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Abstract

How does the visual system recognize images of a novel object after a single observation

despite possible variations in the viewpoint of that object relative to the observer? One possibility

is comparing the image with a prototype for invariance over a relevant transformation set (e.g.,

translations and dilations). However, invariance over rotations (i.e., orientation invariance) has

proven difficult to analyze, because it applies to some objects but not others. We propose that the

invariant transformations of an object are learned by incorporating prior expectations with real-

world evidence. We test this proposal by developing an ideal learner model for learning invariance

that predicts better learning of orientation dependence when prior expectations about orientation

are weak. This prediction was supported in two behavioral experiments, where participants learned

the orientation dependence of novel images using feedback from solving arithmetic problems.

Keywords: Representation; Invariance; Shape recognition; Bayesian modeling; Ideal learner

modeling; Object recognition

1. Introduction

How are people so successful at perceiving, reasoning, and acting given limited infor-

mation? Solving these problems successfully is generally attributed to people’s ability to

encode useful information from observations using representations. A representation is an

abstraction, “something that stands in place for something else” (Palmer, 1978, p. 282),

reflecting relevant structure in the world. For example, the sensory image of the arith-

metic symbol (“+”) may be represented as a plus sign with a perceived orientation of 0°
or as a multiplication sign with a perceived orientation of 45°. The images produced by
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addition and multiplication symbols can thus be perceived as upright or oblique. So,

given only an image consisting of two short line segments intersecting at roughly 90°, it
is ambiguous whether it should be represented as a plus sign or a multiplication sign.

This ambiguity highlights the “inverse problem” that underlies inferring representations

for images: Any retinal image is potentially consistent with an arbitrary number of

objects1 observed at different orientations. How does the mind infer which object from

which viewpoint produced a particular image?2

From a computational perspective, a solution to this inverse problem is to choose the

representation that is consistent with observations, (implicit or explicit) constraints, and/

or prior expectations (e.g., von Helmholtz, 1866/1962; Rumelhart & McClelland, 1986;

Tenenbaum, Kemp, Griffiths, & Goodman, 2011). If the mind knew a priori the set of

possible objects and the set of possible viewpoints from which each object could be

observed, solutions (i.e., recognizing an object in an image) would be relatively straight-

forward. For example, a Bayesian agent might choose the object from the set of objects

capable of producing the observed retinal image that maximizes the product of the proba-

bility of the object in a corresponding viewpoint producing the observed image and the

prior probability of the object in that viewpoint.

People do not know the set of objects they might observe a priori, however, and so

novel objects (and novel object representations) must be learned from experience. Con-

verging behavioral, neural, and developmental evidence suggests that people construct

novel representations from interacting with the world (e.g., Austerweil & Griffiths, 2013;

op de Beeck & Baker, 2010; Czerwinski, Lightfoot, & Shiffrin, 1992; Goldstone, Son, &

Byrge, 2011). Thus, a mechanism to construct representations must be included in expla-

nations of object recognition. Incorporating a mechanism to learn representations neces-

sarily complicates the computational problem in at least two ways. First, the mind must

decide whether an observation is a valid image of a pre-existing representation or requires

forming a new representation (i.e., whether it is a valid projection of a stored object rep-

resentation or not). Second, if a new representation is needed, which additional images

should be considered consistent with it?3

How does the mind learn which transformations are permissible for a novel object rep-

resentation (i.e., over which transformations is it invariant)? As depicted in Fig. 1, many

transformations do not change the identity of an object (e.g., translations and/or dilations

that simply change the position and/or size of the image). However, rotating the image of

some objects preserves its identity (e.g., “5”), but rotating the image of other objects

changes its identity (e.g., “+” and “9”) (Mach, 1886/1959; Palmer, 1989; Rock, 1973).

This is problematic because it makes it difficult to determine whether recognition of a

newly constructed object representation should be orientation-invariant (OI) or orienta-

tion-dependent (OD).

1.1. Orientation in object recognition

One cue the mind uses to determine whether an object representation should be orien-

tation-invariant versus orientation-dependent is the intrinsic axes (IA) of the object’s
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image (Wiser, 1981). Some images (e.g., “5” in Fig. 2A) have strong IA (Wiser, 1981)

because they are represented with respect to the same image-determined coordinate axes

(Palmer, 1983, 1989; Rock, 1973), regardless of their orientation with respect to the

retina or gravity. More precisely, the image-determined coordinate axes of an object is

the object’s reference frame in the image, which is a set of coordinate axes that define

the scale, location, and orientation of the object’s image within the retinal image. Images

with strong IA tend to be orientation-invariant—they are recognizable as instances of the

same object at any orientation. Note that the intrinsic axes and reference frame of an

object’s image are not part of the sensory input and must be inferred by the visual system

using cues, such as elongation and symmetry, to determine whether an image has strong

IAs and, if so, what the orientation of its reference frame is (Humphreys, 1983; Palmer,

1980, 1983, 1989; Quinlan & Humphreys, 1993; Sekuler & Swimmer, 2000; Wiser,

1981). Other images (e.g., the blob in Fig. 2B) have weak intrinsic axes (IAs)—the image

is consistent with multiple reference frames. The reference frame used for images with

weak IAs in a given situation depends on the gravitational axis and other contextual fac-

tors (Palmer, 1989; Rock, 1973). The mind therefore has weaker expectations about how

OI images with weak IAs will be represented and recognized than those with strong IAs.

