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Capturing the complexity of human strategic 
decision-making with machine learning
 

Jian-Qiao Zhu    1  , Joshua C. Peterson    2, Benjamin Enke    3,4 & 
Thomas L. Griffiths    1,5

Strategic decision-making is a crucial component of human interaction. 
Here we conduct a large-scale study of strategic decision-making in the 
context of initial play in two-player matrix games, analysing over 90,000 
human decisions across more than 2,400 procedurally generated games 
that span a much wider space than previous datasets. We show that a deep 
neural network trained on this dataset predicts human choices with greater 
accuracy than leading theories of strategic behaviour, revealing systematic 
variation unexplained by existing models. By modifying this network, we 
develop an interpretable behavioural model that uncovers key insights: 
individuals’ abilities to respond optimally and reason about others’ actions 
are highly context dependent, influenced by the complexity of the game 
matrices. Our findings illustrate the potential of machine learning as a tool 
for generating new theoretical insights into complex human behaviours.

The classical model of strategic decisions—the Nash equilibrium—is 
based on two key assumptions: mutual consistency in beliefs about 
opponents’ strategies and mutual rationality in best responding to 
those beliefs. However, despite the prevalent use of Nash equilibria 
in analysing matrix games, research has shown that human players 
often violate both of these assumptions1–4. Consequently, the effective-
ness of these equilibria in explaining people’s strategic behaviours is 
limited1,5. This has prompted the development of behavioural game 
theory, which has identified various extensions and refinements that 
produce a closer match to human decisions6–9.

Despite a proliferation of behavioural models, evaluating the 
performance of these models has relied on relatively small datasets 
based on a select group of games, even when combined across differ-
ent datasets and papers8,10. As a result, it remains unclear how well the 
most popular models of strategic decision-making perform in general. 
For instance, even seemingly ‘simple’ types of strategic interaction can 
differ widely in the cognitive difficulty they pose for the actors, yet our 
understanding of how game complexity shapes behaviour is limited. To 
explore these questions, we conducted a large-scale study of strategic 
behaviour by densely sampling the enormous space of 2 × 2 game struc-
tures. We use the resulting dataset to assess the explanatory power of 
leading behavioural models, quantifying their prediction performance 

against a machine learning model trained on the same data. This strategy 
allows us to identify systematic variation that is not captured by existing 
models, leading us to develop a new interpretable model that captures 
human behaviour almost as well as the machine learning algorithm.

We procedurally generated a dataset of 2,416 matrix games involv-
ing monetary gains (Fig. 1b), substantially expanding the diversity 
of game scenarios studied in prior datasets (a 17-fold increase in the 
number of games tested relative to the largest meta-analysis in the 
literature10). To systematically sample game matrices, our game gen-
eration algorithm is based on the Robinson and Goforth topology for 
2 × 2 games, which is constructed using ordinal order graphs of pay-
offs11. Each player has 12 unique order graphs in their respective payoff 
matrices, representing the different ways to rank payoffs between their 
two strategies. Consequently, there are 12 × 12 = 144 possible game 
types, considering each player’s order graph independently. We popu-
lated all types with at least one pure-strategy Nash equilibrium with 
procedurally generated game matrices (see the Methods for details).  
To investigate human behaviour in these settings, we recruited 4,900 
participants via Prolific, each of whom was instructed to participate 
in 20 distinct games, sampled randomly without replacement from 
the pool of procedurally generated games. In total, 93,460 strategic 
decisions were recorded. No feedback was provided to participants 
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where xi,j represents the payoff for the row player when they choose 
row i and the column player chooses column j. In these equations, the 
key insights from the behavioural game theory literature appear in 
three different components. First, in assessing the expected utility 
from any given strategy, limited strategic sophistication (captured by 
k) affects a player’s expectation of their opponent’s play and, hence, 
expected utility. Second, the expectation of the opponent’s play also 
depends on subjective beliefs about the noisiness of the other  
player (ηsother). Following the literature, we initially assume that 
ηself = ηsother ≡ η , meaning that each player believes that their opponent 
is as noisy as they are1. Third, expected utility takes into account  
risk aversion, parameterized by constant absolute risk aversion, 
U(x) = (1 − e−αx)/α.

