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In copious work studying adult metacognition, participants 
appear to be miscalibrated in their ability to judge their own per-
formance across a large variety of domains1–3. Although there are 

age-related improvements in metacognitive abilities whereby very 
young children overestimate their competence a great deal more 
than adults4, as well as differences by domain5,6, on most tasks, 
researchers find that accuracy is low when making judgments about 
one’s performance, when estimating either one’s score or standing 
relative to others3. There have been studies of specific domains such 
as weather forecasting5 and particular ways of eliciting judgments7 
where participants do show much better calibration to their own 
abilities, but, in most settings, accuracy is typically limited. In an 
influential paper, Kruger and Dunning conducted a series of studies 
that suggested that poorer performers tended to be less well cali-
brated in their ability to judge their performance after completing 
a task than higher performers8. They construed poor perceived 
performance by the lowest-scoring individuals as a metacognitive 
deficit: the worst performers lacked the skills needed to correctly do 
the task and also to judge their performance on the task. Commonly 
known as the Dunning–Kruger effect, this theory continues to be 
featured regularly in the media9, particularly for the purpose of 
rationalizing others’ seemingly irrational behavior (for example, 
anti-vaxxers10 and government officials11).

Although discussions of the overconfidence of poor performers 
have focused on the idea that these people are less sensitive to their 
own errors, thinking about self-assessment from the perspective of 
a rational agent potentially offers a different account. If we imagine 
individuals as naive statisticians analyzing their own behavior, the 
rational Bayesian solution is to combine the evidence from experi-
ence with one’s prior beliefs. If those prior beliefs are that one will 
perform relatively well, this should lead to poor performers overes-
timating their ability and good performers underestimating their 
ability to at least some extent12.

This alternative explanation engages with a different point than 
previous controversy over the Dunning–Kruger effect. Krueger 

and Mueller13 argued that the effect could be a statistical artifact of 
regression to the mean or a general poor calibration among partici-
pants that leads most estimates to converge around the mean, paired 
with a ‘better-than-average’ effect. Kruger and Dunning14 responded 
that regression to the mean did not adequately explain their results 
after a re-analysis of their original data. Through additional studies 
in more real-world settings and a meta-analysis, researchers2 con-
cluded that the Dunning–Kruger effect was the best interpretation 
of these new data. By correcting for potential measurement error, 
they compared this hypothesis with other prominent accounts, 
including regression to the mean13 and a task difficulty account 
in which perceived difficulty of the task produces a general trend 
of overestimation or underestimation15. Although this debate has 
helped establish that the results often explained by the Dunning–
Kruger effect are not due simply to a statistical artifact of regres-
sion to the mean produced by the data, there remains the possibility 
that the internal regression to the (prior) mean produced by rational 
Bayesian inference—a psychological rather than statistical explana-
tion for the data—is driving the effect.

To tease apart these two possible psychological explanations for 
the Dunning–Kruger effect, we developed a mathematical frame-
work for specifying rational models of self-assessment that formal-
izes the nuances of the competing psychological theories. Using this 
framework, we show that the two different theories predict different 
forms for the relation between performance and self-assessment. We 
next ran a pair of large-scale replications to more precisely identify 
the actual form of this relation, which has typically been measured 
relatively coarsely in previous research. This more fine-grained 
picture allows us to identify which psychological explanation best 
accounts for people’s errors in self-assessment.

Model
There have been a variety of computational models of self-assessment, 
some of which have been focused on alternative explanations for the 
Dunning–Kruger effect, whereas others have focused on making 

A rational model of the Dunning–Kruger effect 
supports insensitivity to evidence in low 
performers
Rachel A. Jansen   1 ✉, Anna N. Rafferty   2 and Thomas L. Griffiths3

Evaluating one’s own performance on a task, typically known as ‘self-assessment’, is perceived as a fundamental skill, but 
people appear poorly calibrated to their abilities. Studies seem to show poorer calibration for low performers than for high 
performers, which could indicate worse metacognitive ability among low performers relative to others (the Dunning–Kruger 
effect). By developing a rational model of self-assessment, we show that such an effect could be produced by two psychological 
mechanisms, in either isolation or conjunction: influence of prior beliefs about ability or a relation between performance and 
skill at determining correctness on each problem. To disentangle these explanations, we conducted a large-scale replication of 
a seminal paper with approximately 4,000 participants in each of two studies. Comparing the predictions of two variants of 
our rational model provides support for low performers being less able to estimate whether they are correct in the domains of 
grammar and logical reasoning.

NATuRe HuMAN BeHAviouR | www.nature.com/nathumbehav

mailto:racheljansen@berkeley.edu
http://orcid.org/0000-0002-6844-3065
http://orcid.org/0000-0002-8319-5370
http://crossmark.crossref.org/dialog/?doi=10.1038/s41562-021-01057-0&domain=pdf
http://www.nature.com/nathumbehav


Articles NaTurE HumaN BEHaviour

sense of a variety of different methods and types of self-assessment. 
In one general model of self-assessment16, the authors took into 
account confidence and error detection to unify various methods of 
measuring self-assessment. This model’s parameters represented a 
participant’s ‘sensitivity’ and ‘bias’, where sensitivity is their ability to 
discriminate between correct and incorrect performance, and bias is 
a penchant toward high confidence ratings. This model is based on 
a signal detection approach and aims to develop a unified computa-
tional account of metacognition that accounts for both confidence 
and error detection. Formally, it asserts second-order computation 
as the means by which humans judge their own confidence and 
assumes that confidence is determined not just on the basis of a per-
son’s actions but along with knowledge of the covariance between 
decisions and metacognitive states. Healy and Moore12 developed a 
formal model to contrast expected outcomes on the basis of the type 
of self-assessment measured, specifically comparing overestimation 
of score and overplacement in comparison with others.

