gamble consisting of n
monetary outcomes x1, : : : , xn ∈ R occurring
with probabilities p1, : : : , pn ∈ ½0,1�. We assume
that the attractiveness of such a gamble takes a

particular form, with haðx1 : : : xn, p1 : : : pnÞ =P
n
i=1 aixipi for some vector ā = ða1, : : : , anÞ of

nonnegative real numbers (where larger values
assigned to a gamble mean it is more likely to be
chosen). The training data set consists of the
parameters of pairs of gambles as well as the
gambles chosen by the decision maker. In
the proper learning case, we seek to output a
functionminimizing the prediction error from the
family of all functions of the specific functional
form fhā, ā ∈ Rn

≥0g where R≥0 is the set of all
nonnegative real numbers. In the improper case,
we want to find an arbitrary function g with low
prediction error without requiring it to belong to
the family fhā, ā ∈ Rn

+g. For example, g could be
a large neural network which was fit to the data
using stochastic gradient descent.
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Figure 2
An Illustration of Proper and Improper Learning and
Their Relationship to Prediction and Explanation

Note. H is a family of machine learning models with a
functional form that is useful for explaining decisions (e.g.,
halfspaces with coefficients in {0, 1}). A proper learning
algorithm A takes a data set (such as list of pairs of gambles
and human choices between the gambles) as input and
outputs a machine learning model h in H. An improper
learning algorithm A′ outputs a machine learning model g
with low prediction error that is not guaranteed to belong to
H (e.g., halfspace with real coefficients that are not all 0 or 1),
and hence may fail to have a functional form that is useful for
theoretical explanation of the data. In some cases, improper
learning of a family of machine learning models H can be
done efficiently, whereas proper learning of H is intractable.
This represents a computational barrier for converting models
with good predictive performance to models that are
conducive to theoretical explanations.

3 We assume there exists an f inH perfectly fitting the data.
Similar reasoning can be applied when there is no function in
H perfectly fitting that data and instead we look for f ∈ H
that fits the data with minimum error Shalev-Shwartz and
Ben-David (2014).
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As another illustration, consider the problem
of intertemporal choice (Berns et al., 2007). We
follow closely the exposition in Chase and Prasad
(2019): our goal is to predict which of two payoff
vectors (x1, … , xT) and (y1, … , yT) both in RT a
decision maker will choose, where there are T > 1
discrete time slots and xi, yi are the payoffs received
at time 1≤ i≤ T. One way to model the preference
between payoffs is to assume that (x1, … , xT) is
preferable to (y1, … , yT) if only if

P
T
i=1 DðiÞxi ≥P

T
i=1 DðiÞyiwhereD∶f1, : : : Tg → ð0, 1Þbelongs

to a family of nonincreasing utility functions. For
example, DðiÞ = δi represents exponential dis-
counting (where δ ∈ ð0, 1Þ) andD(i)= βγi−1with
β; γ ∈ ð0, 1Þ representsQuasi-hyperbolicdiscount-
ing (Laibson, 1997) capturing a “presence bias.” In
proper learning, we seek to output a hypothesis
from the family of utility functions (e.g., find a
δ ∈ ð0, 1Þ minimizing the prediction error for
exponential discounting). In improper learning,
we seek an efficiently computablemodel f ∶RT →
R such that (x1,… , xT) is preferable to (y1,… , yT)
if only iff f(x1, … , xT) ≥ f(y1, … , yT). As in the
previous example, f does not have to be of the
formof any particular utility function and can be a
complicated black-box model.
Proper learning is related to explanation in the

followingway:One formof “explanation” could be
to require that the learned model predicting human
decision making will have a specific functional
formsuchas expectedutility.Explanations couldbe
achievedby learninga functionwitha specific form,
which corresponds to proper learning. However, it
is well known that for several learning problems
improper learning is tractable (can be done in
polynomial time), yet proper learning is NP-hard
and hence likely to be computationally intractable
(Kearns & Vazirani, 1994; Shalev-Shwartz &
Ben-David, 2014; Turán, 1994). Put differently,
there are cases where improper learning might
require significantly less computational resources
than proper learning. It follows that even if we
can find a predictor with small prediction error
efficiently, it could be intractable to deduce from
it an explainable or interpretable model of a
desired functional form. Our main argument is
that in such cases there will be a computational
divide between prediction and explanation:
Finding an explainable machine learning model
from a hypothesis class is intractable, even
though we can efficiently find a learning model
with arbitrarily small prediction error.