Recognizing objects in images at different orientations depends on the intrinsic-axis

strength, where recognition is faster for images with strong IAs (Humphreys, 1983; Quin-

lan, 1988). Thus, when the mind constructs a representation for a novel image, one

source of information it uses to determine the set of invariant transformations is whether

the image has weak IAs or strong IAs, which is estimated from the properties of its

Object 1

Image0º
Image30º

Image300º

Image330º
...

Image30º

Image0º

Image330º

Image360º

...

Object 1

...

Object 2

Object N-1
Object N

O
rie

nt
at

io
n-

in
va

ria
nt

O
rie

nt
at

io
n-

de
pe

nd
en

t

Image Orientation
0 30 60 90 120 150 180 210 240 270 300 330

Pr
ob

ab
ili

ty
 o

f
R

ec
og

ni
zi

ng
 O

bj
ec

t
Obj 1 Obj 2 Obj 3 Obj 4 Obj 5 Obj 6 Obj 7 Obj 8 Obj 9 Obj 10 Obj 11 Obj 12

Pr
ob

ab
ili

ty
 o

f
R

ec
og

ni
zi

ng
 O

bj
ec

t

Image Orientation
0 30 60 90 120 150 180 210 240 270 300 330

Obj 1

(A)

(B)

Fig. 1. Idealizations of image orientation and invariance in object recognition. (A) The recognition of an

object is orientation-invariant when its probability is large across orientations and there are no other compet-

ing objects with the same image. (B) The recognition of an object is orientation-dependent when it has a

large probability of being recognized for a subset of possible image orientations.
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image. But this estimate is fallible and can conflict with observed information. Consider

the first time a child observes images of numbers. Based on elongation or symmetry cues,

she should have similar prior expectations for the images of “5” and “6” (both of which

are elongated, suggesting strong IAs). Because she only hears one label with the image

of the object “5” regardless of its orientation, her experience with the image and its rota-

tional variants is consistent with a single reference frame signaling OI. In contrast, she

hears different labels for the object “6” depending on whether the closed portion of the

image is nearer the bottom (“6”) or the top (“9”), consistent with “6” having two differ-

ent reference frames and OD. This analysis suggests people can learn OD for images with

strong IAs. Conversely, when the child first sees the image of a “G,” its lack of symmetry

or elongation suggests weak intrinsic axes and that the “G” should be OD. Because she

only hears one label with the object “G” regardless of its image’s orientation, she ulti-

mately learns that the object “G” is OI. How do people combine their prior expectations

about the object’s OI with the current evidence about that object being OD or OI?

1.2. How prior beliefs and evidence contribute to transformation invariance in object
recognition

Previous work has focused on cases in which prior expectations based on the image of

an object suggest recognition should be OD due to its weak IAs, but experience in an

5
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Fig. 2. The inverse problem of identifying appropriate reference frames. Any given retinal image could be

generated by multiple objects within multiple reference frames. (A) Objects that generate retinal images

whose reference frames are unambiguous are orientation-invariant. This is true of some previously encoun-

tered objects whose image is not the same as the image of other previously encountered objects (e.g., “5”)

and tends to be true of novel objects with strong intrinsic axes (e.g., the vertically elongated blob) (Wiser,

1981). (B) Objects that generate retinal images whose reference frames are ambiguous. This is true of previ-

ously encountered objects that have the same retinal image as another object at a different reference frame

(e.g., + vs. 9 or squares vs. diamonds) and tends to be true of novel objects with weak intrinsic axes (e.g.,

the three-lobed blob) (Wiser, 1981).
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experiment suggests it should be OI. For example, many researchers have explored how

OI develops by investigating how an object with initially OD recognition develops OI

when participants observe the object from several orientations (Jolicoeur, 1985; Tarr &

Pinker, 1989; Tarr, Williams, Hayward, & Gauthier, 1998). Neuroscientists have found

that orientation invariance develops when particular neural regions selectively activate to

different observed orientations of each novel object (Andersen, Vinberg, & Grill-Spector,

2009; Logothetis, Pauls, & Poggio, 1995). Thus, most modern theories of object recogni-

tion explain learned orientation invariance as interpolation between and extrapolation

from stored views of the object (e.g., B€ulthoff & Edelman, 1992; Riesenhuber & Poggio,

1999). This is a compelling explanation of how orientation invariance develops for a

novel object that is expected to be OD, but experience is consistent with it being OI. It

does not explain how orientation dependence might develop for the images of objects

with strong IAs, which are expected to be OI. So, this explanation might only be a partial

account of how OI and OD are learned in object recognition.3 How people learn when

the recognition of a novel object should be OD remains unknown.

