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Abstract

When people are asked to retrieve members of a category from memory, clusters of semantically

related items tend to be retrieved together. A recent article by Hills, Jones and Todd (2012) argues

that this pattern reflects a process similar to optimal strategies for foraging for food in patchy

spatial environments, with people making a strategic decision to switch away from a cluster of

related information as it becomes depleted. We demonstrate that similar behavioral phenomena

also emerge from a random walk on a semantic network derived from human word association

data. Random walks provide an alternative account of how people search their memory,

postulating an undirected rather than a strategic search process. We show that results resembling

optimal foraging are produced by random walks when related items are close together in the

semantic network. These findings are reminiscent of arguments from the debate on mental

imagery, showing how different processes can produce similar results when operating on different

representations.

Keywords: semantic fluency, memory search, semantic networks, random walks, optimal

foraging
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Random walks on semantic networks can resemble optimal foraging

How do people search their memory for information related to a given cue? One classic

method for exploring this question, the semantic fluency task, asks people to retrieve as many

members of a category as possible in a limited amount of time (Bousfield & Sedgewick, 1944;

Thurstone, 1938). This simple task has been used to explore the representations and processes that

support semantic memory, and has even been used in clinical settings to study memory deficits in

patients with different forms of dementia (Lezak, 1995; Tröster, Salmon, McCullough, & Butters,

1989; Troyer, Moscovitch, Winocur, Leach, & Freedman, 1998). Previous work has found that

retrieval from semantic memory in fluency tasks tends to be produced in bursts of semantically

related words with large pauses between bursts (e.g., Bousfield & Sedgewick, 1944; Romney,

Brewer, & Batchelder, 1993; Troyer, Moscovitch, & Winocur, 1997). For example, Troyer et al.

(1997) asked participants to “name as many animals as you can” and observed that the retrieved

animals tended to group into clusters (“pets”, “African animals”, etc.). The pauses between pairs

of retrieved words in the same cluster (e.g., “dog-cat”) were very small when compared to the

large pauses between pairs of retrieved words that do not belong to any of the same clusters (e.g.,

“cat-giraffe”). This pattern of patchy responses led Troyer et al. (1997) to posit that search

through semantic memory is comprised of two processes, one process that jumps between clusters

related to the given cue and another process that retrieves words within the current cluster.

Inspired by this pattern of bursts in retrieval from semantic memory, recent work by Hills,

Jones, and Todd (2012) compared search through semantic memory to how animals forage for

food. When animals search for food, they must consider the costs and benefits of further depleting

their current food source as opposed to searching for a new patch of food. A large literature in

biology called optimal foraging theory has compared animal foraging to ideal strategies (Stephens

& Krebs, 1986). In particular, the marginal value theorem shows that an animal’s expected rate of

food retrieval is optimal if they stop exploiting the current patch of food when the instantaneous

rate (the marginal value) of food being acquired from the current patch is lower than their overall

expected rate of food retrieval (Charnov, 1976).
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Human search through semantic memory could be considered analogous to how animals

search for food, with semantically-related clusters playing the role of patches. If this were the

case, then the pattern of pauses between pairs of retrieved words could be consistent with optimal

foraging theory: responses should switch clusters when the marginal value of finding another item

within the current cluster is less than the overall rate of return across memory. Hills et al. (2012)

found that human memory search was consistent with this prediction of optimal foraging theory.

Based on these results and a comparison of the performance of several different computational

models, they proposed that human memory search involves two distinct processes, a “clustering”

and a “switching” process, with the strategy for switching being consistent with the marginal

value theorem.1

In this paper, we show that behavioral phenomena consistent with a two-stage search

process can also be produced by a random walk on a semantic network derived from human word

association data. This potentially provides an alternative account of human performance on

semantic fluency tasks, and is consistent with previous work linking random walks on semantic

networks with memory search (Griffiths, Steyvers, & Firl, 2007; Rhodes & Turvey, 2007;

Thompson, Kello, & Montez, 2013). We show that predictions consistent with the results of Hills

et al. (2012) are produced by random walks on semantic networks in which items that belong to

the same cluster are close together in the network.

By providing an alternative account of the behavioral data that does not explicitly encode

aspects of optimal foraging, our analyses suggest that further experiments will be required to

determine whether the processes underlying human memory search involve optimal foraging.

Furthermore, these results provide a concrete illustration of a theoretical problem for cognitive

psychology that was identified by Anderson (1978) in the context of the mental imagery debate:

different algorithms operating over different representations can produce the same predictions. In

this case, a one-stage search process (a random walk) operating on one representation (a semantic

network) can resemble a two-stage search process (optimal foraging) operating on another

1Hills et al. (2012) are not the first to suggest that a switching process is involved in memory search – similar ideas
appear in previous work (e.g., Raaijmakers & Shiffrin, 1981; Dougherty, Harbison, & Davelaar, 2014).
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representation (a semantic space). The mimicry may not be complete – it might be possible to

construct experiments that differentiate these two accounts – but both models produce key

behavioral phenomena from the semantic memory literature.