Others have used additional analytical methods to contest the 
existence of the Dunning–Kruger effect. In one instance, research-
ers sought to demonstrate how measurement error could account 
for most of the Dunning–Kruger effect by formalizing this phenom-
enon in terms of true skill and overconfidence17. In their sample, 
they found a relation between estimated and true ability, but it was 
much weaker than expected. Another group18 set out to demon-
strate a problem with biased subject pools in papers demonstrating 
the Dunning–Kruger effect8 but did not compare their model with 
actual data. Schlösser et al.19 refuted this account by showing that its 
statistical assumptions were inconsistent with data from the origi-
nal paper by Kruger and Dunning8. In contrast to these previous 
efforts, we constructed different versions of a computational model 
of self-assessment that instantiate the theories we aim to distinguish 
between. Fitting these competing models to data and performing 
a model comparison allows us to evaluate which theory provides 
a better explanation of the data. In doing so, we are able to explore 
subtle differences in the assumed mechanisms behind the effect: 
specifically, whether we need to postulate a metacognitive deficit 
among underperformers (as originally suggested by Kruger and 
Dunning) or whether assumptions about priors (as instantiated in 
previous Bayesian models12) are sufficient.

We specifically model absolute self-assessment (where partici-
pants estimate their total score after an assessment) and introduce 
parameters to adjust perceived prior ability in a domain, difficulty 
of the assessment and competence at accurately concluding whether 
an individual problem was solved correctly or not. These factors are 
similar to those identified by other researchers as contributing to 
poor absolute self-assessment. For instance, poor self-assessment 
has been linked to lack of insight into one’s errors2, similar to the idea 
of ‘sensitivity’ in previous models16. In addition, a claim has been 
made that a person’s ‘self-concept’ forms the foundation for partici-
pants’ judgments about their performance20. This is akin to the ‘bias’ 
parameter in previous models16. A separate research group21 addi-
tionally labeled the relevant components of self-assessment as ‘bias’ 
and ‘discrimination’. Here, we identify a computational approach 
that incorporates similar parameters, one corresponding to per-
ceived ability in a domain and another to discrimination ability. We 
additionally integrate a difficulty parameter, motivated particularly 
by results indicating that self-assessment ability is also dependent 
on item difficulty6,15, although we leave manipulating this parameter 
for future studies. We designed two versions of our model, one that 
makes predictions on the basis of simple Bayesian inference and 
another that links skill with metacognitive ability to mathemati-
cally describe a Dunning–Kruger effect. We compare these ver-
sions to explore potential reasons behind inaccurate self-assessment 
by teasing apart specific features of self-assessment, which we 
can use to evaluate the conclusions drawn by earlier research into  
the matter.

In our basic model of self-assessment, we assume that people’s 
inferences about their ability are based on three factors: 1) beliefs 
about the correctness of individual responses, 2) beliefs about their 
own ability and 3) the difficulty of the task they are performing. We 
then conduct a rational analysis, in the spirit of Anderson22, con-
sidering how a rational agent should solve the problem of estimat-
ing their ability conditioned on the observed data and their prior 
beliefs. The notion of rational behavior used here is slightly different 
from classical rationality, as we condition on people’s beliefs with-
out asking whether those beliefs are well calibrated to the environ-
ment. This allows us to explain behavior in terms of these beliefs, in 
accordance with other rational models of cognition23. The rational 
solution to estimating one’s ability is now to use Bayesian inference, 
modeling someone’s posterior beliefs about their ability following 
an assessment as a function of their beliefs about their ability before 
the assessment and about the difficulty of that assessment (the pri-
ors) and beliefs about their performance on each individual prob-
lem (the likelihood).

Because in this model the participant is making inferences on the 
basis of their own beliefs, the likelihood is person p’s belief about 
correctness on item i, where they believe they are either correct 
(Xp,i = 1) or incorrect (Xp,i = 0). The likelihood is dependent on the 
difficulty of an item i (βi) and the perceived ability of person p (θp). 
If a person has perfect knowledge of whether they answered cor-
rectly, then the one-parameter item response theory (IRT) model, 
known as a Rasch model24, is a reasonable way for people to make 
inferences about their own ability. Rasch models are widely used for 
estimating student ability in the psychometrics literature and can 
also be seen as a simple logistic regression model. This track record 
of previous use and the simplicity of the model led us to favor an 
approach based on an IRT function:

PðXp;i ¼ 1jθp; βiÞ ¼
1

1þ e�ðθp�βiÞ
ð1Þ

Note that, given the perceived ability and difficulty parameters, 
the probability of believing that one gave an incorrect response 
is one minus the probability of believing that one gave a correct 
response: PðXp;i ¼ 0jθp; βiÞ ¼ 1� PðXp;i ¼ 1jθp; βiÞ ¼ 1

1þeðθp�βiÞ

I

.

Equation (1) assumes that people have perfect knowledge about 
whether they have answered a problem correctly, but, in reality, 
people might not know the correctness of each of their responses 
with certainty. To account for this fact, we combine the Rasch 
model with uncertainty about whether the person is correct via an 
error parameter ϵ. This term corresponds to the probability that a 
person is erroneous in their belief about whether they have cor-
rectly solved a problem. This additional parameter is similar to the 
‘sensitivity’ parameter described above16 or the idea of poor error 
detection2. Thus, the likelihood equation where we include an error 
parameter to adjust for uncertainty in people’s beliefs about their  
correctness becomes

PðXp;i ¼ 1jθp; βi; ϵÞ ¼ ð1� ϵÞ  1

1þ e�ðθp�βiÞ
þ ϵ  1

1þ eðθp�βiÞ
:

ð2Þ

The probability of the person believing they have responded cor-
rectly is then the probability of answering correctly and recognizing 
that one is correct plus the probability of answering incorrectly but 
erroneously believing one is correct.