Results
We quantify the performance of each model by benchmarking it against 
two extremes. First, to set a lower performance bound, we used a ran-
dom model, which predicts choice probabilities uniformly at random. 
Second, to set an upper performance bound, we use a deep neural net-
work (multilayer perceptron, MLP) that uses the game matrix as input 
and targets empirical choice frequencies as its output. The performance 
of all other models was assessed based on their completeness, which 
measures how well a model approximates the neural network upper 
bound from a starting point of random play10,15. Specifically, the com-
pleteness of a model compares the performance improvement of that 
model over the random model (measured in both mean squared error 
and R2) with the corresponding improvement of the MLP model over the 
same baseline (see equation (B4) in the Supplementary Information for 
the detailed formulation). For example, a completeness score of 50% 
indicates that a model has achieved half of the improvement in predic-
tive accuracy that the MLP model demonstrates over the random model.

We found that allowing for limited strategic sophistication 
(level-k), QR noise and risk aversion has large effects on model fit 
(Fig. 2e). The standard Nash equilibrium achieves only 22% complete-
ness. A model that combines level-1 thinking, QR noise and risk aversion 
achieves 82% completeness. While these results illustrate that the suc-
cess of behavioural game theory also translates into the much larger 
space of games that we analysed, they also reveal substantial room 
for improvement of the structural decision-making model relative to 
the deep neural network. To close this gap, we considered what might 
be missing from existing theoretical accounts of strategic behaviour.

A fundamental characteristic of existing models in the behav-
ioural game theory literature is their context invariance: they are uni-
formly applied and estimated, with identical parameters, irrespective 
of the characteristics of the game. However, evidence from related 

between games, and the players were randomly rematched after each 
game. Thus, the observed behaviours can be interpreted as initial 
game play strategies.

We used the resulting dataset to evaluate various models of stra-
tegic decision-making with a train–validation split. We fit all models 
by minimizing the mean squared error between model predictions 
and empirical choice frequencies at the game level on the training set, 
and then assess their performance in a validation set (Supplementary 
Information section B).

The models are based on three key insights from the behavioural 
game theory literature, each representing a well-established aspect 
of human cognition in strategic interactions. First, the players may 
have limited strategic sophistication and compute the best-response 
function only a small number of times, as captured in level-k mod-
els and similar approaches12,13. The best-response function defines a 
player’s optimal strategy based on their beliefs about their opponents’ 
strategies in the game. Second, a player may exhibit noise in their 
decision-making and also take into account the noisiness of others’ 
behaviour, as in quantal-response (QR) equilibrium models1. Third, 
players may be risk averse, meaning they prefer less uncertainty8,14.

All models that we estimate are variants of our baseline behavioural 
model, which is a risk-averse level-k QR model (Fig. 2a)10. According to 
this model, a player forms beliefs about their opponent’s behaviour 
(albeit possibly imperfectly) and selects the risk-averse best response 
based on these beliefs (albeit possibly imperfectly). The QR equilibrium 
model is not nested within the quantal level-k framework, as taking 
the limit as k → ∞ does not necessarily lead to a QR equilibrium. Two 
interrelated equations characterize game play under these assump-
tions. The first equation describes how expected utility translates into 
behaviour, and the second describes the expected utility from any given 
strategy. When the row player in a matrix game has strategies A and B 
available and the column player decides between C and D (Fig. 1a), the 
QR function asserts that the row player’s probability of choosing A is an 
increasing function of the difference in expected utility (EU) between 
A and B, where the inverse of ηself governs the player’s noisiness:

p(A) = 1
1 + e−ηself[EU(A)−EU(B)]

. (1)

The expected utility of any given strategy, in turn, is given by comput-
ing the utility of the payoffs (x), weighted by the row player’s subjective 
belief, ps, about whether the column player plays C or D:

EU(A) = ps (C|k,ηsother)U(xA,C) + p
s (D|k,ηsother)U(xA,D), (2)

A new game has been created, and you are paired with a di
erent
player.