The remainder of the paper is organized as follows. First, we provide relevant background

information on the retrieval phenomena predicted by an optimal foraging account of semantic

fluency. We then discuss random walks as an alternative framework for modeling memory search,

beginning with a model considered by Hills et al. (2012). This random walk provided a poor fit to

human data and does not produce behavior consistent with optimal foraging. We then show that a

random walk operating on a different representation – a semantic network based on free

association data – does produce behavior consistent with optimal foraging. An analysis of the two

representations on which these random walks are based suggests that the critical difference is that

the semantic network better captures the clustering of animals, and a minimal model confirms that

a random walk based purely on such a cluster structure produces the key phenomena. We

conclude by discussing the implications of our work for understanding the role of representations

and algorithms in human foraging behavior and outlining possible directions for future research.

Optimal foraging as an account of semantic fluency

Optimal foraging theory covers a wide range of situations that a hungry animal might

encounter (Stephens & Krebs, 1986), but the most basic scenario involves deciding how to

navigate a “patchy” environment for resources. In this environment, food is contained in a set of

discrete patches, which are depleted as the animal consumes the food. Staying in a patch thus

provides diminishing returns, and the animal has to decide when to leave the patch and seek food

elsewhere. The solution is provided by the marginal value theorem (Charnov, 1976), which

indicates that the animal should leave the patch when the rate of return for staying drops below

the average rate of return in the environment. Hills et al. (2012) suggested that retrieval from

semantic memory is analogous to animals foraging for food, where a patch corresponds to a

cluster of semantically-related items and acquiring food corresponds to retrieving an item from
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this cluster.

To investigate whether optimal foraging theory might account for human search through

semantic memory, Hills et al. (2012) had people perform a semantic fluency task, where people

were asked to “Name as many animals as you can in 3 minutes”. They then analyzed the search

paths taken through memory, as indicated by the time between the animal names people

produced, called the inter-item response time (IRT). These names were assigned to the

predetermined animal categories identified by Troyer et al. (1997), which were used to analyze

patterns in people’s responses: if an item shares a category with the item immediately before it, it

is considered part of the same cluster, otherwise, that item defines a transition between clusters.

For example, given the sequence “dog-cat-giraffe”, “dog” and “cat” are considered elements of

the same cluster, while “giraffe” is considered the point of transition to a new cluster.

As a first measure of correspondence with optimal foraging theory, the ratio between IRTs

and the long-term average IRTs for each participant were examined at different retrieval positions

relative to a cluster switch.2 Figure 1a displays the results of this analysis. The first word in a

cluster (indicated by an order of entry of “1”) takes longer to produce than the overall long-term

average IRT (indicated by the dotted line), and the second word in a cluster (indicated by “2”)

takes much less time to produce (reported results of a within-participant paired t-test,

t(140) = 13.14, p < 0.001 and t(140) = 11.92, p < 0.001, for first and second words

respectively). Furthermore, the IRTs for words preceding a cluster switch (indicated by “-1”) did

not differ significantly from most participants’ own long-term average IRTs (reported results

using a one-sample t-test, 132 of 141 participants were not significantly different, and the nine

that were significantly different all had pre-switch IRT averages less than their long-term

averages). These results are in line with the marginal value theorem, which predicts that IRTs

should increase monotonically towards the long-term average IRT prior to a cluster switch, going

2Hills et al. (2012) also examined a number of preliminary tests to check their assumptions of memory search in
a patchy semantic space. As a test of whether transition points occur when local semantic patches are depleted, the
“residual proximity” (or inverse semantic distance) of each word produced was compared to all remaining words not
yet produced. They found that items produced immediately before a transition point had a lower residual proximity
than items produced immediately after, consistent with their prediction.
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above this average only when switching to a new cluster.

As a further test of the marginal value theorem’s predictions, the absolute difference

between the pre-switch IRT and long-term average IRT was plotted against the number of words a

participant produced (see Figure 1b). Participants with a larger absolute difference (indicating

they either left clusters too soon or too late) produced fewer words, as predicted by the marginal

value theorem (reported results using a linear regression model found a significant negative

relationship between participants’ deviation from the marginal value theorem policy for patch

departures and the total number of words the participants produced, with a slope of -5.35,

t(139) =−5.77, p < 0.001).