As a concrete example where converting a
model to a model with superior explainable
properties is computationally intractable, con-
sider a set of learning models called halfspaces.
A 0–1 halfspace is parameterized by a Boolean
vector ā = ða1 : : : adÞ ∈ f0, 1gd and an integer
b. This defines a function that classifies its input
space, with halfspace hā,b applied to a Boolean
input vector (z1, … , zd) resulting in an output
of 1 if

P
d
i=1 aizi ≥ b and 0 otherwise. It is known

that properly learning this hypothesis class is
NP-hard (Pitt & Valiant, 1988). However, this
learning problem is predictable:We can efficiently
find a predictor that will have arbitrary small
prediction error. To see why, suppose we
now consider the hypothesis class H′ which
consists of all halfspaces parameterized by a real
vector c̄ = ðc1 : : : cdÞ ∈ Rd anda thresholdd ∈ R.
Similarly hc̄,dððz1, : : : , zdÞÞ = 1 if

P
d
i=1 cizi ≥ d

and 0 otherwise. This learning problem can be
solved efficiently (Shalev-Shwartz&Ben-David,
2014) as there are polynomial time algorithms
(such as linear programming) that can find a
halfspace hc̄′,d′ that perfectly fit a training data set
(assuming there is a predictor in H′ achieving
zero error)4. Hence, the learning problem is
predictable, since we can efficiently solve the
empirical riskminimization problemwith respect
toH′. The catch is that the halfspacehc̄′,d′weget in
this way does not belong to the original
hypothesis class H: We have no guarantees
that the (real) parameters of the found halfspace
are in {0, 1} Observe that intuitively H is more
interpretable than the setH′ of all halfspaces with
real parameters and hence might be more useful
in explaining why a classification was made: It
marks the “important features” that influence the
classification (those with Coefficient 1).
To illustrate the distinction between arbitrary as

opposed to binary halfspaces in studying decisions,
consider the following scenario. Suppose we use a
halfspace as a simple model for multiattribute
decision making (Payne et al., 1993), predicting
which binary attributes influence choices people
make when considering options with several
attributes (e.g., choosing a car based on attributes
such as whether it is electric, has white color and

T
hi
s
do
cu
m
en
t
is
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al

A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le

is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al

us
e
of

th
e
in
di
vi
du
al

us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.

4 Here, we also rely on the fact that the sample complexity
of learning halfspaces is polynomial: We ensure arbitrarily
small prediction error εwith probability at least 1−δ by taking
the number of samples m to be a polynomial in n, 1/ε, 1/δ
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price lower than 1000 Euros). To simplify the
exposition, we focus on the case of a single option
that can be chosen or not, where an output of 1
marks choosing the option.A0–1halfspace offers a
simple interpretation “selecting” all features that
influence the decision maker. The meaning of
coefficients in arbitrary halfspaces which might be
arbitrary real numbers could be more complicated
to interpret.
An important property of explainable models is

succinctness. Even classifiers that are perceived
as more useful in deriving explanations, such as
decision trees, become incomprehensible as their
size grows: A decision tree with hundreds (or
more) nodes is hard to interpret or understand.
Many of the machine learning models (such
as neural networks) that excel in prediction are
over-parameterized, meaning the number of
parameters far exceeds the size of the training
data set (Hardt & Recht, 2021). When such large
models are used on scientific data, their size
can make it a challenge to gain new explanations
from their superior predictive performance. It is
computationally intractable (NP-hard), to decide
whether a given data set can be fit with a classifier
with a fixed size limit (Blum & Rivest, 1992;
Goel et al., 2021). This creates another theoretical
divide between prediction and explanation:
While we may be able to obtain a large
unconstrained ML model with small prediction
error, it may be computationally infeasible to
extract from it a compact model of potential use
to theoretical understanding.
Another obstacle to obtaining explanations

from black-box models such as neural networks
is that it is challenging to certify whether they
have “natural” properties (Lin&Vitter, 1991) we
expect from a model that explains decision
making. For example, it is shown inLin andVitter
(1991) that for certain architectures even simple
questions such as whether a given network is
not identically zero is intractable. As another
example, it is notoriously hard to certify that a
neural network computes a monotone function
(Sivaraman et al., 2020) whereas monotonicity
(or lack of thereof) is an important property
in understanding models of human decision
making.
Finally, it should be remembered that decision

making is a highly complex process (Livnat &
Pippenger, 2008) that can be influenced by
numerous features including a stochastic compo-
nent that cannot be modeled by deterministic