This article contributes two main findings to the study of invariance in object recogni-

tion. First, we analyze how an ideal learner would learn whether recognition of a novel

object should be OI or OD. The ideal learner predicts that learning OI should be easy for

objects with images containing strong IAs and weak IAs, but that people should learn

OD more easily for images with weak IAs than images with strong IAs. Second, we find

empirical support for this prediction in two behavioral experiments, which provide the

first experimental demonstration that people can learn to recognize novel objects as OD

given images that only differ in their orientation.

2. Learning invariance: An ideal learner model

To determine how people might optimally infer the degree to which a given object

should be represented as OI, based on both prior expectations and experiences, we derive

an ideal learner model by formulating it as the solution to a computational-level problem4

(Marr, 1982). We simplify the problem as follows. We assume (a) that an ideal learner is

given images that only differ with respect to the transformation of interest (e.g., rotation),

(b) that the set of possible transformations is parameterizable (e.g., transforming an image

by a central rotation can be parameterized by a single number that specifies the size of

the angle through which the image is rotated about its center), and (c) that, for each

image, the ideal learner is given some noisy contextual information regarding the object

to which it corresponds (e.g., which arithmetic operation should be applied). The learner’s

goal is to infer a set of (one or more) object representations that correspond to the given

images and contextual information, where each object representation includes its canoni-

cal image (the image of the object from an ideal viewpoint; Palmer, Rosch, & Chase,

1981), its associated information (e.g., its function), and a probability distribution over

what transformations are permissible. For the following experiments, the “associated con-

textual information” for each novel object will be the arithmetic operator to which it
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corresponds. We chose to apply the model to arithmetic as a domain because solving

arithmetic problems is a non-trivial decision-making process in which the recognition of

some arithmetic operators is clearly OD (e.g., “+” vs. “9”), whereas the recognition of

others is clearly OI (e.g., “�”). In particular, we will examine how information learned

through solving addition and multiplication operators with novel operator images can

affect the degree to which the recognition of novel objects associated with those images

is OI or OD.

To complete the model, we need to specify the generative processes for how the envi-

ronment creates objects and contextual information associated with the object, and how

objects correspond to images. With knowledge of these generative processes, and after

observing a set of images and their contextual information, the ideal learner can invert

the process optimally using Bayes’ rule to infer object representations, where each object

is associated with a set of permissible transformations. We assume that the environment

is populated with objects according to a process satisfying two properties: the order in

which a learner observes the objects does not matter (i.e., they are exchangeable), and
that objects are present in the environment with probability proportional to how often

they have been observed previously (given that there is always some chance of encoun-

tering a novel object).

The Chinese Restaurant Process (CRP; Aldous, 1985) is a process satisfying these two

properties (Pitman, 1996, 2002) and is frequently used in ideal learner models (e.g., cate-

gorization and classical conditioning; Anderson, 1991; Gershman, Blei, & Niv, 2010).

The CRP sequentially assigns observations (images) to groups (object representations)

without knowing how many groups there are ahead of time. It proceeds as follows. The

first observation is given a new group. Successive observations are assigned to each pre-

existing group with probability mk

Nþa, where mk is the number of observations assigned to

group k, or they are assigned to a new group with probability a
Nþa, where parameter a

controls the expected number of groups and N is the number of observations. Models

using the CRP are Bayesian nonparametric models whose representations adapt to match

the complexity of the observed data (see Austerweil, Gershman, Tenenbaum, & Griffiths,

2015, for an introduction).

To develop the generative process further, we need to define an object representation.

We assume objects are encoded by a simple representation containing three components:

(a) its template or canonical image, (b) the contextual information associated with it, and

(c) a probability distribution over permissible transformations that defines the set of possi-

ble observable images of the object. Because we have restricted the problem to the case

where the observed images only differ according to the transformation of interest, all of

the objects have the same canonical image. We therefore do not include assumptions

about how images are split into subsets that all contain the canonical image as part of

our ideal learner model, although we note that this is an interesting direction for future

inquiry. In the present case of learning to discriminate OI and OD objects, we assume

that the input provided by observed image n is its perceived rotation rn (based on the reti-

nal image and contextual cues). The perceived rotation is generated from the distribution

over possible rotations for object n.
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What should be the distribution over possible rotations of an object? Based on prior

work, we know that people have prior expectations about how OI a novel object repre-

sentation should be based on its image: People expect objects with weak IAs to be OD

and those with strong IAs to be OI. We also know that OI representations can be learned

for novel objects whose recognition is initially OD. Thus, we use the following two-step

generative process to produce perceived rotations that satisfy these psychological con-

straints. The orientation of the object-centered reference frame is generated (zn), and then

the perceived orientation (rn) is a noisy copy of this orientation. The orientation of an

object’s reference frame is a previously observed orientation with probability proportional

to the number of times it has been observed and a new orientation with probability pro-

portional to the prior expectations associated with the object’s image (i.e., strong IAs or

weak IAs). Thus, as in the case of generating the identity of the object associated with an

image, the reference frame orientation of an image is generated by assigning image n to

group zn of object images that share the same reference orientation according to a CRP.