Please choose a row:
Choice A Choice B

Other's
choice C

Other's
choice D

Your choice A

Your choice B

17|20 30|7

34|2 15|2

a b

Assurance
Safecoord
Peace
Concord
Staghunt
Harmony
Leader
Deadlock
Chicken
Compromise
Hero
Dilemma

Fig. 1 | Matrix games. a, An example game interface presented to participants, 
who acted as the row player in each 2 × 2 game. The blue numbers represent 
the payoffs for the row player, who chooses between strategies A and B, while 
the red numbers represent the payoffs for the column player, who chooses 
between strategies C and D. b, Visualization of game space. Each game is uniquely 
represented by an eight-integer vector, corresponding to the payoffs to the 

two players under different configurations of choices. We used t-distributed 
stochastic neighbour embeddings26 to visualize the spatial relationship between 
games in a 2D plot, using the Euclidean distance between the embeddings of our 
best-performing neural network model. Points represent individual games. The 
colours represent the game topology specific to the row player following ref. 11.
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decision-making domains, such as choice between risky lotteries16,17, 
suggests that the parameters of behavioural models can be highly 
context sensitive, for example, because the complexity or cognitive dif-
ficulty of decisions varies across problems. Here, ‘context’ specifically 
refers to the configuration of the payoff matrix, meaning that people’s 
behaviour may vary in response to different game set-ups. Each con-
figuration serves as its own context, which allows context-dependent 
models to capture how strategic behaviour adapts to the particular 
game being played. The deep neural network model represents an 
extreme case of potential context dependence, as it is capable of form-
ing its predictions based on the specific characteristics of each game. 
Using neural networks to capture context dependence has been suc-
cessful in various domains of human behaviour8,16,18–21. Yet while our 
deep neural network model achieves high prediction accuracy, it is less 
useful for understanding human strategic decision-making because 
it is an uninterpretable ‘black box’, lacking the instructive format of 
structural decision-making models.

To build a bridge between these two approaches, we progressively 
introduced context dependence into the structural decision-making 
models, by systematically substituting the structural parameters of 
behavioural models with a neural network that is responsive to 

game-specific features. We focus on three key behavioural primitives: 
(1) the level of strategic sophistication (that is, k), (2) the player’s level 
of noisiness (that is, ηself; neural QR model) and (3) the player’s beliefs 
regarding the noisiness of others (that is, ηsother; neural belief noise 
model). These behavioural primitives, especially when combined 
together, form the basis for a wide spectrum of behavioural models in 
the literature1,4,12,13. We allowed each of these structural parameters to 
be endogenously determined by the game matrices through a neural 
network, thus introducing context dependence into the structural 
decision-making models in a disciplined and interpretable manner. To 
capture the context dependence of k using neural networks, we let the 
neural network model the distribution of k: p(k). As a result, the stra-
tegic choice predicted by this model can be interpreted as a mixture 
of players operating at different levels of k (Supplementary Information 
section B).

As an example, consider the level-k neural QR model (Fig. 2c), in 
which the player’s noisiness was predicted by a neural network. In this 
approach, an MLP was used to model the function ηself = fMLP(game 
matrix), allowing the ηself parameter to vary across games. Once trained, 
the MLP can predict ηself for any given game matrix. By combining  
the strategic sophistication level k with the MLP-predicted ηself, the 
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Fig. 2 | Model comparisons. a, The context-invariant level-k QR model involves 
three parameters that do not vary across games: strategic sophistication (that is, 
k), the players’ noisiness (that is, ηself) and risk aversion. b, A MLP model directly 
uses the game matrix as input to estimate choice probabilities, without imposing 
any specific game-theoretic decision-making structure. c, The level-k neural QR 
model is a context-dependent model allowing the ηself parameter to vary across 
games. It uses an MLP model, which uses the game matrix as input to estimate 
game-specific ηself. d, The level-k neural QR and neural belief noise model extends 
the model in c by further learning the game-specific ηsother through two MLP 

models, each of which takes the game matrix as input. e, Context-dependent 
models, incorporating at least one neural network component that allows some 
or all model parameters to vary across games, outperform context-invariant 
models in terms of completeness. Higher completeness indicates greater 
predictive accuracy for human behaviours, with 100% completeness matching 
the predictive accuracy of the MLP model. All reported results were based on 
10-fold cross-validation (see Supplementary Table 2 for details). Our focus was 
on the heterogeneity across games rather than the heterogeneity across 
participants.
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level-k QR function iteratively applies the QR function k times to pro-
duce the probability of the row player choosing row A for a given game 
matrix. Similarly, for all other neurally augmented behavioural models, 
the neural networks effectively learn a function that maps the game 
matrix to the parameters in the original behavioural model. Overall, 
the procedure of augmenting behavioural models with neural net-
works intuitively captures the possibility that players’ level of strategic 
sophistication or their noisiness is not fixed but, instead, depends on 
features of the game.