On a multiple-choice assessment, participants might answer 
some questions correctly by guessing, even if they are unaware of 
which answer is correct or whether they are guessing correctly. 
Because people are likely to be aware that they are guessing some 
answers correctly at random, we add a guessing parameter, g, using 
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a simple variant of the IRT model that is commonly applied to 
multiple-choice assessments to account for this additional source 
of uncertainty:

PðXp;i ¼ 1jθp; βiÞ ¼ g þ 1� g

1þ e�ðθp�βiÞ
ð3Þ

where g ¼ 1
N

I
 and N represents the number of possible answers. 

This can also be modified to incorporate imperfect knowledge as in 
Equation (2), yielding

PðXp;i ¼ 1jθp; βi; ϵÞ ¼ ð1� ϵÞ  ðg þ 1�g
1þe�ðθp�βiÞ Þ

þϵ  ð1� ðg þ 1�g
1þe�ðθp�βiÞÞÞ

ð4Þ

The priors are defined over the difficulty of an item i (βi) and the 
perceived ability of person p (θp). Here, we assume the priors are 
normally distributed, although the model can use any prior distri-
bution, which would allow for making more complex predictions. 
Varying the skew of the prior distribution over perceived ability θp, 
for example, would capture differing interpretations of successes 
and failures, such as learners being more likely to attribute a failure 
to a lack of ability rather than the task being difficult or vice versa.

A graphical model depicting the dependencies among the vari-
ables is shown in Fig. 1. To model people’s posterior beliefs about 
their ability after performing a task given both their prior beliefs 
and the accuracy of their judgments of correctness, we insert the 
likelihood and priors into Bayes’ rule as follows:

Pðθp; βijXp;i ¼ 1Þ / PðXp;i ¼ 1jθp; βi; ϵÞ  PðθpÞ  PðβiÞ ð5Þ

To calculate beliefs about performance from this posterior dis-
tribution, we first marginalize over βi, which represents someone’s 
posterior beliefs about the difficulty of the current assessment. We 

then transform the distribution to one about performance expecta-
tions rather than ability by calculating the probability of a correct 
response on an average-difficulty question (βi = 0) using Equation (1)  
for each point in the distribution. This transformation enables 
direct comparison of human data with our model’s output.

Bayesian inference. Here we demonstrate through simulations that 
this basic model predicts that people will not be fully accurate in 
their self-assessments and that poor performers will tend to overes-
timate whereas high-scoring individuals underestimate, consistent 
with Bayesian inference shifting estimates toward the mean of the 
prior. Changing the mean of the prior over the ability parameter 
θp adjusts the degree to which these patterns emerge. We begin by 
exploring a version of the model in which people are always accu-
rate in their judgments of correctness on individual problems, 
which is instantiated by setting ϵ = 0, and then show what happens 
when ϵ is increased. In this model, we assume both constant mean 
of the prior distribution over θp and constant ϵ across individuals. 
We set the guessing parameter g = 0.2, which assumes that there are 
five possible choices offered for each question.

We first consider what patterns in self-assessment occur when 
we assume people make perfectly accurate assumptions about their 
performance on each problem, by setting ϵ equal to 0. For these 
simulations, we assume θp and each βi are distributed normally such 
that their means μθ and μβ are 0 and their standard deviations σθ 
and σβ are 1. As shown in Fig. 2, simulated participants from a toy 
example who perform on the low end tend to overestimate their 
performance, whereas the highest performers slightly underesti-
mate their score, demonstrating a pattern of results similar to those 
found by the original authors8. To compute estimated performance 
given true score, we use Markov chain Monte Carlo (MCMC) meth-
ods25 to calculate a posterior distribution over beliefs about ability 

Xp,i

βi

ε

µβ , σβ µθ , σθ

pi

θp

Fig. 1 | Graphical representation of the model. Each observed item 
Xp,i is influenced by latent variables βi (difficulty of problem i) and θp 
(perceived ability of person p) as well as a constant ϵ (ability to determine 
correctness), where the observed Xp,i refers to a person’s beliefs about 
correctness on an item. Difficulty βi is drawn from a normal distribution 
with mean μβ and standard deviation σβ, and ability θp is drawn from a 
normal distribution with mean μθ and standard deviation σθ.
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Fig. 2 | Model predictions in a toy example where participants solve 
ten problems in the baseline model (μθ, μβ = 0, σθ, σβ = 1 and ϵ = 0). Each 
point shows the average of the posterior distribution on θ, corresponding 
to estimated ability. Overlaid are histograms of MCMC estimates of the 
posterior distribution on θ for three scores. The red dotted identity line 
represents completely accurate estimation, where a participant’s estimated 
score is equal to their true score. The guessing parameter g is equal to 0.2, 
which represents a task with five multiple-choice solutions per question.
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responses were correct or incorrect, consistent with explanations 
that assume similar metacognitive abilities on average regardless 
of true ability13,15. The idea that poor performers are ‘metacogni-
tively impaired’ in comparison with high performers, as put forth 
by Kruger and Dunning8, can be captured by extending the model 
so that, instead of an ϵ parameter that is identical across all partici-
pants, there is, instead, a separate ϵp associated with each person p 
that might differ across individuals in relation to their true ability 
(μθ remains constant across all individuals in this model). Namely, 
those who perform poorly will guess their performance on a single 
problem less accurately than those who perform well: ϵp for lower 
performers will be larger than for higher performers.