An initial comparison of optimal foraging and random walks

Inspired by the marginal value theorem, Hills et al. (2012) suggested a two-part process

model to account for the results of their experiment: when the IRT following a word exceeds the

long-term average IRT, search switches from local to global cues. They compared this model to

several simpler alternatives, including one in which memory search is simply construed as a

random walk over a set of items (called the “one cue – static” model in their paper). Random

walks have a long history as models of memory (Anderson, 1972), and recent work has shown

that random walks on semantic networks can produce a distribution of IRTs in fluency tasks

(Rhodes & Turvey, 2007; Thompson et al., 2013) and a pattern of responses in free association

tasks (Griffiths, Steyvers, & Firl, 2007) similar to those produced by people.

The random walk considered by Hills et al. (2012) operated over a set of 771 animals, being

possible responses in the semantic fluency task. The model assumed that each response people

produced was sampled from a distribution based on the previous response, with the probability of

each animal given by

P(Xi|X j) ∝ S(Xi,X j)
β (1)

where S(Xi,X j) is the similarity between the previous animal response X j and the current animal

response Xi, given by the BEAGLE model of semantic representation (Jones & Mewhort, 2007).
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In this model, each word is represented by a vector in a semantic space, and the similarity

between words is based on the cosine similarity of their vectors. β is a free parameter of the

model controlling the saliency (attention weight) assigned to a given cue.

Hills et al. (2012) compared this model with a two-part model that switched between

exploring a cluster using a similar random walk and making a larger leap between clusters (called

the “combined cue – dynamic” model in their paper). In this two-part model, the global switching

process was carried out using a generic model of memory retrieval based on the ACT-R and SAM

architectures (Anderson, 1990; Raaijmakers & Shiffrin, 1981). This makes it possible to calculate

the probability of each participant’s sequence of responses under both models, and Hills et al.

(2012) found that the two-part model gave a better fit to the human data than the random walk

model.

Another way to evaluate the performance of the random walk model is to examine whether

it can produce the key phenomena of human behavior that are suggestive of optimal foraging: the

correspondence between the average IRT and the time at which people switch clusters, and the

relationship between deviation from the marginal value theorem and overall performance (as

shown in Figure 1). To examine this, we simulated random walks generating responses via

Equation 1 and subjected these responses to the same analyses that Hills et al. (2012) used on

their data. We used their reported mean β = 4.34 in the simulations below.

To connect the output of a simulation (the sequence of items visited by the random walk

model) to the experimental results (i.e., IRTs), we need to define a method for mapping the

sequence of items to IRTs. In our analyses, we consider only the time between first visits to

animals, which we denote as τ(k) for the kth unique animal item seen (out of the K unique animal

items visited on the random walk). For example the output of a simulated random walk might be:

X0 = “dog”,X1 = “cat”,X2 = “dog",X3 = “mouse”.

Here, K = 3 with k = 1 referring to “dog”, k = 2 referring to “cat”, and k = 3 referring to

“mouse”. Our τ(k) function would return τ(1) = 1, τ(2) = 2, and τ(3) = 4 for this example since

we only consider the first time “dog” is visited (at timestep n = 1). Thus, we define the IRT
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between animals k and k−1 in a sequence of nodes visited along a random walk as

IRT (k) = τ(k)− τ(k−1). (2)

where τ(k) is the first hitting time of animal Xτ(k). For the above example, the IRT between

“mouse” (k = 3) and “cat” (k = 2) is

IRT (3) = τ(3)− τ(2) = 4−2 = 2.

With this mapping defined, we can perform the same set of analyses in Hills et al. (2012) on IRTs

between animal words for our random walker simulations.3

A total of 141 simulated random walks were run for 45 iterations, which was selected so

that the average number of animals produced by a simulated random walk was approximately

equal to the average number of animals typed by a participant in Hills et al. (2012). Figure 2

shows the results. Consistent with its poor fit to people’s responses, the random walk model did

not produce behavior that resembles optimal foraging. While there was a negative linear

relationship between the deviation from the marginal value theorem and overall performance

(slope of -31.21, t(138) =−4.00, p < 0.001)4, there are few differences between the IRTs and

long-term average IRTs, regardless of retrieval position. This latter difference is particularly

important when analyzing whether transitions between clusters occur at the point predicted by

optimal foraging.

Exploring a different semantic representation

In arguing that people engage in a two-stage process based on optimal foraging theory, Hills

et al. (2012) are making a commitment to a particular algorithm for memory search. In particular,

they show that this algorithm accounts for human behavior better than a random walk. However,

3Although Hills et al. (2012) consider only animals in their search space, we present this method to operate over
multi-domain spaces more generally.

4We removed outliers from all such analyses, which were defined as foragers whose deviation from the marginal
value theorem or the number of words produced were more than three standard deviations from their respective means.
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in making this comparison they also need to commit to a representation of semantic memory – in

this case the spatial representation provided by BEAGLE (Jones & Mewhort, 2007). But, as

Anderson (1978) pointed out, claims with respect to representation cannot be evaluated on

behavioral evidence alone without assuming a particular algorithm or process on that

representation (due to mimicry): with a different representation, a random walk might produce a

closer match to human behavior.