As illustrated in Fig. 2e, integrating neural networks (that is, 
MLPs) into the level-k QR model to account for context dependence 
greatly enhances model completeness. When neural networks 
replaced all three structural parameters, model completeness 
reached 97%. The second-best model, achieving a completeness of 
96%, maintained strategic sophistication at a fixed level of k = 2, 
yet allows for context dependence in ηself and ηsother. This context 
dependence (that is, game-specific noisiness) suggests an important 

role for decision-making difficulty—in some games, it is considerably 
easier to identify one’s best response than in others, even fixing a 
given level of strategic sophistication. Moreover, by comparing mod-
els that vary solely in ηself or ηsother across different games (Supplemen-
tary Table 2), we found that variations or context dependence in ηself 
play a more important role. Specifically, ηself has a mean value of 9.28 
(95% confidence interval 9.14–9.42), whereas ηsother has a mean value 
of 1.09 (95% confidence interval 1.03–1.15). This finding suggests that 
context dependence has a greater impact on individuals’ ability to 
optimize their own responses than on their ability to infer the likely 
actions of others.

To build intuition for why context-dependent noisiness has large 
effects on model completeness, Fig. 3b shows the game-level link 
between the share of subjects choosing strategy A and the difference 
in expected utility between strategies A and B, as estimated from the 
level-2 neural QR model. We split the sample by the median estimated 
noisiness (ηself). Here, the noisiness was directly estimated using the 
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Fig. 3 | Developing an interpretable complexity index for strategic games.  
a, To construct an index of game complexity, we use LASSO regressions to 
learn game features that correlate with the game-specific ηself parameter that is 
estimated by the MLP in the level-2 neural QR and neural belief noise model.  
b, The psychometric functions illustrate the relationship between the expected 
utility differences of two strategies and the proportion of choices for strategy A. 
Expected utility was calculated under the assumption of a level-1 player.  
Red (blue) dots represent high-complexity (low-complexity) games, determined 
by a median split on the complexity index. Error bars represent the s.e.m.  
c, The same psychometric function and effect of complexity was found in the 

follow-up experiment. Error bars represent the s.e.m. d, The complexity index 
shows a statistically significant correlation with RTs in the games of the main 
experiment. We used Pearson’s correlation with two-sided significance tests to 
assess the linear relationship between game complexity index and RTs r = 0.21, 
P < 0.01. e, The complexity index generalized to the follow-up experiment and 
demonstrated statistically significant correlations with both RTs (Pearson’s 
r = 0.23, P < 0.01) and cognitive uncertainty ratings (Pearson’s r = 0.24, P < 0.01). 
Pearson’s correlation was used with two-sided P values; no correction for 
multiple comparisons was applied.
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complexity index (hence the interchangeable use of ‘complexity index’ 
and ‘noisiness’ in Fig. 3b), which we will develop later. We see a strong 
attenuation pattern: for games with below-median noisiness, the link 
between strategy choice frequencies and expected utility estimates 
is considerably more compressed. Our level-2 neural QR model, a 
context-dependent model, achieves higher completeness both because 
it learns in which types of games players are more likely to best respond 
and because it learns in which types of games players are more likely 
to identify the best response of their opponent (given the presumed 
level of strategic sophistication, k).

The high performance of our context-dependent models indicates 
that both the ability of players to optimally respond to their beliefs and 
their capacity to reason about others’ behaviours are contingent on 
the specific game being played. We attribute this sensitivity to game 
complexity, by which we mean the cognitive difficulty of (1) forming 
beliefs about other players’ strategies and (2) optimally responding 
to these beliefs. To quantitatively define and validate a metric of game 
complexity, we first developed a composite index of game complexity 
and then validated it by showing correlations with independent mark-
ers of complexity in a preregistered second experiment.