rules (Davis-Stober & Brown, 2011). This
complexity necessarily limits the predictive
accuracy of compact, theoretically appealing
models. Hence, it is to be expected that a trade-off
between explainability and accuracy (Lakkaraju
et al., 2016) in modeling how people make
decisions is unavoidable. In particular, as we
obtain more data about human decisions we
are going to be able to infermore complexmodels
from it (Peterson et al., 2021). This is a direct
consequence of a fundamental principle of
statistics known as the bias–variance trade-off
(Geman et al., 1992). With limited data simpler
models result in better generalization, because the
greatest risk to generalization is overfitting the
data and hence producing predictions that vary
significantly across different data sets. As the
amount of data increases, this kind of variance is
less of a risk and more complex models are the
best path toward generalization because they are
capable of producing an unbiased estimate of the
underlying function.5 Psychology has lived in
the limited data regime since its inception and has
hence focused on simple models. As we move to
larger and larger data sets, we are going to need to
become more comfortable with complexity
(Griffiths, 2015).
We stress that the obstacles outlined in this

section do not mean that leveraging machine
learning as a way of generating new explana-
tions of human decisions should be abandoned.
Sometimes explainable learning models of
human choice can be learnt efficiently: For
example, exponential and Quasi-hyperbolic
discounting methods admit efficient learning
algorithms (Chase & Prasad, 2019). However,
the results in this section do point to the
conclusion that obtaining explanations from
models that make superior predictions is likely
to be more computationally demanding com-
pared to achieving superior predictions alone.

Active Learning and Data Collection

Empirical studies of human decision making
typically include nomore than a fewdozen choice
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5 It is worth noting that the term “bias” used here
corresponds to a formal statistical notion—that the average of
the estimated functions across data sets is close to the true
function—which differs from the broader notions of bias used
in the study of judgment and decision making and in
psychology more generally.
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problems, where each problem is a choice
between several gambles with varying parame-
ters (monetary rewards, probabilities of gains
and losses). Machine learning models such as
neural networks are typically data-hungry and
need data sets with thousands of data points
(or more) to improve upon theoretical models.
The reliance on increasingly large sets of items is
also the trend in recent studies (Erev et al., 2017;
Peterson et al., 2021). With these developments,
it is no longer feasible to manually construct
experimental stimuli and it is necessary to resort
to algorithms that generate these stimuli auto-
matically. Designing theoretically informed
algorithms for solving this problem that are
simple to implement is an important goal. Such
algorithms are likely to be useful in other domains
which rely on large data sets such as categoriza-
tion (Battleday et al., 2020).
Supervised learning assumes that the learner

has little control over the datapoints it examines:
The learner is restricted to randomly choosing
datapoints and then applying a machine learning
algorithm on the resulting data set to obtain
anMLmodel with low prediction error on unseen
data. In contrast, active learning (Dasgupta, 2011;
Zhu et al., 2018) refers to a scenario in which it is
possible to choose data points adaptively and
arbitrary datapoints can be queried in the course of

constructing a machine learning model (Figure 3).
Active learning can lead to significant decrease
in the sample complexity required to output a
machine learning model such as halfspace achiev-
ing a desirable accuracy level: For an excellent
illustration see Zhu et al. (2018). However, active
learning algorithms (compared to gradient based
learning methods of neural networks) are often
more complicated to implement efficiently and
applying them to large data sets has been a
challenge. In behavioral experiments, the adaptive
choice of which queries to present to participants
in psychological experiments is also referred
as optimal experimental design (Cavagnaro et al.,
2010; Myung et al., 2013). The idea is that
adaptively selecting queries based on the current
performance (i.e., prediction error) of the machine
learning model could reduce the amount of data
needed to attain a desired prediction error. Such
techniques are important in behavioral research,
where recruiting participants is very costly. The
large number of participants needed to generate
data sets for training ML models is a major
bottleneck in using machine learning in behavioral
research. Therefore, active learning has the poten-
tial to make the of ML for behavioral experiments
more viable.
To return to our example of predicting people’s

choices between pairs of gambles, the active
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Figure 3
Illustration of an Iteration of the Active Leaning Pipeline