One way to make ϵp dependent on person p’s ability is to use a 
simple linear function such that ϵp varies linearly with score, which 
serves as our closest approximation of true ability:

ϵp ¼ ϵ0 � α 
P

ixi
n

; ð6Þ

with slope −α, intercept ϵ0 and maximum achievable score n. Thus, P
i
xi

n
I

 represents someone’s scaled score. In the example in Fig. 3c, we 
vary ϵp gradually according to Equation (6) with ϵ0 = 0.5, α = 0.1 and 
then with ϵ0 = 0.4, α = 0.3. In these examples, the worst performers 
have an ϵp of 0.5 (at chance) or 0.4, and the highest performers have 
a slightly lower ϵp (0.4 in the first example and 0.1 in the second), 
meaning that they are more accurate in their beliefs about correct-
ness. This produces greater overestimation at lower true scores.

To evaluate whether performance-dependent estimation—the 
explanation that Kruger and Dunning gave for their results8—actu-
ally occurs, we can compare how well two versions of the model that 
capture competing hypotheses about self-assessment fit the human 
data. The two variants of our Bayesian model are 1) a Bayesian infer-
ence model (where ϵ is independent of true ability), which represents 
a simple explanation of the data, and 2) a performance-dependent 
estimation model (where ϵp is dependent on person p’s score). It is 
worth noting that the two models differ most in their predictions 
about people’s beliefs in the tails of the plots, so experimentally dif-
ferentiating between theories will require recruiting sufficient num-
bers of participants with extreme scores.

Previous arguments in favor of the Dunning–Kruger effect have 
performed an analysis by grouping participants on the basis of quar-
tile of performance2,13. Having our distinct models will help tease 
apart possible interpretations of the data, but the way the data have 

(Equation (5)) for each true score and then transform the result into 
a distribution over beliefs about performance. To obtain the esti-
mated total score from this distribution, we scale the probability of 
being correct on a single problem by the maximum score (here, ten) 
and compute the expectation.

We run MCMC with 10,000 iterations and remove the first 1,000 
as a ‘burn-in’, following standard practice, before taking the mean pre-
dicted score estimate. These baseline model predictions demonstrate 
that self-assessment ability need not be dependent on people’s actual 
ability to obtain this pattern. Our rational model makes it straightfor-
ward to evaluate the consequences of changing people’s prior expec-
tations about their ability (the prior on ability parameter, θp) or their 
skill at recognizing whether they are correct on each problem (ϵ). 
Changing these aspects of the model has direct consequences for the 
form of the function relating estimated ability to true score.

To retrieve patterns of results even more similar to those found 
in previous research on self-assessment, we adjust the model param-
eters. Varying the prior via the mean, μθ, of the ability parameter, θp, 
changes the overall assessment of ability. As shown in Fig. 3a, when 
the mean on θp is high (μθ = 0.5), reflecting optimism about ability, 
there is much more overestimation by all simulated learners. But 
when the mean is lowered (μθ = −0.5), reflecting pessimism, we see 
the manifestation of the opposite pattern: except for all but the lowest 
performers, the model predicts underestimation rather than overes-
timation. The pattern of less underconfidence of high performers 
compared to overconfidence of low performers, the hallmark of the 
Dunning–Kruger effect, can be fit by this simple Bayesian inference 
model if we just increase the mean of the prior over ability θp.

Although changes to the prior affect the intercept of the line, 
changing ϵ affects its slope. As shown in Fig. 3b, as ϵ increases, the 
slope of the line decreases. In other words, as inferences about cor-
rectness become more similar to guessing randomly (which would 
be captured by ϵ = 0.5), inferences about ability are predicted to 
become increasingly similar to one another, regardless of actual per-
formance. Similar patterns of results are produced by manipulating 
the standard deviation of the mean on θp, σθ, which are detailed in 
the Supplementary Information. Both parameters affect the influ-
ence of performance on self-assessment. Although we will keep σθ 
fixed and vary ϵ, the conclusions we draw as a result of this apply to 
this broader capacity for updating beliefs about ability on the basis 
of performance rather than any specific parameter.

Performance-dependent estimation. The model described so far 
has assumed that everyone is equally adept at knowing whether their 
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Fig. 3 | Model predictions in a toy example. a–c, Participants solve ten problems when the mean on ability (θp) is adjusted (μθ = 0.5 or −0.5) (a), or the 
parameter ϵ is adjusted (ϵ = 0.2 or 0.4) (b), demonstrating the Dunning–Kruger effect (c). Note that x in the equations in c refers to normalized score 
(score divided by maximum score). Again, we set g = 0.2.
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(s.s.e. = 49,073.04). The best-fit models are presented in Fig. 4a 
alongside the associated data, grouped by actual score.

To compare these competing models, as described in our analy-
sis pipeline, we calculated the Bayesian information criterion (BIC) 
for each model. The BIC for the Bayesian inference model with 
constant ϵ (BIC 19,303.07) was higher than that of the model with 
ϵ dependent on score (BIC 19,274.29). Because these are nested 
models such that the performance-dependent model contains one 
more parameter than the Bayesian inference model, we performed 
a likelihood ratio test that is equivalent to a χ2 test with one degree 
of freedom. This yielded χ2(1) = 36.95, P < 0.001 and ϕ = 0.62, 
which far exceeds the threshold of 3.84 required to be significant. 
Thus, we have strong evidence to prefer the more complex model 
in this case, which is the performance-dependent model. We addi-
tionally computed the log Bayes factor, the logarithm ratio of the 
marginal likelihood of the performance-dependent hypothesis to 
the likelihood of the Bayesian inference hypothesis, and obtained 
a value of 16.14, which is another indication of strong evidence for 
the performance-dependent estimation hypothesis. Given that the 
parameters of our model correspond to the intercept (μθ), slope (ϵ0) 
and curvature (α) of the data, we additionally fit linear and qua-
dratic models to the data, finding that the quadratic model provided 
a better fit compared with the linear model (F1 = 34.25, P < 0.001). 
When no exclusions are applied (as described in the Methods sec-
tion), and data from all participants are included, results are sub-
stantially the same as those presented here.