While Hills et al. (2012) focused on spatial representations, other work in the memory

literature have used random walks to capture aspects of human memory search (Griffiths,

Steyvers, & Firl, 2007; Rhodes & Turvey, 2007; Thompson et al., 2013) by assuming a different

kind of representation: a semantic network (Collins & Loftus, 1975). In a semantic network,

nodes and edges in a graph encode words and pairwise associations, respectively.5 Previous work

has explored how semantic networks can be used to explore questions about the structure of

semantic memory (Griffiths, Steyvers, & Firl, 2007; Griffiths, Steyvers, & Tenenbaum, 2007;

Romney et al., 1993; Steyvers, Shiffrin, & Nelson, 2004; Steyvers & Tenenbaum, 2005).

Following this work, we approximate the structure of semantic memory with a semantic network

constructed from people’s behavior in a word association task, where people are given a cue and

list words associated with the cue (Nelson, McEvoy, & Schreiber, 2004). For example, if a

participant were told the cue “bed,” they might respond with “pillow,” “blanket,” and “sheet.” The

result is a semantic network with 5018 nodes, representing the associations between words from

“a” to “zucchini.” There are 178 animals in the semantic network that were also one of the 373

animals produced by at least one of the 141 participants in Hills et al.’s (2012) experiment. Of

these 178 animals, 13 were not the associate of any other word and so, we removed them from

this and subsequent analyses (leaving 165 animals for analysis).6

5Technically, any random walk on a discrete set of objects can be interpreted as a random walk on a graph. From
this perspective, the random walk considered by Hills et al. (2012) could be viewed as a random walk on a semantic
network. However, the probabilities of moving between nodes on this graph were derived from the spatial represen-
tation used in BEAGLE, which places constraints on what kinds of conditional probabilities (and graph structures)
are possible (for a discussion of these constraints, see Tversky, 1977; Griffiths, Steyvers, & Tenenbaum, 2007). In
particular, low-dimensional spatial representations constrain the number of items to which an item can be the nearest
neighbor (Tversky & Hutchinson, 1986) – a property that might be relevant to the behavior of a random walk.

6Our random walk models operate over all 5018 nodes in the semantic network, however our τ(k) function operates
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A random walk on a semantic network searches memory in the following manner. Initially,

it starts at the node whose label corresponds to the cue. It moves to a new node by following an

edge, selected at random, from the current node to the new node. A random walk on a semantic

network could retrieve items in a patchy manner, appearing to make deliberate switches between

clusters, if the clusters correspond to densely linked sets of nodes with few links between them.

Thus, if the clusters that appear in people’s responses are reflected in the structure of the semantic

network, this non-strategic search process might be sufficient to capture the phenomena reported

by Hills et al. (2012).

Other than the network, there are two other steps to defining a random walk: (1) defining

what node the random walk starts at (or a probability distribution over nodes), and (2) defining the

probability distribution for transitioning from one node to the next node (a transition probability

matrix). We assume that the random walk starts at the node that represents the cue C given to the

participant. So, to capture the results of Hills et al. (2012), we assume that C is “animal”, and

X0 = l−1(C), where l(·) is a function whose input is a node and output is its corresponding label,

and l−1(·) is the inverse function, whose input is the label and its output is the node with that

label. We explore four possible transition probability matrices defined by the orthogonal

combination of two factors: whether the probability of transitioning out of a node is uniform or

weighted over its edges and whether there is a non-zero probability of jumping back to the node

corresponding to the cue.

The first factor is whether the probability of transitioning out of a node is uniform over its

outgoing edges from the current node (as discussed in the previous example) or weighted,

allowing the model to represent the degree of association between two items. In the case of the

weighted model, the probability of transitioning from the current node to a new node is

proportional to the frequency that the label of the new node was said by a participant given the

current node as a cue in the word-association database (Nelson et al., 2004). Formally, the

associations between a set of n items can be represented as a n×n matrix L, where Li j = 1 when

over just these 165 animals.
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item j is associated with item i and is zero otherwise. A random walk over these n items is

defined by a matrix M of transition probabilities, where Mi j denotes the conditional probability of

jumping to item i given the random walk is currently at item j. In the uniform model, this is

Mi j =
Li j

∑
n
k=1 Lk j

. (3)

The denominator is called the out-degree of node j or the number of items that are associates of

item j and so it is the number of possible items that the random walk could move to from node j.

For the weighted model, Li j is proportional to the number of times that i was an associate of j.

The weighted model can capture that some associations (e.g., “dog” and “cat”) are stronger than

others (e.g., “dog” and “house”).