We leveraged our unusually large and diverse set of games to 
extract some of the specific game features that drive complexity and 
aggregated them into a sparse and interpretable index of game com-
plexity. To this effect, we analysed the predicted ηself values from the 
context-dependent level-2 QR model (Fig. 3a, the level-2 neural QR + 
neural belief noise model) and conducted a least absolute shrinkage and 
selection operator (LASSO) regression on a large set of structural game 
features (Supplementary Table 4). This analysis identified a concise 
set of influential game features. Some features are prominent in the 
literature, such as the number of steps of iterative reasoning required 
for equilibrium choices. Other features are more novel, including (1) a 
measure of the cognitive difficulty of navigating trade-offs across differ-
ent strategies, akin to work on dissimilarity and trade-off complexity in 
the literature on lottery choice17,22; (2) the variance and scale of payouts16; 
and (3) the inequality and asymmetry in payouts between players23,24.

We collapsed these interpretable game features into a composite 
index of complexity (Supplementary Information section C). This 
index can be structurally interpreted as capturing the magnitude of the 
negated ηself predicted by game features. Because this index is defined 
on the basis of objective game features, it can be readily computed by 
other researchers in any standard dataset.

A first piece of evidence that our complexity index indeed captures 
the difficulty of strategic decision-making is that, in our main experi-
ment, the index showed a positive correlation with response times (RTs; 
Pearson’s r = 0.21, P < 0.01, Fig. 3d), indicating that individuals tend to 
spend more time thinking in games that we classify as more complex.

To reinforce and broaden these within-sample correlations and our 
interpretation of the index, we conducted a preregistered follow-up 
experiment testing a new set of 500 games on a new cohort of partici-
pants. This experiment adhered closely to the procedure of the main 
experiment, with the sole modification being that, after each game, 
participants were required to report their cognitive uncertainty (in 
percentage terms) about whether the strategy they selected is actually 
their best decision25. The results confirmed that the index robustly 
predicts out-of-sample behavioural outcomes. As shown in Fig. 3e, we 
replicated the positive correlation between RTs and the complexity 
index (Pearson’s r = 0.23, P < 0.01). In addition, we observed a posi-
tive correlation between cognitive uncertainty and the complexity 
index (Pearson’s r = 0.24, P < 0.01), suggesting that participants tend 
to exhibit higher cognitive uncertainty in their strategic choices when 
faced with more complex games. Finally, in this follow-up experiment, 
we also studied the ability of our complexity index to predict behav-
ioural attenuation in strategic choice. Figure 3c shows that the link 
between strategy choice frequencies and estimated expected util-
ity differences is again considerably more compressed in the more 

complex problems. These findings confirm that our complexity index 
can generalize to out-of-sample strategic decisions.

Discussion
Large-scale experiments and machine learning techniques have greatly 
facilitated our exploration of the vast space of cognitive mechanisms 
underlying strategic choices. Our findings indicate that both a player’s 
own noisiness in responding to an opponent’s behaviour and their beliefs 
about the opponent’s noisiness are critical in determining deviations 
from the rational Nash equilibrium, RTs and uncertainty in strategic deci-
sions. Moreover, allowing the degrees of noisiness to vary across differ-
ent games (that is, context-dependent model parameters) improves the 
model’s predictive accuracy. To further understand the game features 
that contribute to this context dependence, we developed a complex-
ity index that quantifies a player’s noisiness. This index is interpretable 
and readily generalizable to other matrix games, as it is based solely on 
features derived from the game matrix. The follow-up experiment con-
firmed that the complexity index effectively captures various aspects of 
human behaviour in matrix games with differing levels of complexity.

A caveat to our work is that real-life strategic interactions are often 
less easily quantified than those analysed in the laboratory, making 
game matrices an incomplete representation of the full complexity of 
human strategic decision-making. In real-world scenarios, outcomes, 
opponents’ intentions and strategies can all be ambiguous. Neural 
network models, particularly those capable of processing visual or 
natural language data, offer promising avenues for modelling strategic 
behaviour in more complex, real-life situations that may deviate from 
the structure of matrix games.