We show in Fig. 5b a fit of the data to the model by quartile of 
performance, as done in previous work. Specifically, we group par-
ticipants in quartiles on the basis of their scores and plot their aver-
age self-assessment judgments and overlay average model values for 
the best-fit models. We see clearly in this depiction that quartiles do 
not show the clear distinction between the two models that can be 
seen in the alternative plot.

Logical reasoning study. Of the 3,543 participants included 
in analyses who solved the logical reasoning problems (1,778 
self-identifying women and 1,731 self-identifying men; 2,553 White, 
350 Black or African American, 246 Asian/Asian American and 196 
Hispanic or Latino), the average completion time was 23.48 min. 
The mean score was 9.45 out of 20 (s.d. = 3.59), and the mean esti-
mated score was 10.86 (s.d. = 4.05). In the original study by Kruger 
and Dunning, participants scored an average of 12.9 and estimated 
an average of 13.3. As in the grammar study, we observed consider-
able overconfidence by the worst performers (Fig. 6). Participants 

been looked at previously is also not sufficiently high resolution 
to demonstrate differences between the model fits because it pro-
vides only four data points (one for each quartile) to compare with 
a model. Therefore, we compare each individual data point with the 
model rather than grouping the data by quartile of performance.

These considerations argue for conducting a large-scale replica-
tion of previous experiments on the Dunning–Kruger effect, which 
did not have sufficiently large samples to distinguish between the 
two explanations instantiated in our models. To address this, we 
conducted replications of two studies from Kruger and Dunning8 
in which participants solved a series of 20 multiple-choice questions 
about either grammar or logical reasoning and estimated their score 
after the assessment.

Results
Grammar study. Of the 3,515 participants who solved the gram-
mar problems included in analyses (1,698 self-identifying men, 
1,780 self-identifying women and the remainder other or unspeci-
fied; 2,560 White, 304 Black or African American, 246 Asian/Asian 
American, 215 Hispanic or Latino and the rest selecting multiple cat-
egories, other or unspecified), the mean completion time was 19.61 
min. On average, participants scored 10.17 out of 20 (s.d. = 3.40) (see 
Fig. 4 for the distribution of the achieved scores), and the mean esti-
mated score was 12.49 (s.d. = 3.91). In the original study by Kruger 
and Dunning, participants scored an average of 13.3 and estimated 
the number correct at an average of 15.2. We attribute this differ-
ence to the fact that their participants were undergraduate students, 
whereas participants in this study had a wide range of backgrounds. 
The original authors did not report standard deviations. The over-
confidence of the lowest-scoring participants appeared substantial, 
as can be seen in Fig. 5. Participants made an average percentile esti-
mate of 58.48 (s.d. = 20.57) and rated the task with a difficulty of 
5.57 (s.d. = 2.26) for themselves and 6.16 (s.d. = 1.84) for other par-
ticipants, both out of ten, where ten represents the highest difficulty.

To fit the model to the data, we compare model predictions to 
participants’ estimates of their scores relative to their true score. 
Grouping the self-assessments by true score instead of by quartiles, 
as done in previous research, shows substantially more variability 
in performance. Comparing the data with the grid search of model 
estimates, the best-fit Bayesian inference model (where estimation 
ability is independent of score) was parametrized by ϵ = 0.4 and 
μθ = 0.05 (s.s.e. = 49,591.58), whereas the performance-dependent 
estimation model (the model that instantiates the Dunning–
Kruger effect) was parametrized by ϵ0 = 0.45, μθ = 0.05 and α = 0.1 
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ability to perceived ability, which allows for testing differences at 
task-specific and individual levels. This model enables future work 
that could include testing out a combination of priors over each 
parameter or identifying potential differences by domain, age or 
other demographic variables. We see this as a promising approach 
for gaining more insight into what underlies learners’ metacognitive 
abilities. The flexibility of this model can also allow for fitting to 
different types of metacognitive data, including relative perceived 
performance (in this study, we focused on absolute estimates of 
performance) or incorporating new parameters to formalize other 
areas of research into metacognition, such as the bias blind spot26.

There has been some debate as to whether self-assessment ability 
should be measured via one-off judgments (as in these studies) or 
by aggregating an individual’s confidence judgments made before 
solving each problem13. Future directions for this research include 
implementing a version of the model that predicts a participant’s 
confidence judgments over time to provide a more accurate repre-
sentation of each individual’s beliefs about their ability.

One possible limitation of our work is the use of Amazon’s 
Mechanical Turk. Prior research has pointed out the limitations of 
this platform27. However, whereas participants from crowdsourc-
ing services might not fully represent the population, they are far 
more representative than the undergraduate populations originally 
used in studies of the Dunning–Kruger effect—something that is 
reflected in differences between our results and those of Kruger and 
Dunning. In ongoing research, we are exploring the use of similar 
models with different populations, including specific age groups 
and clinical populations.

The large datasets that we collected through our experiments 
provide an impressively clear picture of the form of the relation 
between self-assessment and performance. Over the last few years, 
psychology has struggled with concerns about methodology and 
the replicability of prominent findings. We think that the way for-
ward is not to merely try to replicate our past results but to combine 
the large sample sizes made possible by modern technology with 
advances in computational modelling to pursue new psychological  

made an average percentile estimate of 52.44 (s.d. = 20.84) and rated 
the task with a difficulty of 6.78 out of 10 (s.d. = 2.04) for themselves 
and 6.92 (s.d. = 1.79) for other participants.