The second factor is either non-jumping, where there is no effect of the cue besides for

initializing the random walk or jumping, where at each time step, the model “jumps” back to the

cue with probability ρ, but otherwise (with probability 1−ρ) the model transitions in the same

manner as described above.7

In sum, we will explore four different random walk models, which are formed by

combining two factors: whether the edges are uniform or weighted and whether the random walk

randomly jumps back to the cue (jumping) or not (non-jumping). Formally, they are all defined by

the following equation

P(Xn+1|C = “animal”,Xn = xn) = ρP(Xn+1|Xn = l−1(“animal”))+(1−ρ)P(Xn+1|Xn = xn) (4)

where P(Xn+1|Xn) is defined by Equation 3 with L defined according to whether the model is

uniform or weighted, and ρ = 0 when the model is non-jumping or 0 < ρ≤ 1 when the model is

7We note this is a qualitatively different operation than the proposal of “jumping” between different search cues
made by Hills et al. (2012). Rather than reflecting a strategic decision to switch between clusters, the jumps are
executed at random and simply “prime” the search process by returning to the initial state. In simulations not presented
in the paper, we also examined the consequences of jumping to random nodes – a process which is more similar to
the move from local to global cues in the model proposed by Hills et al. (2012), and has precedent in other work on
random walks and semantic memory (Goñi et al., 2010, 2011). However, this jumping process produces qualitatively
similar results to those described in the main text.
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jumping.

A direct quantitative comparison between these models and the models considered by Hills

et al. (2012) is difficult, as there are different numbers of animals in the free association data and

in the BEAGLE representation. This makes comparison hard because the probabilities assigned to

participant responses by each model is determined in part by the number of possible responses

(roughly speaking, the more animals in the model, the less probability assigned to each animal by

the model). Instead, we perform qualitative comparisons of these models in the same manner as

we did for the random walk earlier in the article.

A total of 141 simulated random walks were run for each of the four models. Each

simulation was run for 2000 iterations, which was selected so that the average number of animals

produced by a simulated random walk was approximately equal to the average number of animals

typed by a participant in Hills et al. (2012). On average, each participant responded with 36.8

animals, and an average of 33.5, 42.5, 23.8, and 30.9 animals were produced by the uniform-non

jumping, uniform jumping, weighted non-jumping, and weighted jumping random walk models,

respectively. We expected the jumping models to produce more animals than the non-jumping

models because “jumps” got the model away from nodes already visited by the random walk.

Additionally, we expected slightly fewer animals to be produced by the random walk models than

participants because of the small number of animals included in the semantic network (most

people have probably encountered more than 165 animals). For the jumping models, we selected

the probability of jumping on a given trial, ρ, to be 0.05. Other values for ρ produced similar

results (assuming the value was small).

Figure 3 shows the results of analyzing the simulations of the four random walk models for

optimal foraging-like behavior in the same manner as Hills et al. (2012) performed for participants

in their experiment8. In the left column of Figure 3 is the average ratio of the IRT of an item

relative to its distance to the closest cluster switch (“order of entry”), and, the overall average IRT

for each random walk model. Like people, the first item in a cluster (indicated by “1”) has a

8We also examined “residual proximity”, finding each of the models to follow the prediction that the last word in
a patch has a lower residual proximity than the first word in a patch (t(140) =−2.4, p < 0.05 for all four models).
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significantly longer IRT than the overall average IRT (t(140)> 17, p < 0.001 for all four models),

and the second item in a cluster (indicated by “2”) has a significantly shorter IRT than the overall

average IRT (t(140)<−15, p < 0.001 for all four models).9 In addition, the IRTs for words

preceding a cluster switch (indicated by “-1”) were not signficantly different from most walkers’

long-term average IRTs.10 This pattern of results is consistent with the results of participants in

Hills et al. (2012)’s experiment, the marginal value theorem, and optimal foraging. Each time the

IRT increases dramatically (at “1”) and then decreases dramatically (at “2”), one might be

tempted to suggest that the model “found” another “patch” of relevant items in the semantic

network. However, there are no search strategies being used by the model. It is simply walking

randomly over the semantic network and emitting the labels of nodes that it visits. Thus, a simple

process over a structured representation is sufficient to capture optimal foraging-like behavior.

The right column of Figure 3 examines the marginal value theorem’s cluster-switching

policy, where the absolute difference between the pre-switch IRT and long-term average IRT was

plotted against the number of words a random walker produced along with a regression line

through this data (as in Figure 1b). Across all four models, walkers with a larger absolute

difference (indicating they either left clusters too soon or too late) produced fewer words (a linear

regression model found a significant negative relationship between axes for each of the four

models: slope = -0.19, t(137) = 2.51, p < 0.05, slope = -0.21, t(137) = 1.98, p < 0.05, slope =

-0.10, t(135) = 3.25, p < 0.05, slope = -0.09, t(137) = 2.15, p < 0.05 for the uniform

non-jumping, uniform jumping, weighted non-jumping, and weighted jumping models

respectively). Intriguingly, each of the models produces the basic phenomena taken as evidence

for the use of the marginal value theorem in memory search. These results show that behavior

consistent with following the marginal value theorem can be produced by surprisingly simple

9The introduction of jumps primarily reduces the difference for IRTs before (at “-2”) and after a cluster switch (at
“2” and “3”), while increasing the amount of time it takes to find the first item in a cluster. This can be explained by
the model randomly jumping back to the cue anywhere along the search path, making it difficult to find a new animal,
yet once one is found, there are more unseen animals left to find nearby.