In this case “groups” are images of the object whose object-centered reference frame

shares the same orientation and each group k is associated with a continuous value (lk),
which encodes the true orientation of images associated with that group. The orientation

of group k, lk, is generated from a Normal distribution centered at the canonical orienta-

tion of the object (l0, assumed to be 0 degrees) with variance r2
SIA or r2

WIA depending

on whether the object has strong IAs (SIA) or weak IAs (WIAs), respectively. To capture

the expectation that the orientations of reference frames for objects with strong IAs are

the same, we assume that r2
SIA is small. Conversely, people have weak expectations as to

the orientations of reference frames for objects with weak IAs, and so we assume r2
WIA is

large. Thus, the assumed constraint (r2
WIA[r2

SIA) incorporates the psychological expec-

tation of intrinsic axis strength into the model. Given the reference frame orientation of

the object’s image, its perceived orientation is sampled from a Normal distribution cen-

tered at the reference frame orientation (l0, where k = zn) and with variance r2
x . We

assume that the variance in producing the perceived orientation of images, r2
x , is greater

than the variance in orientation of reference frames of images with strong IAs, r2
SIA (be-

cause reference frame orientation is inferred through image cues for images with strong

IAs), but less than the variance in orientation of reference frames for images with weak

IAs, r2
WIA (because reference frame orientation is not inferred through image cues for

images with weak IAs). Formally, these psychological factors impose the following con-

straint on the variances: r2
WIA[r2

x [r2
SIA.

The final component to be specified is the generative process for the contextual infor-

mation associated with each object representation. This process will differ depending on

the domain. In our experiments, the object of data point n, in = o, is associated with an

arithmetic operator /o that is either addition or multiplication and generated uniformly at

random. We assume that the arithmetic operator used by the participant for trial n, an, is
the operator associated with its object (i.e., /o) with probability 1 � k (and the alterna-

tive operator with probability k). The parameter k thus captures some sources of noise

for the operator used by the participant (e.g., improper retrieval). This completes the

specification of the generative process of our model. As a summary, Fig. 3 depicts the
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generative process as a graphical model and Eq. 1 specifies the precise functional form

for each component of the generative process

/~ �iid Ufþ;�g l~ �iid Nðl0;r2
SIA or r2

WIAÞ i~�CRPða0Þ
rnjzn ¼ k; lk;r

2
x �Nðlk;r2

xÞ znji1; . . .; in ¼ 0; z1; . . .; zn�1�CRPoða1Þ
anjin ¼ 0;/o�ð1� kÞIðan ¼ /oÞ þ kIðan 6¼ /oÞ

ð1Þ

where I(�) returns one when its argument is true and zero when it is false.

3. Simulations: Learning orientation invariance from prior expectations and
experience

The model infers the number of objects, the arithmetic operator assigned to each

object, and the possible orientations of images of each object from observing rotations

of novel images and associated arithmetic operations. In this simulation, we explore

model predictions varying prior expectations of whether the new object should be OI

based on its image structure (strong IAs vs. weak IAs) and whether the model’s expe-

rience with the image in different orientations is OI or OD (i.e., is the arithmetic

operator the same or different when the image is rotated?). Prior expectations were

Image n’s 
object identity

Represented rotation 
for image n’s object

Observed rotation 
for image n

Observed arithmetic 
operator for image n

Possible arithmetic 
operators

Possible 
rotations

Fig. 3. A graphical model representation of the model. Each node in the graph corresponds to a variable in

the model. A shaded node encodes that the corresponding variable is observed (unshaded are unobserved).

The arrows encode joint dependencies between the variables in the model and can be interpreted as parents

“producing” their children (e.g., the image’s identity generates its arithmetic operator). This is useful for

understanding the model as well as computing probabilities and performing inference. For example, the joint

probability of the entire model can be calculated by multiplying the probabilities of the values of nodes with-

out parents, then multiplying the probabilities of their children given their parents, and then so on until no

nodes have any children. The rectangle surrounding in, zn, an, and rn encodes that the variables (and the

incoming dependencies) are copied one for each index in the range, which is written in the bottom (in this

case the index is n, which ranges from 1 to N). Although Eq. 1 is a full specification of the model without

this figure, it serves as an aid for understanding how the variables in the model relate to one another.
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varied by changing the variance of the distribution generating possible rotations to

reflect whether the image has weak IAs (r2
WIA ¼ 10) or strong IAs (r2

SIA ¼ 0:2).
There were two properties of the evidence that we manipulated: the strength of the

evidence and whether it was consistent with OI or OD. Evidence strength was manip-

ulated by changing the number of images observed by the model (N = 2, 4, 16, and

32). Orientations of 0° and 45° were encoded as 0 and 1 and each observation of an

orientation was perturbed by normally distributed noise with data variance r2
x ¼ 0:4.5