Comparing the data with the grid search of model estimates, the 
best-fit Bayesian inference model was parameterized by ϵ = 0.45 and 
μθ = −0.1 (s.s.e. = 55,801.41), whereas the performance-dependent 
estimation model was parameterized by ϵ0 = 0.5, μθ = −0.15 and 
α = 0.15 (s.s.e. = 54,912.32), as shown in Fig. 6a. A quadratic model 
again was a better fit to the logical reasoning data as opposed to a 
linear model (F1 = 56.87, P < 0.001).

The BIC for the model with constant ϵ (BIC 19,846.55) was 
again higher than that of the model with ϵ dependent on score (BIC 
19,797.82). A likelihood ratio test comparing the models was signif-
icant (χ2

1 = 56.91, P < 0.001). Just as for the grammar study, when no 
exclusions are applied, results are substantially the same. A log Bayes 
factor calculation yielded a value of 26.15. Thus, we again have suffi-
cient evidence to prefer the more complex performance-dependent 
estimation model over the Bayesian inference model.

Discussion
The observation that poor performers overestimate their abil-
ity could be given two possible psychological explanations: that it 
is a mere result of rational Bayesian estimation or that it reflects a 
genuine decreased sensitivity to errors among low performers. In 
this study, we formalized these competing accounts as mathemati-
cal models and ran large-scale replications to identify the form of 
the function relating self-assessment to performance. Although 
even with such large samples there is limited resolution in the tails 
of the score distributions (as fewer participants obtained the most 
extreme scores), the model assuming reduced sensitivity among 
low performers is a statistically better fit to the data than the model 
assuming simple Bayesian inference.

The rational model we developed gives us a framework for 
testing even more hypotheses beyond whether there is a relation 
between true ability and accuracy of perceived ability. Specifically, it 
offers a precise specification of the form of the function relating true 
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under 5 min on the task. There were three internet protocol (IP) addresses used 
three times and 43 used twice, so these 95 responses were additionally excluded. 
Six responses had no associated IP address and were, thus, also excluded. This 
resulted in a total of 3,515 responses viable for analyses (1,698 self-identifying men 
and 1,780 self-identifying women; mean age 36.54 years, range 18–88 years).

The logical reasoning study brought in 3,901 complete responses. There were 
154 failed attention checks, 77 participants who spent under 5 min and 55 repeated 
IPs (51 with two, 2 with three, 1 with four and 1 with six responses) and nine 
without an IP address. This left 3,543 responses for analyses (1,778 self-identifying 
women and 1,731 self-identifying men; mean age 36.59 years, range 18–81 years).

Materials. The closest approximation of the original 20 logical reasoning problems 
and 20 grammar questions from Kruger and Dunning8 that we could obtain from 
the original authors were made into surveys on Qualtrics. We used their original 
materials to make a more compelling case for whether this effect exists.

These questions consist of multiple-choice items with five possible responses. 
In the logical reasoning test, participants were told ‘You will be presented with 
brief passages or statements and will be required to evaluate their reasoning or 
determine what inferences you can logically draw from the passage. In each case, 
select the best answer choice, even though more than one choice may present a 
possible answer.’ In the grammar task, participants read the following instructions: 
‘In each question, some part of each sentence is underlined; sometimes the whole 
sentence is underlined. Five choices for rephrasing the underlined part follow each 
sentence; one choice repeats the original, and the other four are different.’

Procedure. Before beginning each study, all participants read a set of instructions 
and were asked two content-based questions about the instructions. They were 
given two opportunities to answer these questions correctly and were excluded 
from analyses if they failed the instructional manipulation on both attempts, as 
indicated in our preregistration. These exclusions were intended to prevent the 
low-performing individuals in our analyses from being composed of inattentive 
participants. Both before and after problem solving, all participants rated their 
absolute performance (‘how many of the 20 logical reasoning/grammar problems 
will/did you answer correctly?’), their relative performance as a percentile ranking 
out of 100 (‘compared to other participants in this study, how well do you think 
you will do/did you do?’), the difficulty of the task for themselves and the difficulty 
for others (both on a scale from 0 to 10). On each task, the 20 questions were 
presented in a randomized order, as were the five multiple-choice solutions. All 
problems and self-assessment questions required a response for the participant 
to move ahead. The absolute performance ratings were displayed as a drop-down 
menu, the relative performance ratings as a sliding bar and the difficulty ratings as 
horizontal multiple-choice questions. At the conclusion of the study, participants 
were directed to a short demographics questionnaire where they optionally 

research that provides deeper insight into the phenomena behind 
those past results. As in the present case, the primary outcome of 
this research might be confirming the existence and interpreta-
tion of key phenomena, but providing definitive evidence for 
such phenomena—particularly those that enjoy the public pro-
file of the Dunning–Kruger effect—is an important step toward 
re-establishing the validity of psychological research. We view our 
results as an example of what this approach can achieve, providing a 
high-resolution picture of the nature of human miscalibration.

Methods
This research complies with ethical obligations put forth by the University of 
California Berkeley Internal Review Board. Informed consent was obtained from 
all participants.

Participants. One criticism of Kruger and Dunning is their use of a convenience 
sample composed of college undergraduates at elite universities18. We allay  
this concern by recruiting participants from Amazon’s Mechanical Turk  
(https://www.mturk.com/), where wider ranges of age and educational background 
are represented28.

We selected our sample size of 4,000 participants per study by conducting a 
power analysis based on the effect sizes observed in preliminary studies of 250 
participants each. To do so, we simulated increasing sample sizes and observed 
where the curves started to level out (see pre-registration (https://osf.io/k28je) 
from March 6, 2019). With 4,000 samples per bootstrap, 85.4% of the grammar 
data simulations and 81.6% of the logical reasoning simulations resulted in favor 
of the Dunning–Kruger effect. We declared a stopping rule (ending data collection 
once 4,000 responses were collected or after 10 d) as well as all exclusion criteria  
in our pre-registration. This power analysis was conducted with a previous  
version of the model that did not contain a guessing parameter. We re-ran our 
models to include this guessing parameter following a suggestion made by one  
of our reviewers.