Note. The query algorithm has access to k > 0 previously queried datapoints,
where xi is a feature vector (e.g., numerical quantities of pairs gambles) and yi is
the corresponding label (e.g., whether the first or second gamble was chosen by
the human subject). Based on these k data points, the algorithm outputs a new
query point xk+1 (payoffs and probabilities of pairs of gambles) and queries the
decisions made by human participants on this gamble. Once an appropriate
stopping criterion is reached, the algorithm outputs anMLmodel based on all the
data points queried. ML = machine learning.
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learning problem becomes one of finding the
pairs that will be most informative for training a
model. The researcher has the choice of which
gambles to present depending on the error of the
current classifier, as well as properties of the
person participating in the experiment (demo-
graphic features, past choices). The question is
then how to choose gambles in an informed and
adaptive way to make best use of the resulting
samples.
Active learning methods often work by looking

for a datapoint that leads to the maximum increase
in expected information gain with respect to the
model we are trying to learn (Foster et al., 2019).
One method is to choose datapoints that current
models are maximally uncertain about, For
example, one may choose a pair of gambles where
the currently constructed model gives probability
roughly 1

2 to each choice, meaning it cannot do
much better than chance when deciding which
gamble will be chosen by the typical participant.
Such active learning methods have been used for
reward learning in human–robot interactions
(Reddy et al., 2020). Applying these methods to
support the rapid development of new theories of
human decision making is an interesting direction
for future research.
The use of adaptive methods in discriminating

between models of risky choice was examined in
Cavagnaro et al. (2013) using extensive simula-
tions. A different active learning algorithm for
learning risky choice along with theoretical study
of the guarantees of the algorithm such as sample
complexity is described in Echenique and Prasad
(2020). Applyingmethods of this kind to construct
machine learning models of human decision
making (based on human data) is a promising
direction, as it could lead tomore compact data sets
that achieve comparable accuracy to state of the art
models and data sets.
Active learning can also be used to obtain

interpretable models. Finite automata are used to
model and understand boundedly rational agents
(Wilson, 2014). A classic result due to Angluin
(1988) is that a finite automaton can be learned
efficiently by using a sophisticated active leaning
algorithm. Applying this algorithm to construct
automata that model human decision making
could lead to new theoretical findings.
Up to this point, we have mostly focused on

an experimental paradigm that asks people
to choose between gambles based on their

numerical parameters. In many situations, deci-
sions are likely to be based on additional sources
of information such as text (Apel et al., 2022) as
well as images (Hilgard et al., 2021). Predicting
and understanding how people make decisions
based on visual stimuli has received attention
lately (Bhatia & Stewart, 2018; Trueblood et al.,
2021). The recent advancements in generative
artificial intelligence open the door to automati-
cally constructing more sophisticated stimuli
(Peterson et al., 2022) that can be used to study
how people make decisions for visual, textual,
and multimodal stimuli.
Beyond the considerations of stimulus selec-

tion, there is also the parallel problemof obtaining
high-quality human responses to these stimuli.
Erev et al. (2017) emphasized quality by obtaining
large numbers of responses fromdifferent raters for
each choice problem stimulus, whereas Peterson
et al. (2021) emphasize quantity instead by
collecting fewer responses but for more choice
problemsoverall.Whileboth presumablyboost the
predictive power ofML algorithms, estimating the
optimal trade-off between the number of stimuli
and the number of responses per stimulus is still an
open problem.
Despite the potential utility of active learning

as a strategy for dealing with the data needs of
ML algorithms, we urge caution in using these
methods. Actively selecting datapoints to dis-
criminate between current models can result in a
systematically skewed sample, running the risk of
focusing on an unrepresentative subset of human
decisions and being overly influenced by the set
ofmodels under consideration. This canmake the
resulting data sets difficult to use as benchmarks
for evaluating new models. While we see active
learning as a good tool for deploying ML models
morewidely in the short term, in the long term,we
should work to complement these efforts with
large-scale model-agnostic samples. For further
discussion of the potential of these different
approaches see Almaatouq et al. (2024).

Further Directions

Combining Multiple Theories

There are often many competing theories
within a given domain of decision making. For
instance, He et al. (2022) identified at least 62
models of risky choice. Rather than assuming that
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a single theory offers a more accurate characteri-
zation of people’s decisions than the others, some
researchers have considered the idea that individ-
ual theories could be combined to build new,
better theories. For example, Davis-Stober and
Brown (2011) proposed a method to find convex
combinations of the predictions of multiple
models that better predict behavior than individ-
ual models, and Erev et al. (2017) recently
proposed best estimate and sampling tools, a
successful model of risky choice that utilizes a
linear combination of different value functions
(i.e., formulas for assigning value to a gamble),
yielding highly competitive predictions.
Extending these approaches and taking

inspiration from mixture-of-experts models
in machine learning, Peterson et al. (2021)
proposed a method to infer predictive mixtures
at the more granular level of individual choice
problems. This additional flexibility allows for
the possibility that decision makers might think
differently depending on the particular decision
problem they are facing. This model, called
mixture of theories, defines the value V(A) of a
gamble A as a weighted sum of classic utility
and probability weighting functions (uj and πk;
Kahneman & Tversky, 1979):

