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ERRATUM: MULTITASKING CAPACITY: HARDNESS RESULTS
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Abstract. We correct an error in the appendix of [N. Alon et al., SIAM J. Discrete Math., 34
(2020), pp. 885--903] and prove that it is NP-hard to approximate the size of a maximum induced
matching of a bipartite graph within any constant factor.
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1. Result. Recall the following definitions and results from [1].

Definition 2.3. For a given graph G, a connected matching in G is a matching
M such that every two edges of M are connected by an edge of G. Let \nu c(G) denote
the size of the maximum cardinality of a connected matching in G.

Theorem 3.1. Given a bipartite graph G with n vertices on each side, it is NP-
hard to approximate \nu c(G) within a factor of n1 - \varepsilon for any \varepsilon > 0 under a randomized
polynomial time reduction.

Definition 3.2. Fix n \in N . A bipartite graph HCn = (A = \{ u1, . . . , un\} ,B =
\{ v1, . . . , vn\} ,EH) is said to be a bipartite half-cover of Kn if (1) for every \{ i, j\} \subseteq [n],
(ui, vj)\in EH or (uj , vi)\in EH , and (2) for every i\in [n], (ui, vi) /\in EH .

Claim 3.3. There is an O(n)-time randomized algorithm that on input n \in N
outputs a graph HCn, which is a bipartite half-cover of Kn such that \nu c(HCn) \leq 
O(logn) with probability 1 - o(1).

As remarked in [1] a deterministic polynomial time construction of such graphs
would imply that the hardness result in Theorem 3.1 holds under a deterministic
reduction (as opposed to the randomized reduction stated). Here we show how to
modify the proof of Theorem 3.1 and get that a weaker hardness result holds under
deterministic reduction. In particular, this gives that the problem of computing \nu c(G)
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for a given input bipartite graph G is APX-hard (and hence also NP-hard). This is
stated in the following result.

Theorem 1.1. Given a bipartite graph G with n vertices on each side, the problem
of computing \nu c(G) is APX-hard.

2. Proof. We need the fact that it is NP-hard to approximate the clique number
of a graph even when this number is linear. This is well known; in particular we state
the following result of Hastad [2] (see the proof of Theorem 8.1 there).

Theorem 2.1 (see [2]). Given an n-vertex graph G, it is NP-hard to distinguish
between the case that the size w(G) of the maximum clique of G is at least n

4 (1 - \varepsilon )
and the case that w(G) is at most n

8 (1 + \varepsilon ).

The main tool in the proof is the following (weak) derandomized version of Claim
3.3 above.

Theorem 2.2. There is a deterministic polynomial time algorithm that on input
n \in N (of the form s2

k

for some integers s, k) outputs a graph HCn, which is a
bipartite half-cover of Kn such that

\nu c(HCn)\leq 
n

e\Omega (
\surd 
logn)

.

The proof of this theorem is based on two lemmas. The first is an efficient
deterministic algorithm for constructing an initial relatively small half-cover, and
the second is an efficient procedure for squaring a half-cover. The desired graph is
obtained from the small initial graph by repeated squaring.

Lemma 2.3. There is a deterministic algorithm that on input n \in N outputs, in
time polynomial in n, a graph H, which is a bipartite half-cover of Km for m= e

\surd 
logn

such that

\nu c(H)\leq O(logm) =O(
\sqrt{} 
logn).

Proof (sketch). Apply the method of conditional expectations [3] to the proof of
Claim 3.3 given in [1]. The running time is mO(logm) = nO(1).

Lemma 2.4. There is a deterministic polynomial time algorithm which, given as
an input a bipartite half-cover F of Kp with \nu c(F )\leq \varepsilon p, outputs a bipartite half-cover
F \prime of Kp2 satisfying \nu c(F

\prime )\leq 4\varepsilon p2.

Proof. Let the vertex classes of F be A= \{ a1, a2, . . . , ap\} and B = \{ b1, b2, . . . , bp\} ,
where for every i aibi is not an edge. We construct the graph F \prime by blowing up H as
follows. Replace each vertex ai by a set Ui of p vertices and each vertex bj by a set
Vj of p vertices, where all these sets are pairwise disjoint. The vertex classes of F \prime 

are U = \cup iUi and V = \cup jVj . For each 1\leq i\leq p, the bipartite graph between Ui and
Vi is a copy of F . For every 1 \leq i \not = j \leq p, the bipartite graph between Ui and Vj is
complete if aibj is an edge of F ; otherwise it is edgeless.

It is easy to see that the constructed graph F \prime is a bipartite half-cover of Kp2 . In
order to complete the proof we show that

\nu c(F
\prime )\leq 4\varepsilon p2.(1)

Indeed, let M be a maximum connected matching in F \prime . Construct an auxiliary
graph F \prime \prime on the classes of vertices A,B by letting aibj be an edge if and only if i \not = j
and there is at least one edge of M connecting a vertex of Ui and a vertex of Vj . Any

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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matching in F \prime \prime can be partitioned into three disjoint matchings, where none of these
three matchings saturates both ai and bi.

Note that each of these three matchings in F \prime \prime must be a connected matching in
F , and hence its size is at most \varepsilon p. This shows that the size of the maximum matching
in F \prime \prime is at most 3\varepsilon p. By K\"onig's Theorem this means that F \prime \prime has a vertex cover of
size at most 3\varepsilon p, implying that all edges of M that do not connect a vertex of Ui with
one of Vi (for some i, with the same index i) are covered by the vertices in at most
3\varepsilon p of the blocks Ui, Vj . This gives a total of at most 3\varepsilon p2 edges of M . In addition,
for each fixed i the connected matching M can contain at most \varepsilon p edges connecting a
vertex in Ui and one in Vi, adding at most \varepsilon p2 additional edges and establishing (1).
This completes the proof of the lemma.

Starting with the graph H1 =H in Lemma 2.3 and applying Lemma 2.4 repeat-
edly k times, where 2k =

\surd 
logn we get that there is a deterministic algorithm that

on input n \in N (of the form s2
k

for some integers s, k) outputs, in time polynomial
in n, a graph HC, which is a bipartite half-cover of Kn such that

\nu c(HC)\leq 4k
O(

\surd 
logn)

e
\surd 
logn

n=
n

e\Omega (
\surd 
logn)

.

This establishes the statement of Theorem 2.2.
The assertion of Theorem 1.1 follows from Theorems 2.2 and 2.1 by following the

argument given in [1] for proving Theorem 3.1, based on Claim 3.4 in [1]. We omit
the details.

Acknowledgment. We thank Cyriac Antony and Daniel Paulusma for pointing
out a flaw in a previous proof we suggested (Theorem A.1 in [1]) for a weaker version
of Theorem 1.1. The result here is stronger as it shows that the problem of computing
\nu c(G) for a given bipartite input graph G is not only NP-hard but is also APX-hard.
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