Participants were paid $2 to participate in the grammar study or $3 for the 
logical reasoning study. We decided against awarding a bonus for more accurate 
self-assessment judgments because Kruger and Dunning also paid only a flat 
rate and because, in other work, adding incentives did not reduce the amount of 
inaccuracy2,29. Because sample sizes were so large, participants were allowed to 
participate in both studies, which were presented as separate human intelligence 
tasks on Mechanical Turk.

For the grammar study, there were 3,860 responses. Of these, 164 failed the 
instructional manipulation and so were excluded from analyses. Eighty spent 
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simpler Bayesian inference model is parameterized by ϵ = 0.45 and μθ = −0.1, whereas the performance-dependent model has ϵ0 = 0.5, μθ = −0.15 and 
α = 0.15. Error bars represent 95% confidence intervals.

NATuRe HuMAN BeHAviouR | www.nature.com/nathumbehav

https://www.qualtrics.com/login/
https://www.mturk.com/
https://osf.io/k28je
http://www.nature.com/nathumbehav


Articles NaTurE HumaN BEHaviour

 10. Andrews, R. This psychological effect explains why anti-vaxxers believe what 
they velieve. IFLScience http://www.iflscience.com/health-and-medicine/
antivaxxers-suffer-from-a-wellknown-cognitive-effect-according-to-study/ 
(2018).

 11. Purtill, C. This psychological quirk could explain why Trump’s least  
experienced lawyer feels so confident. Quartz https://work.qz.com/ 
1240245/the-dunning-kruger-effect-what-trumps-legal-team-and-the-russia- 
probe-have-to-do-with-it/ (29 March 2018).

 12. Healy, P.J. & Moore, D.A. Bayesian overconfidence. SSRN https://doi.
org/10.2139/ssrn.1001820 (2007).

 13. Krueger, J. & Mueller, R. A. Unskilled, unaware, or both? The 
better-than-average heuristic and statistical regression predict errors in 
estimates of own performance. J. Personal. Soc. Psychol. 82, 180–188 (2002).

 14. Kruger, J. & Dunning, D. Unskilled and unaware-but why? A reply to 
Krueger and Mueller. J. Personal. Soc. Psychol. 82, 189–192 (2002).

 15. Burson, K., Larrick, R. P. & Klayman, J. Skilled or unskilled, but still unaware 
of it: how perceptions of difficulty drive miscalibration in relative 
comparisons. J. Personal. Soc. Psychol. 90, 60–77 (2006).

 16. Fleming, S. M. & Daw, N. D. Self-evaluation of decision-making: a general 
Bayesian framework for metacognitive computation. Psychol. Rev. 124, 
91–114 (2017).

 17. Feld, J., Sauermann, J. & De Grip, A. Estimating the relationship between skill 
and overconfidence. J. Behav. Exp. Econ. 68, 18–24 (2017).

 18. Krajč, M. & Ortmann, A. Are the unskilled really that unaware? Alternative 
explanation. J. Econ. Psychol. 29, 724–738 (2008).

 19. Schlösser, T., Dunning, D., Johnson, K. L. & Kruger, J. How unaware are the 
unskilled? Empirical tests of the ‘signal extraction’ counterexplanation for the 
Dunning–Kruger effect in self-evaluation of performance. J. Econ. Psychol. 39, 
85–100 (2013).

 20. Ehrlinger, J. & Dunning, D. How chronic self-views influence (and potentially 
mislead) estimates of performance. J. Personal. Soc. Psychol. 84, 5–17 (2003).

 21. Dunning, D. & Helzer, E. G. Beyond the correlation coefficient in studies of 
self-assessment accuracy: commentary on Zell & Krizan (2014). Perspect. 
Psychol. Sci. 9, 126–130 (2014).

 22. Anderson, J. R. The Adaptive Character of Thought (Earlbaum, 1990).
 23. Oaksford, M. & Chater, N. A rational analysis of the selection task as optimal 

data selection. Psychol. Rev. 101, 608 (1994).
 24. Embretson, S. E. & Reise, S. P. Item Response Theory (Psychology Press, 2013).
 25. Gilks, W. R, Richardson, S. & Spiegelhalter, D. Markov Chain Monte Carlo in 

Practice. (Chapman and Hall/CRC, 1995).
 26. Pronin, E., Lin, D. Y. & Ross, L. The bias blind spot: perceptions of bias in 

self versus others. Personal. Soc. Psychol. Bull. 28, 369–381 (2002).
 27. Chandler, J., Rosenzweig, C., Moss, A. J., Robinson, J. & Litman, L. Online 

panels in social science research: expanding sampling methods beyond 
Mechanical Turk. Behav. Res. Methods 51, 2022–2038 (2019).

 28. Mason, W. & Suri, S. Conducting behavioral research on Amazon’s 
Mechanical Turk. Behav. Res. Methods 44, 1–23 (2012).

 29. Sanchez, C. & Dunning, D. Overconfidence among beginners: is a little 
learning a dangerous thing? J. Personal. Soc. Psychol. 114, 10 (2018).

Acknowledgements
The authors received no specific funding for this work.

Author contributions
R.A.J. designed the studies, collected data, developed the model and performed the 
simulations. A.N.R. and T.L.G. supervised the study design and model development. All 
authors discussed the results and contributed to the final manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Extended data is available for this paper at https://doi.org/10.1038/s41562-021-01057-0.

Supplementary information The online version contains supplementary material 
available at https://doi.org/10.1038/s41562-021-01057-0.