10The IRT for words preceding cluster switches (indicated by “-1”) of 140, 138, 139, and 138 out of 141 walkers
were not significantly different for the uniform non-jumping, uniform jumping, weighted non-jumping, and weighted
jumping models respectively, and all of the walkers that were significantly different had pre-switch IRT averages less
than their long-term averages for each of the four models.
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search algorithms, at least when measured along these metrics. In the following sections, we turn

to examining how the structure of semantic memory affects the behavior of these random walks.

The importance of clustering

Our results so far show that a random walk on a semantic network derived from free

associations produces phenomena suggestive of optimal foraging, while a random walk on a

spatial representation generated by BEAGLE (Jones & Mewhort, 2007) does not. This raises a

natural question: Why? What is the critical difference between these two representations?

To address this question, we examined whether the similarity between items in these two

representations reflects the clusters used by Troyer et al. (1997). According to the semantic

network, the similarity between the animals corresponding to nodes i and j was encoded as

si j = exp{−di j}, where di j is the shortest path distance between the nodes i and j in the semantic

network. To derive similarities from the clusters, we used an additive clustering model (Shepard

& Arabie, 1979), where the (nonexclusive) clusters from Troyer et al. (1997) were interpreted as

features. To do so, we formed a 165×165 similarity matrix S. According to additive clustering,

the similarity matrix is defined as

S = FWF′ (5)

where F is the matrix of clusters interpreted as features ( fac = 1 when animal a is in cluster c),

and W is a diagonal weight matrix, whose elements are non-negative and represent the

psychological weights of the clusters. We used the 22 animal clusters defined by Troyer et al.

(1997) to define F. We inferred W by maximizing the posterior distribution of reconstructing S

based on graph distances using additive clustering, assuming a Gaussian prior on W and Gaussian

reconstruction error (as outlined in Navarro & Griffiths, 2008).

The top row of Figure 4 shows the graph-based similarity matrix and the similarity matrix

reconstructed using additive clustering. Visual inspection of the block structure in both similarity

matrices confirms that they are very similar and provides evidence that the semantic network

implicitly encodes the clusters. The distance between the nodes corresponding to animals in the
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same cluster is smaller than the distance between animals in different clusters and the retrieval

process depends (implicitly or explicitly) on this distance. This may be why a random walk on a

semantic network can produce behavior that resembles optimal foraging.

By comparison, the representation used in the random walk evaluated by Hills et al. (2012)

does not show the same pattern of clustering. We used the same additive-clustering technique on

the similarity data from BEAGLE, examining how well the similarity data could be predicted

from the cluster membership of different animals. The bottom row of Figure 4 shows the results:

there is only a weak signature of the animal clusters in these data. Consequently, the poor

performance of this model could be a result of the underlying representation not encoding a clear

cluster structure.

These results suggest that the critical difference between these two representations may be

the extent to which they capture the cluster structure of animals. Because items that are in the

same cluster are close in the semantic network, a random walk will tend to stay within clusters

and occasionally switch between clusters, creating the illusion of a two-stage search process. To

evaluate this idea, and to demonstrate that the performance of our model does not depend on any

of the specifics of the free association data from which our semantic network was formed, we

conducted a further simulation using a minimal random walk model. In this model, we assume

that the probability of a transition from item j to item i is given by

Li j =


0 i = j

(1− p)/C j i and j are in the same cluster

p/(n−C j−1) i and j are not in the same cluster

(6)

where C j is the number of items that belong to the same cluster as item j (excluding item j) and n

is the total number of items. This model only makes use of the cluster structure, assigning a high

probability to transitions within a cluster when p is small, but uses no other information about the

items to determine the transition probabilities.

The random walk was run over the subset of 165 animals from the semantic network used
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in our previous simulation, and p was determined by calculating the average probability of

making a transition outside a cluster in the uniform non-jumping random walk based on the word

association network. We ran 141 simulations for a total of 45 steps each, and submitted them to

the same analyses as Hills et al. (2012). The results are shown in Figure 5. The left column shows

the key phenomena associated with optimal foraging, with the first word in a patch taking

significantly longer to produce on average (t(140) = 9.49, p < 0.001), and the second word taking

much less time to produce than the long-term mean (t(140) =−11.11, p < 0.001). The right

column of Figure 5 examines consistency with the cluster-leaving policy indicated by the marginal

value theorem, where again we find that walkers with a larger absolute difference (indicating they

either left clusters too soon or too late) produced fewer words (a linear regression model found a

significant negative relationship between axes: slope = −4.88, t(132) = 4.09, p < 0.001).