Each orientation was given to both simulations an equal number of times (so each

was observed N/2 times). In OI simulations, the same operator was associated with

each orientation. In OD simulations, different operators were associated with each ori-

entation. This bimodal distribution for orientations was motivated by + and 9 as well

the Mach square/diamond (Mach, 1886/1959). For both OI and OD simulations, we

assumed the operator retrieval error rate was 10% (k = 0.1). We also assumed a form

of simplicity bias for the number of objects, so the model preferred fewer objects

when possible (a0 = 0.01). We assumed a relatively neutral prior for the number of

components to the distribution of permissible rotations (a1 = 1) and that the expected

orientation of the canonical image of an object was zero (l0 = 0). The discussed

model results—that OD is learned faster for weak IAs than for strong IAs—are robust

over reasonable changes to parameter values as long as the constraints over the vari-

ances are maintained, k is relatively small (smaller values improve performance and

produce smaller differences between strong IAs-OD and weak IAs-OD), a0 is small

(the model learns orientation dependence faster with smaller values and faster with

larger values), and a1 is close to 1 (the model learns orientation dependence slower

with smaller values and faster with larger values).

To elicit predictions from the model, we performed inference using Gibbs sampling

(Geman & Geman, 1984) with 30 chains, running each chain for 4,000 sweeps, using a

burn-in of 50 sweeps (discarding the first 50 sweeps), and performing thinning by only

using one out of every four sweeps. An image was considered OI on a given sweep if it

was only associated with a single operator (and OD otherwise). Accuracy was calculated

as the percentage of used sweeps where the inferred invariance of the image matched the

evidence (e.g., accuracy given OI evidence was the percentage of used sweeps where the

image was considered OI).

Fig. 4 plots the results of how an ideal observer would integrate prior expectations

and experience to learn orientation invariance. First, regardless of prior expectations,

the ideal observer quickly learns that object recognition of an image should be OI

given OI evidence. This is consistent with previous results showing that OI recognition

can be learned for objects with weak IAs images. Furthermore, it predicts that people

should learn OI in our task given little evidence regardless of the intrinsic axis strength.

Second, regardless of prior expectations, the ideal observer can learn that object recog-

nition of an image should be OD given OD evidence. Furthermore, it predicts that

learning OD should be faster for weak IAs images than strong IAs images, but in both

cases slower than learning OI. Next, we test these predictions in two behavioral experi-

ments.

J. L. Austerweil, T. L. Griffiths, S. E. Palmer / Cognitive Science (2016) 9



4. Experiment 1: Learning orientation (in)variance through feedback

In this experiment, we tested the model predictions by giving participants novel images

with either strong IAs or weak IAs (differing prior expectations) and evidence consistent

with object recognition being either OI or OD. To do so, we adapted an implicit method

developed by Austerweil, Friesen, and Griffiths (2011) in which the perceived orientation

and recognized object of an image are inferred indirectly through arithmetic problems

(see Fig. 5).

4.1. Methods

4.1.1. Participants
Sixty-four participants were recruited through Amazon Mechanical Turk and received

a small monetary reward. Nine were excluded for having a training accuracy lower than

75% at the end of the experiment, leaving 55 participants for analysis.

4.1.2. Stimuli and procedure
There were four operator images, two with strong IAs and two with weak IAs (see

Fig. 5A,B). They were divided into two sets (between-subjects), each containing one
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Fig. 4. Accuracy results from the model simulations for learning orientation invariance (OI—black lines) or

orientation dependence (OD—gray lines) varying the strength of the intrinsic axis (strong IAs or weak IAs—
solid and dashed, respectively). The simulations predict that participants should learn orientation invariance

quickly regardless of the strength of the images’ intrinsic axis, but weak IAs should be learned faster than

strong IAs for OD objects.
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strong IA image and one weak IA image. Images were presented in two orientations

(upright and oblique). The operators assigned to one image were OD (i.e., addition

was correct for one orientation and multiplication was correct for the other

orientation). The operator associated with the other image was OI (i.e., addition or

multiplication was correct regardless of orientation). The assignment of operation,

images, and intrinsic-axis strength of the OD image were counterbalanced across par-

ticipants.