Correspondence and requests for materials should be addressed to R.A.J.

Peer review information Nature Human Behaviour thanks Stephen Fleming, Sam Gilbert 
and Matthew Rhodes for their contribution to the peer review of this work. Primary 
Handling Editor: Marike Schiffer.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature Limited 2021

answered questions about their age, gender, race and educational background. All 
analyses in this paper are based solely on the absolute ratings of performance made 
after the test.

Model fitting. To fit the Bayesian inference and performance-dependent estimation 
models to the data, we compare model predictions with participants’ estimates 
of their scores relative to their true score, because ‘perceived performance’ on 
the task is how we are operationalizing ‘perceived ability’. To generate a set of 
simulations with varying parameter values, we performed a grid search over μθ 
and ϵ for the Bayesian inference model and these two parameters, along with α 
for the performance-dependent estimation model, such that values of μθ ∈ [−1, 1], 
ϵ ∈ [0, 0.5] and α ∈ [0, 0.5] were considered. We do not consider values of ϵ greater 
than 0.5 or worse than chance because we assume people are not systematically 
biased to believe they are incorrect when they are correct. We took steps of 0.05 for 
each parameter, which resulted in a total of 41 considered values of μθ and 11 values 
each of ϵ and α, which produced 451 Bayesian inference model predictions and 
2,706 performance-dependent estimation model predictions. Note that α cannot 
be lower than ϵ0 in the performance-dependent estimation model, as this would 
result in negative values of ϵp, which is impossible because this is a probability, 
so there will not be 11 × 11 × 41 = 4,961 performance-dependent estimation 
model predictions, as one might expect. Baseline values were used for the other 
parameters (σθ = σβ = 1; μβ = 0). We ran five MCMC chains of 10,000 iterations 
where we marginalized over item difficulties (βi) to examine only perceived ability 
(removing the first 1,000 iterations each time for burn-in). We then took the 
mean of all remaining 9,000 sampled θp values to generate predictions for each 
pairing or triplet of parameters. To better estimate the posterior, we calculated the 
mean across all samples from all five chains to compare with the human data. We 
calculated all these values for the performance-dependent estimation model and 
used the values from the Bayesian inference model for the cases when α = 0. We 
then converted each simulated ability parameter, θ, value generated by the models 
into a probability of a correct response using Equation (1). To transform this into 
an estimated total score, which is the data we have to compare with the model, we 
then multiply this probability by the maximum score (20 in our data).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.
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Extended Data Fig. 1 | interpreting σθ. Model predictions in a toy example where participants solve 10 problems (a) when the standard deviation on ability 
(σθ) is adjusted (σθ = 1 or 2) and (b) when both this and the parameter ϵ are adjusted (σθ= 1, ϵ = 0.35 or ϵ = 0, σθ= 0.5) to reveal comparable results. In the 
main paper, we consider a single value for the standard deviation of the prior on ability (σθ). As shown in Fig. 1a, increasing the standard deviation of the 
prior implies more accurate estimation of scores, although some under and over estimation is still present. The pattern of Fig. 1a is similar to the pattern 
of predictions when changing ϵ. As shown in Fig. 1b, adjustments to either of these parameters can lead to very similar predictions for the relationship 
between true scores and estimated scores. This is not surprising given that both of these parameters represent uncertainty. Choosing to focus on fitting 
participants' values of ϵ allows us to capture variation in estimates of correctness on each question. On the other hand, if we were to focus on fitting 
participants' σθ values, we would be assuming variation in prior beliefs about ability. Given the framing of the Dunning–Kruger effect in terms of sensitivity 
to errors, we fixed σθ and focused on ϵ in our modeling approach. We have expressed our conclusions in terms consistent with variation in either ϵ or σθ, 
which affect the degree of updating of prior beliefs in light of evidence.
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Study description Quantitative study

Research sample Grammar study: 3,515 participants (1,698 men, 1,780 women, 2560 white, 304 Black or African American, 246 Asian/Asian American, 
215 Hispanic or Latino), not fully representative. 
Logical reasoning study: 3,543 participants (1,778 women, 1,731  men, 2,553 white, 350 Black or African American, 246 Asian/Asian 
American, 196 Hispanic or Latino). Not representative. 

Sampling strategy Participants were allowed to enroll in the study through MTurk if they were based in the US. We aimed for a sample size of 4,000 for 
each study based on a power analysis conducted with pilot data, described in detail in the preregistration on OSF (https://
osf.io.k28je/)

Data collection Participants were recruited from Amazon's Mechanical Turk, so no experimenter was present when they were completing the task. 
The tasks were computer-based and all data was recorded through Qualtrics. 

Timing Data collection began on June 5, 2019 and concluded ten days later on June 14, 2019. Our preregistration stated that we would 
attempt to recruit 4,000 unique participants for each study (though MTurk workers could participate in both studies), but stop data 
collection after ten days. 

Data exclusions Grammar study: 164 failed instructional manipulation, 80 spent under 5 minutes, 95 duplicate IP addresses, 6 empty IP addresses 
Logical reasoning: 154 failed instructional manipulation, 77 spent under 5 minutes, 55 duplicate IP addresses, 9 empty IP addresses

Non-participation Grammar study: 154 dropped out 
Logical reasoning study: 8 declined to participate and 112 dropped out. 

Randomization There were no experimental groups, but the order in which problems were presented to each participant was randomized. 
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Population characteristics See above.

Recruitment Participants were told from the start whether they were to answer logical reasoning or grammar questions, so there may be 
some self-selection bias in terms of participants wanting to solve something they knew they could succeed at. However, due 
to the broad range of scores, this did not seem to impact the results. 

Ethics oversight UC Berkeley Institutional Review Board
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Note that full information on the approval of the study protocol must also be provided in the manuscript.
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