VðAÞ =
X
i∈A

�X
j

ωjujðxiÞ
��X

k

ωkπkðpiÞ
�
: (1)

Importantly, mixture weights ωj and ωj (where
ωj = 1 − ωk) are not fixed but instead vary as the
outputs of a neural network that takes as input an
entire decision problem. This neural network
is therefore learning to predict which mixture
weights best apply to each decision problem.
Varyingweights in this particular model amounts
to dynamically modulating the influence of classic
effects such as loss aversion and probability
weighting (Kahneman & Tversky, 1979), as
mentioned in an earlier section. While most of
the above approaches happen to make use of
value functions as mixture components, the
principle of mixing decision strategies can be
applied to nearly any theoretical tradition (e.g.,
heuristics).
An influential method inmachine learning for

making productive use of multiple models is
boosting (Freund & Schapire, 1997)6. This
method combines several binary classifiers to
create a singlemodel with lower prediction error

using majority vote (similar approaches work
for real valued predictors by taking the mean
of the different predictions). Boosting can reduce
the error of single models (called “weak learners”)
that have limited ability to obtain nearly minimal
prediction error. This approach can be useful when
applied to psychological theories that are derived
from laboratory experiments, which often excel
in theoretical vigor but can have low predictive
accuracy. Plonsky et al. (2017) applied a boosting
technique called random forests to a choice
prediction task, demonstrating improved predic-
tive performance when compared to recently
developed theoretical models such as Best
Estimate and Sampling Tools (Erev et al., 2017).
In contrast to neural networks which require large
data sets with tens of thousands of data points (or
more), these results in (Plonsky et al., 2017)
suggest that boosting could be a useful tool for the
study of human decisions on small data sets with a
fewhundreds (or less) of choices betweengambles.
For example, the winners of the 2018 International
ChoicePredictionCompetition applied exactly this
strategy (Plonsky et al., 2019). Applying boosting
to obtain new theories of human decision making
as well as psychological theories in other domains
is an exciting future direction.

Using Theoretical Machine Learning in
Theories of Human Decision Making

So far, we have discussed how machine
learning models are instrumental in predicting
and understanding decisions. Another direction
that has received significantly less attention
is leveraging findings from theoretical machine
learning in building new theories of judgement
and choice. Recently, Haghtalab et al. (2021)
have used theoretical machine learning to provide
newexplanatorymodels for the emergenceof belief
polarization. Formal principles arising from sto-
chastic optimization (which is used to fit machine
learning models) have been used to explain how
people integrate appraisals from the environment
into their affective states, which can influence
decisions (Bennett et al., 2022). We believe that
this is the tip of the iceberg—theoretical machine
learning has much to offer to theories of decision-
making and human cognition more generally.
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6 This kind of “boosting” is not in any way related to the
usage of the term in the decision making literature on
improving the decision people make.
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Theoretical analysis of combinatorial parame-
ters related to the sample complexity of choice
models such as Vapnik–Chervonenkis (VC)
dimension7 or other quantities related to efficiency
of learning for normative models of decision
making is uncommon.One exception is thework of
Chase and Prasad (2019), who analyzed the VC
dimension of time-dependent choice models such
exponential, hyperbolic and Quasi-hyperbolic
discounting and proved that these models can be
learnt efficiently. Other examples have considered
the learnability of preference in the revealed
preference setting (Balcan et al., 2014; Basu &
Echenique, 2020; Beigman & Vohra, 2006).
Additional investigation of the sample and time
complexity of choice models can be useful to
theoretical developments of normative models of
decision making, especially if the limitations of
bounded rational learners are considered
(Haghtalab et al., 2021). It could also lead to
useful learning algorithms that can be applied to
data sets of human choice.