Participants were told that they would be given single-digit addition or multiplication

problems from an alien planet. They were told the number of symbols representing each

operation, that multiple symbols could represent an operation (e.g., 9 and � both repre-

sent multiplication), and that the same symbol in different orientations could represent

different operations (using + and 9 as an analogy). Trials alternated between training

(16 trials) and testing blocks (32 trials). During training, participants were shown an

arithmetic problem with a potential answer (Fig. 5C,D), guessed whether the answer was

true or false, and were given feedback about whether they were correct (a “U”) or not

(an “✕”). Each digit was randomly sampled from {1,2,3,4,5,7,8}. Each operator image

was used eight times per training block (half upright and half oblique), and the provided

answer was correct on half of those trials. When the provided answer was incorrect, the

other operator was always the correct answer. The test trials were the same as training tri-

als except that participants provided answers to the arithmetic problems and were not

given feedback (Fig. 5E). During testing, each image was presented sixteen times (eight

at each orientation). Within-block trials were randomly ordered. Participants alternated

blocks until achieving 90% accuracy on a training block or having completed four testing

blocks.

(A) (C) (D) (E)

(B)

Fig. 5. Experimental stimuli and design. (A) Operator images with strong IAs used in the experiments. (B)

Operator images with weak IAs used in the experiments. (C) A weak IAs-OD training trial in which the per-

ceived operator orientation is associated with multiplication and the participant incorrectly chooses “True”

given the addition solution. (D) A weak IAs-OD training trial in which the perceived operator orientation is

associated with addition and the participant correctly chooses “True” given the addition solution. (E) A weak

IAs-OD test trial, in which the participant types her response (displayed in the same orientation as the num-

bers). The perceived orientation of the operator should be associated with multiplication (based on the

described training) and so “6” is the correct answer.
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4.2. Results

On average, participants were accurate on 75% of the trials. When participants made

errors, 91% were due to performing the opposite operation (the rest were some other

arithmetic error). Fig. 6 presents the accuracy of participants on test trials per block,

depending on the image’s intrinsic-axis strength (strong IAs or weak IAs), amount of evi-

dence (block number), and evidence type (OI or OD). Test accuracy for OD images was

not above chance in test block 1 (Binomial exact tests: 212/432, p = .74 and 214/448,

p = .37 for weak IAs and strong IAs, respectively). Accuracy was otherwise significantly

above chance. To investigate the results, we estimated best-fit lines for each participant’s

accuracy results (one line for the strong IA operator and another line for the weak IA

operator) and analyzed two mixed-effects models, where each coefficient of the best-fit

line (Intercept and Slope) was the dependent measure. So the best-fitting intercepts and

slopes for each participant were analyzed using the mixed-effects models. For each

model, intrinsic-axis strength and evidence type were coded as within-subject and

between-subject factors, respectively.

First, we consider the intercepts of the best-fit lines to accuracy, which encode partici-

pant accuracy at the first test block (after only the first training block). The main effects

of both factors were not significant (F(1, 53) < 0.36, p = .55 and F(1, 53) < 0.72,

p = .40 for intrinsic-axis strength and evidence type, respectively). However, the interac-

tion of intrinsic-axis strength and evidence type was highly significant
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Fig. 6. Results of Experiment 1. Participants learned that shapes were OI (black lines) more quickly than

when they were OD (gray lines), and they learned OD shapes faster when they had weak IAs (gray dashed

line) than when they had strong IAs (gray solid line). Error bars represent one standard error (error bars for

OI accuracy are too small to be visible).
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(F(1, 53) = 200.14, p < .001). The interaction is driven by a large intercept when the evi-

dence type was OI (median intercept is 0.97 and 0.94 for strong IAs and weak IAs,

respectively) versus a low intercept when the evidence type was OD (median intercept is

0.45 and 0.44 for strong IAs and weak IAs, respectively). So participants were close to

ceiling in their accuracy for images assigned to have OI evidence type and approximately

at chance in their accuracy for images assigned to have OD evidence type after one train-

ing block. Thus, any differences in learning may be explored by analyzing any differ-

ences in the slope of the accuracy for images assigned to have OD evidence type

depending on the image’s intrinsic-axis strength.

Next, we consider the slopes (learning rate) of the best-fit lines to accuracy, which

encode the change in accuracy of participants over the experiment (i.e., their learning).

Neither factor had a significant main effect on the learning rate (F(1, 53) < 1, p = .83

and F(1, 53) = 2.16, p = .15 for intrinsic-axis strength and evidence type, respectively).

Conversely, the interaction of intrinsic-axis strength and evidence type was significant

(F(1, 53) = 10.68, p < .005). The interaction is driven by a faster learning rate for weak

IAs (median slope = 0.10) than for strong IAs (median slope = 0.01) when the evidence

type for the image is OD. This result supports that prior knowledge of weak IAs versus

strong IAs influences learning of OD.