Overall, the key psychological insight from our study is that human 
strategic behaviours—including strategic choices, the time spent and 
the uncertainty of making those choices—can be effectively captured by 
a noisy best-response model. In particular, people’s ability to identify a 
best response is heavily influenced by the complexity of the game and 
that this complexity is quantifiable. The key factors determining the 
complexity of the game, and thus the noisiness, include the efficiency 
feature (that is, Nash equilibrium payoff dominance) and the cognitive 
difficulty involved in identifying the best-response strategy (that is, 
excess dissimilarity and levels of iterative rationality). These results 
illustrate the promise of large-scale experiments and machine learning 
methods in furthering our understanding of strategic decision-making, 
in particular given the emerging body of theoretical work on complexity  
in behavioural game theory.

Methods
Main experiment
Game generation algorithm. The games2p2k dataset comprises 2,416 
instances of 2 × 2 normal-form games and a total of 93,460 strategic 
choices made by 4,673 participants. Each game is uniquely identified 
by its payoff matrix, an eight-element vector encapsulating all payoff 
details for both row and column players. All payoffs are represented 
as integers and are restricted to a range of 1–50. Consequently, the set 
of all possible 2 × 2 games encompasses 508 games before considering 
permutations of game matrices.

To generate games from this space, we used a random generation 
process to create eight-item payoff matrices, where each item repre-
sents a random draw from a two-tiered uniform distribution U[1, u] 
where u ~ U[1, 50] (the tilde indicates that u is drawn from the uniform 
distribution). Next, we excluded games that lacked pure-strategy Nash 
equilibria and categorized each remaining game using Robinson and 
Goforth’s topology for 2 × 2 games11. This process results in a diverse set 
of 142 distinct game types. Given the prevalence of dominance games, 
which constituted 87.5% of the game types, we selectively reduced their 
representation in our dataset. Specifically, we generated 3 instances for 
each double-dominance game, 8 instances for each single-dominance 
game and 22 instances for each non-dominance game, culminating in 

http://www.nature.com/nathumbehav


Nature Human Behaviour

Article https://doi.org/10.1038/s41562-025-02230-5

a comprehensive collection of 1,208 games. Given that each game is 
played by both the row and column players, our dataset comprises a 
total of 2,416 (that is, 1,208 × 2) game instances.

Participants. We recruited a total of 4,900 participants via the Prolific 
Academic platform, out of which 4,673 individuals (1,942 males, 1,782 
females and 949 who opted not to disclose their gender) successfully 
completed the 10-min experiment. These participants ranged in age from 
18 to 86 years, with a median age of 37. Participants were required to be 
from the USA and have completed at least 100 submissions with a 95% 
acceptance rate or higher on the Prolific Academic platform. Participants 
were guaranteed a base monetary compensation of US$2.00 (hourly rate 
of US$12.00), with the possibility of an additional bonus up to US$0.50 
contingent on the result of a randomly selected game (1 point equals 
US$0.01). The experimental sessions were carried out in December 
2023. Informed consent was obtained from all participants (Princeton 
University institutional review board (IRB) number 10859: ‘Computa-
tional Cognitive Science’, and Harvard University IRB number 16-1753).

Procedure. The experiment was programmed using Dallinger 9.11.0. 
Before the beginning of the main experiment, participants were pro-
vided with instructions and an example of a normal-form game matrix. 
To ensure comprehensive understanding of the game representa-
tion, participants were required to correctly answer a preexperiment 
multiple-choice quiz. After this, participants were presented with a 
sequence of 20 one-shot games in normal form. All game presenta-
tions were adapted to a row player perspective, thereby making all 
participants choose between row A and row B, while the specifics of 
the game and the role they assumed were recorded in the background. 
Participants played a game only once. As the primary objective of our 
task was to observe choices in one-shot games, no practice or coaching 
period was provided.

To mitigate learning effects and preclude reputation building, 
each trial involved a different game and a new opponent for every par-
ticipant. That is, participants were anonymously and randomly paired 
for each game. Feedback pertaining to a participant’s performance in 
a specific game was withheld. The only occasion where feedback was 
provided occurred after completion of the entire experimental ses-
sion, indicating the bonus earned by the participant. The sequence 
in which the games were presented was randomly varied across par-
ticipants. Moreover, for every game, the rows and the columns of the 
payoff matrix have equal chances being swapped, resulting in a total 
of four possible permutations for a game. The bonus was determined 
by randomly selecting one game played by the participant and their 
corresponding opponent in that game.