Which Learning Model to Choose

There are a vast array of machine learning
models to choose from when fitting behavioral
data. Even when restricted to neural networks
there are many options—these models can vary
in the number of neurons, the depth of the
network, the activation function, and parameters
of the learning algorithms such as learning rate.
While the use of ML in the study of human
decision making and psychological data more
generally is still on its infancy, work in this area is
quickly expanding as researchers begin to explore
different neural network architectures such as
convolutional neural networks, transformers, and
recurrent neural networks (Dezfouli et al., 2019;
Tuli et al., 2021).
Achieving state of the art performance in tasks

such as image recognition and text processing
often requires large neural networkswithmillions
of neurons and dozens of layers. However, it
appears that much smaller networks are sufficient
to improve upon the prediction error of theoretical
models of human decision making. For example,
Peterson et al. (2021) used a network with just
32 neurons and two hidden layers. Network
pruning, leading to an architecture with fewer
connections, is one method for reducing the size
and prediction error of such models (Bourgin
et al., 2019).

One model that has proven useful in the study
of sequential decision making by people is
recurrent neural networks (RNNs). These neural
networkmodels have been used tomodel text and
language generation and are useful for sequential
prediction tasks that depend on a sequence of
inputs with temporal structure (Elman, 1990).
Energy-based recurrent models inspired by
Hopfield networks have been used to model
human decision (Glöckner et al., 2014). More
recently, several studies have shown that RNNs
achieve lower prediction error when compared
with normative models of predictive choice such
as reinforcement learning (Ger et al., 2024; Ji-An
et al., 2023; Song et al., 2021). Furthermore, the
superior predictive efficacy of recurrent networks
has been used to learn parameters in a reinforce-
ment learning task, resulting with an interpretable
model that achieves superior accuracy to compa-
rable models that are constructed based on
theoretical principles alone (Ger et al., 2024).
RNNs couldfind uses beyond sequential decision-
making and reinforcement learning. For example,
RNNscould be useful for the standard paradigmof
studying risky choices where blocks of decisions
between gambles are presented to participants:
The use of recurrent architectures could shed light
on howchoices people face early in the experiment
can influence later decision. Further study of
RNNs inpredictingandunderstandinghowpeople
handle sequential decisions over time is an
interesting direction for future research.
To summarize, there are many possible choices

of neural network architectures when fitting
behavioral data, and current research suggest
that networks with a few hundred of neurons that
can be trained in a reasonable amount of time
can already point out to interesting predictive
patters that are not captured by theoretical models.
One future direction could be to systematically
compare the performanceof different architectures
on current data sets of human risky choice pointing
to which architectures excel in such tasks.

Ethical Considerations

While the use of machine learning models and
generative AI has the potential to advance our
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7 VC dimension is a combinatorial parameter that
characterizes the sample complexity of learning problems
in the PAC learning model Vapnik (1999). For more details
please see Shalev-Shwartz and Ben-David (2014)
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scientific understanding, it can also be used to
develop methods to manipulate people to make
decisions that are not in their best interests
(Dezfouli et al., 2020). Researchers should be
aware of these dangers and takemeasures to avoid
the data they collect, models that they build, and
procedures for relating realistic stimuli to human
decisions being used in unethical ways. It should
be kept in mind that questions regarding decision
making can reveal information about thought
process of participants that they might not be
interested to share (Hilgard, 2021). Therefore,
efforts should be made to make people fully
aware about the information they are providing
while participating in the experiment. Researchers
should also be aware that even when they choose
not to make public a sensitive data set, the training
datamight be reconstructed frommachine learning
models (Carlini et al., 2021, 2022) and could lead
to privacy issues. Developing formal measures of
the potential risks of data sets documenting human
choice and method to mitigate these risks is
consequently of great interest. Researchers should
also consider potential biases in their data sets
that may fail to represent appropriately certain
groups. This could pose risks to the validity of
the conclusions drawn about human behavior.
Special care should be taken when using machine
learning models as decision-support tools as these
could lead todiscrimination. Formoreon this issue
and potential solutions see Kleinberg, Ludwig,
et al. (2018).

Conclusion

Machine learning offers many new opportu-
nities for the study of human decision making.
We have outlined some of the theoretical and
practical issues that arise when applying ML to
behavioral data sets of choice behavior, such as
the challenges of extracting explanations from
predictive models, employing active learning
methods, and choosing useful model architec-
tures. We further explored how findings from
theoretical machine learning could shed light on
some of these questions and considerations. We
believe there are more connections to be made
between theory development for human decision
making and computational learning theory,
creating significant opportunities for future
research. As we begin to work with larger and
larger data sets of human decisions, MLmethods
are going to become increasingly important as a

supplement to traditional theory-building, equip-
ping us with new tools to make sense of complex
behaviors thatmight otherwise be hard for human
scientists to discover alone.
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