The fact that this minimal model produces behavior similar to optimal foraging suggests

that random walks can mimic a two-stage search process, provided they are on a representation

that captures the underlying cluster structure. This suggests the success of the random walk

model using the semantic network based on free associations in producing behavior that

resembles optimal foraging, and the failure of the random walk using the BEAGLE representation

considered by Hills et al. (2012) may be considered a consequence in the extent to which they

capture this cluster structure.

Discussion

In this article, we examined two potential explanations for why people show optimal

foraging-like behavior when they retrieve items from semantic memory. Both explanations

produced behavior consistent with the predictions of optimal foraging, but they propose that very

different representations and processes are responsible for this behavior. Hills et al. (2012)

suggested that semantic memory is based on spatial representations and search is a dynamic

process, retrieving items from one cluster at a time and switching between clusters when the

retrieval rate falls below a threshold. We proposed an alternative explanation, where semantic
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memory is represented by a network and search is simply a random walk on the network. In

support of this proposal, we showed that predictions consistent with the results of Hills et al.

(2012) are produced by a random walk model on a network where semantically-related items are

close together in the network.

In the remainder of the paper we discuss some of the implications of our results. In

particular, the observation that different algorithms operating on different representations can

yield similar predictions echoes previous arguments about the challenges of identifying cognitive

representations and processes (Anderson, 1978). We explore this connection and highlight some

directions for future research to try and shed light on the processes that underlie performance on

semantic fluency tasks.

Representations and algorithms

Taken together, our simulations show that the behavior in semantic fluency tasks that Hills

et al. (2012) viewed as evidence for optimal foraging is also predicted by a random walk on a

semantic network. Crucially, this behavior depends on the representation used by the random

walk model: a random walk on a semantic network produces optimal foraging behavior, but a

random walk on corresponding spatial representations does not. Consequently, it seems that there

is something special about the semantic network representation that allows the simple random

walk to appear similar to optimal foraging.

Finding that different algorithms operating on different representations can produce the

same behavior might seem surprising, but has a precedent in cognitive psychology. The mental

imagery debate (e.g., Kosslyn, 1994; Pylyshyn, 1973) depended crucially on this issue – whether

there are effective ways of identifying the algorithms and representations that human minds

employ. Anderson (1978) convincingly argued that we should not be surprised to find cases where

algorithms and representations that seem quite different nonetheless end up producing similar

behavior – such cases are the rule, rather than the exception. In fact, for a sufficiently rich set of

algorithms and representations, we can always find algorithm-representation pairs that cannot be
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discriminated based purely on behavior.

The situation illustrated by our analyses is not necessarily as extreme as the cases that

Anderson considered, but it does illustrate one of the fundamental challenges of cognitive

psychology: possible psychological representations and mechanisms are always underdetermined

by the available behavioral data, and even behavior that seems like the signature of one

mechanism can sometimes be produced by others. In this case, further experiments may be able

to discriminate between optimal foraging and random walks, but these experiments will have to

be specifically designed to distinguish between these two accounts rather than motivated by the

predictions of one account alone.

Future Directions

Demonstrating that random walk models can produce behavior consistent with optimal

foraging in semantic fluency tasks generates some interesting directions for future research. As

mentioned in the previous section, having two competing accounts of the same phenomena

suggests that the next step in exploring semantic fluency is designing an experiment that

distinguishes between these accounts. One way to do this might be to explore the extent to which

human memory search really is strategic – offering people the opportunity to get a “hint” (say, an

example category member) might provide the way to do this, as it would be possible to examine

whether people seek hints at the moments predicted by the marginal value theorem.

An alternative approach to distinguish these models is considering whether the optimal

foraging account can also predict results that the random walk model has previously been used to

explain. One such result is the correspondence of word fluency with PageRank (Griffiths,

Steyvers, & Firl, 2007) – something that follows directly from the random walk account, but

might be more challenging to account for in terms of optimal foraging. Likewise, additional

support for optimal foraging in memory has been found which directly measures variables

associated with working memory capacity and relates them to features associated with the search

process (Hills & Pachur, 2012; Hills, Mata, Wilke, & Samanez-Larkin, 2013). Accordingly, these
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findings provide future tests for the random walk account.

Another direction for future research is considering how these different proposals fare in

accounting for changes in semantic fluency in clinical populations. Given that conditions such as

Alzheimer’s and Parkinson’s disease differentially affect clustering and switching

(Borge-Holthoefer, Moreno, & Arenas, 2011; Johns et al., 2013; Lezak, 1995; Tröster et al., 1989;

Troyer et al., 1997, 1998), comparing what degradations to the models are needed to explain the

differential changes in different clinical populations might help to answer practical as well as

theoretical questions about human memory.