Follow-up experiment
This experiment was preregistered at https://osf.io/xrvaw/.

Games. We used the identical game generation algorithm used in 
the main experiment to create a set of 500 new normal-form games, 
maintaining similar proportions of dominance games as observed in 
the main experiment.

Participants. We recruited another 1,013 participants from the Prolific 
Academic platform, of which 1,008 (346 males, 416 females and 246 
who opted not to disclose their gender) successfully completed the 
10-min experiment. Participant ages ranged from 18 to 88 years, with 
a median age of 35. The same filter used in the main experiment was 
applied here: participants were required to be from the USA and to 
have completed at least 100 submissions with a 95% acceptance rate 
or higher. As in the main experiment, participants received a base com-
pensation of US$2.00 (hourly rate of US$12.00), with the possibility of 
earning a bonus of up to US$0.50 from a randomly selected game. The 
experimental sessions were conducted in April 2024. Informed consent 

was obtained from all participants (Princeton University IRB number 
10859: ‘Computational Cognitive Science’, and Harvard University IRB 
number 16-1753).

Procedure. The follow-up experiment replicated the exact procedure 
of the original study, with the sole modification that, after participants 
made a strategic choice for a game, they were presented with a second-
ary question: ‘How certain are you that choosing [X] is actually your best 
decision?’ where X denotes the selected option. Note that this query 
remained concealed until after a choice had been made. Participants 
were then required to express their confidence in their decision by 
adjusting a slider ranging from 0% (least confident) to 100% (most con-
fident). The slider’s thumb was hidden until the participant interacted 
with it by clicking on the slider bar.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The datasets generated and/or analysed are available at https://osf.
io/xrvaw.

Code availability
The code used to generate the results is available at https://osf.io/xrvaw.
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Data collection Experimental tasks were programmed using Dallinger 9.11.0.

Data analysis Data analyses were conducted in Python 3.11.5 using the following packages: JAX 0.4.24, NumPy 1.24.3, Optax 0.1.9, pandas 1.5.3, and SciPy 
1.11.1.
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Reporting on sex and gender In the main experiment, we recruited 4,900 participants via the Prolific Academic platform. Of these, 4,673 participants 
successfully completed the 10-minute task, including 1,942 males, 1,782 females, and 949 individuals who chose not to 
disclose their gender. 
In a follow-up experiment, an additional 1,013 participants were recruited through the same platform, with 1,008 completing 
the task (346 males, 416 females, and 246 who did not disclose their gender). 
Gender was self-reported via Prolific and was not linked to individual-level behavioral data. Accordingly, no sex- or gender-
based analyses were performed.

Reporting on race, ethnicity, or 
other socially relevant 
groupings

Race, ethnicity, and other socially relevant groupings were not analyzed in this study.

Population characteristics Participants in the main experiment ranged in age from 18 to 86 years (median age = 37), while those in the follow-up 
experiment ranged from 18 to 88 years (median age = 35).

Recruitment All participants were recruited via the Prolific Academic platform. Eligibility criteria required participants to be located in the 
United States and to have completed at least 100 prior studies on the platform with a minimum approval rate of 95%.

Ethics oversight Princeton University IRB number 10859: “Computational Cognitive Science” and Harvard University IRB number 16-1753

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Behavioural & social sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description Participants were instructed to play a series of economic games and to report their strategic choices, response times, and confidence 
ratings for each choice.

Research sample Representative samples from the Prolific Academic platform.

Sampling strategy Each participant completed a sequence of 20 games, randomly drawn from a pool of procedurally generated games.

Data collection Behavioral data were collected online through participants’ web browsers.

Timing The main experiment was conducted in December 2023, while the follow-up experiment was conducted in April 2024.

Data exclusions Participants with incomplete data were excluded from all subsequent analyses. Exclusion criterion for the follow-up experiment was 
preregistered at https://osf.io/xrvaw/.

Non-participation A total of 227 participants dropped out or failed to complete the main experiment, while 5 participants did not complete the follow-
up experiment.

Randomization Participants were not assigned to experimental groups.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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Novel plant genotypes Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches, 
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the 
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe 
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor 
was applied.

Seed stocks Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If 
plant specimens were collected from the field, describe the collection location, date and sampling procedures.
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off-target gene editing) were examined.
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