The ideal learner model predicted better learning in the weak IA-OD condition than the

strong IA-OD condition. To investigate this prediction further, we compared the slopes of

the best-fit lines in the weak IA-OD condition to the strong IA-OD condition (between-sub-

jects). Because the slopes were not Normally distributed (Shapiro–Wilk Normality tests:

W = 0.91, p < .05, N = 27, and W = 0.75, p < .0001, N = 28 for weak IA-OD and strong

IA-OD, respectively),6 we used a robust version of the t test, the trimmed mean t test with
bootstrapping. According to a bootstrapped trimmed mean t test (20% trim with 2,000 boot-

strap samples), the slopes of the weak IA-OD condition were significantly larger than the

strong IA-OD condition (t = 1.66, p < .05, with N = 27 and 28 for weak IA-OD and strong

IA-OD, respectively). Although participant accuracy was not as extreme as the model pre-

dictions (as discussed below), the results provide quantitative support for the model’s pre-

dictions as well (the rank correlation between model predictions and average participant

accuracy was close to one: Spearman’s q = 0.93, p < .005, N = 8 constrained to accuracy

on OD, and q = 0.90, p < .001, N = 16 for all accuracy results).

5. Experiment 2: Lab replication

In this experiment, we replicate Experiment 1 in a traditional laboratory setting.

5.1. Methods

5.1.1. Participants
The participants were 111 psychology undergraduates at University of California,

Berkeley, who volunteered to participate in the experiment for course credit. The number
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of participants was the result of running the experiment for one semester through the

University of California, Berkeley, participant pool rather than a planned sample size.

Twenty were excluded for failing to answer at least 75% of the training trials correctly

(on the last training block), leaving 91 participants for analysis.

5.1.2. Stimuli and procedure
The stimuli and procedures were the same as in Experiment 1.

5.2. Results

On average, participants were accurate on 74% of the trials. When participants made

errors, 90% were due to performing the opposite operation (the rest were some other

arithmetic error). Fig. 7 shows the results of Experiment 2. They replicate those of Exper-

iment 1 and further support the model predictions. Test accuracy for OD images was not

above chance in test block 1 (Binomial exact tests: 348/720, p = .39 and 352/736,

p = .25 for weak IAs and strong IAs, respectively). Otherwise accuracy was significantly

above chance (except OD accuracy for strong IAs images at test block 2 was trending;

Binomial exact test: 393/736, p = .07). With respect to the best-fit line mixed-effect anal-

yses, neither factor had a significant main effect on the intercept (F(1, 88) < 1, p = .39

and F(1, 88) < 1, p = .37 for intrinsic-axis strength and evidence type, respectively). The

interaction of intrinsic-axis strength and evidence type was highly significant

(F(1, 88) = 242.71, p < .001). It is driven by a large intercept when the evidence type
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Fig. 7. Results of Experiment 2. Participants learned that shapes were orientation-invariant (black lines) more

quickly than when they were orientation-dependent (gray lines), and they learned orientation-dependent shapes
faster when they had weak intrinsic axes (gray dashed line) than when they had strong intrinsic axes (gray solid

line). Error bars represent one standard error (error bars for OI accuracy are too small to be visible).
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was OI (median intercept is 0.94 and 1.00 for strong IAs and weak IAs, respectively) ver-

sus a low intercept when the evidence type was OD (median intercept is 0.47 and 0.43

for strong IAs and weak IAs, respectively). Neither factor had a significant main effect

on the slope or learning rate (F(1, 88) < 1, p = .99 and F(1, 88) = 1.74, p = .19 for

intrinsic-axis strength and evidence type, respectively). Critically, the interaction of

intrinsic-axis strength and evidence type was significant (F(1, 88) = 5.44, p < .05). As in

Experiment 1, the interaction is driven by a larger learning rate for weak IAs (median

slope = 0.04) than for strong IAs (median slope = 0.02) when the evidence type was OD.

As in Experiment 1, we further investigated the model prediction of better learning of

weak IA-OD than strong IA-OD by comparing the slopes of the best-fit lines in the weak

IA-OD condition to the strong IA-OD condition (between-subjects). Because the slopes

were not Normally distributed (Shapiro–Wilk Normality tests: W = 0.93, p < .01, N = 44

and W = 0.90, p < .001, N = 46 for weak IA-OD and strong IA-OD, respectively),7 we

used a robust version of the t test, the trimmed mean t test with bootstrapping. According

to a bootstrapped trimmed mean t test (20% trim with 2,000 bootstrap samples), the

slopes of the weak IA-OD condition were not significantly larger than the strong IA-OD

condition, but there was a trend in the predicted direction (t = 1.20, p = .10, N = 44 and

46 for the weak IA-OD and strong IA-OD, respectively). Although the corresponding

results are a bit weaker, Experiment 2 replicates the most important findings of Experi-

ment 1. The results quantitatively support the model’s predictions as well (Spearman’s

q = 0.98, p = .001, N = 8 constrained to accuracy on OD, and q = 0.89, p = .001,

N = 16 for all accuracy results).

6. Discussion and conclusions

When constructing a novel representation for an image, an observer must determine

the set of transformations over which the representation is invariant. We derived an ideal

learner model of how prior expectations and evidence should be integrated to learn

invariance. The analysis predicted that orientation invariance should be easy to learn

regardless of prior expectations, but orientation dependence should be easier to learn

when there are weak expectations than strong expectations based on intrinsic axes. Sup-

porting these predictions, people learned orientation dependence faster when an image

had weak IAs. We demonstrated that people learn the set of transformations over which a

representation is invariant by combining their prior expectations with relatively abstract

information: feedback from solving arithmetic problems.

It is worth emphasizing that these are not trivial predictions in two different senses.

First, previous results have shown that strong intrinsic-axis images are better recognized

(Wiser, 1981) and so, one might hypothesize that it would be easier to remember them in

each orientation and link each of these with an operator. This hypothesis would predict

that orientation dependence is easier to learn for strong intrinsic-axis than weak intrinsic-

axis images. However, our results contradict this hypothesis. Second, the prevailing

stored-views account of learning OI does not predict any differences because each image
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is observed in each orientation an equal number of times and it does not consider prior

expectations based on image cues (e.g., Riesenhuber & Poggio, 1999, 2000). Thus, the

stored-views account of how orientation invariance is learned should be modified to

incorporate higher-order feedback and prior expectations based on image factors.

Although the experimental results were consistent with the model predictions, the

model incorrectly predicted that orientation-dependent accuracy should reach the same

level as orientation-invariant accuracy. Participants learned whether the recognition of

latent objects producing novel images should be orientation-dependent or orientation-

invariant based on a few training blocks with 20 trials of feedback from responding to a

solved arithmetic problem with the image as an operator consistent with either orienta-

tion-dependent or orientation-invariant recognition. It is possible that with more direct

feedback, explicit training, and/or additional training participants would reach the same

level of accuracy for orientation dependence as they achieve for orientation invariance.

Anecdotally, this seems plausible given that human accuracy for recognizing + and 9

seems to be as good as their accuracy for recognizing orientation-invariant objects. An

additional possibility is that the human mind has an additional bias toward transformation

invariance.8 Our experimental results and computational model provide a framework for

investigating these future questions. For example, a bias for orientation invariance occurs

naturally in our ideal observer model, which can be used as a baseline in future investiga-

tions of whether an additional bias is necessary to capture human learning of orientation

invariance.

There are limitations to the experimental results and computational model as an expla-

nation of how people learn which transformations are invariant for recognizing a given

object. First, our experiments used simple black-and-white images for 2-D shapes, which

are less naturalistic than color images of real-world objects (although the experiments clo-

sely resemble one real-world problem that literate individuals have to solve: which char-

acters should have orientation-invariant or orientation-dependent recognition). Second, we

investigated an information-preserving transformation (planar rotations) in the sense that

two images of the same object can be transformed into each other without needing to add

or remove any parts of the image. People also face recognizing the same object in two

images where the transformation to make one image equivalent to the other is not infor-

mation-preserving (e.g., a 3-D object occludes itself as an observer rotates around it). Our

model can be extended to handle this more general case by including in it an explicit

model of how images are generated by objects under different transformations (including

those that do not preserve information). The model developed in this article provides a

foundation on which to build this extended model.

The present results provide further evidence to a growing literature suggesting that

higher-level cognition and perception are intertwined, and that conceptual information

can directly affect perceptual representations (Goldstone, Gerganov, Landy, & Roberts,

2008; Schyns, Goldstone, & Thibaut, 1998). In particular, our results demonstrate that

feedback from arithmetic problems can influence an object’s representation in terms of

the transformations over which its recognition is invariant. Clearly, higher-level cognition

and perception influence each other, but few computational models provide formal
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accounts of their interaction (see Austerweil & Griffiths, 2013; Goldstone et al., 2008 for

preliminary computational frameworks). We hope that the present findings will inspire

future work on computational models that provide an integrated framework for under-

standing the interaction between perceptual and conceptual processing.
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Notes

1. We define “object” as the identity of a physical entity in the world, which can pro-

duce infinite retinal images depending on viewing conditions.

2. Inferring whether an object is reflection-invariant is formally equivalent. For exam-

ple, most letters are invariant over reflections (e.g., “k”), but some are not (e.g.,

“b” and “d”).

3. Note that we are not arguing that the stored-views account cannot be modified to

explain how orientation dependence develops for objects whose images have strong

intrinsic axes. Rather, the hypotheses could be interpreted as ways to extend the

stored-views account to explain how people learn the extent of invariance.

4. The analysis applies to any invariance problem over a transformation set with a

continuous parameterization.

5. Rotations really should be represented in Polar coordinates and the Von-Mises dis-

tribution should be used rather than a Normal distribution in Cartesian coordinates.

We did so for simplicity and it should not affect our results.

6. The slopes are positively skewed.

7. The slopes are positively skewed.

8. We thank Drew Hendrickson for this suggestion.
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