Finally, exploring some of the nuances of optimal foraging as an account for human

memory search is likely to be productive. Human foraging behavior has been examined in a few

other domains, including information foraging (Pirolli & Card, 1999) and searching for resources

in a simulated spatial environment (e.g., Cain, Vul, Clark, & Mitroff, 2012; Hutchinson, Wilke, &

Todd, 2008; Kalff, Hills, & Wiener, 2010; Wolfe, 2013). In particular, studies in simulated

environments investigate the strategies people use in multiple-target search and examine whether

searchers adapt their strategies based on the target distribution statistics. The common finding is

that people are in fact sensitive to the resource distributions of their environment, spending more

time in resource-dense patches as predicted by optimal foraging theory. However, their actual

departure times from these patches tend to be at non-optimal rates (e.g., dependent on patch

quality and not the long-term average rate of return as predicted by the marginal value theorem).

It would be interesting to see whether modifying the optimal foraging model considered by Hills

et al. (2012) to produce behavior more consistent with human search in these other domains

would increase or decrease its fit to the ata from semantic fluency tasks.

Conclusion

Identifying and retrieving information relevant to a cue is one of the basic capabilities of the

human memory system. Understanding how people solve the task of searching this vast store of

information is likely to give us insight not just into the human mind, but into how to build better
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artificial information retrieval systems. Optimal foraging and random walks on semantic

networks offer two quite different accounts of this process – one based on an intelligent search

strategy, the other on a rich representational framework. Both algorithms also have links to other

disciplines, offering links to literatures in biology and computer science respectively. That both

accounts can produce similar behavior is surprising, but also exciting, in that it creates new

opportunities to explore these connections more deeply and develop a more complete picture of

this remarkable human capacity.
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Figure 1. Experimental results of a semantic fluency experiment (free recall from the category of
animals) reproduced from Hills et al. (2012). (a) The mean ratio between the inter-item response
time (IRT) for an item and the participant’s long-term average IRT over the entire task, relative to
the order of entry for the item (where “1” refers to the relative IRT between the first word in a
cluster and the last word in the preceding cluster). The dotted line indicates where item IRTs
would be the same as the participant’s average IRT for the entire task. (b) The relationship
between a participant’s deviation from the marginal value theorem policy for cluster departures
(horizontal-axis) and the total number of words a participant produced.
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Figure 2. Results from 141 simulations of the random walk model from Hills et al. (2012),
submitted to the same analyses as their human data. (a) The mean ratio between the inter-item
response time (IRT) for an item and the walker’s long-term average IRT over the entire task,
relative to the order of entry for the item (where “1” refers to the relative IRT between the first
word in a cluster and the last word in the preceding cluster). The dotted line indicates where item
IRTs would be the same as the participant’s average IRT for the entire task. (b) The relationship
between a participant’s deviation from the marginal value theorem policy for cluster departures
(horizontal-axis) and the total number of words a participant produced.
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Figure 3. Results after 141 simulations for the four random walk models: (a) the uniform
transition model with no jumps, (b) the weighted transition model with no jumps, (c) the uniform
transition model with a jump probability of 0.05, and (d) the weighted transition model with a
jump probability of 0.05. The left column displays the mean ratio between the inter-item response
time (IRT) for an item and the walker’s long-term average IRT over the entire task, relative to the
order of entry for the item (where “1” refers to the relative IRT between the first word in a cluster
and the last word in the preceding cluster). The dotted line indicates where item IRTs would be
the same as the walker’s average IRT for the entire task. The right column displays the
relationship between a walker’s deviation from the marginal value theorem policy for cluster
departures (horizontal-axis) and the total number of words a walker produced.
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Semantic network similarity matrix Additive clustering reconstructed matrix

BEAGLE space similarity matrix Additive clustering reconstructed matrix

Figure 4. (Top row) A visualization of the similarity between pairs of animals in the semantic
network (left panel) and an additive clustering model (right panel), where darker colors represent
stronger similarities. (Bottom row) A visualization of the BEAGLE animal similarity space (left
panel) and an additive clustering model (right panel). The rows and columns of the each matrix
were reordered to display animals in the clusters with largest weight first.
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Figure 5. Results for the minimal model on our semantic network with p estimated from the
uniform transition word association matrix. (a) The mean ratio between the inter-item response
time (IRT) for an item and the walker’s long-term average IRT over the entire task, relative to the
order of entry for the item (where “1” refers to the relative IRT between the first word in a patch
and the last word in the preceding patch). The dotted line indicates where item IRTs would be the
same as the walker’s average IRT for the entire task. (b) The relationship between a walker’s
deviation from the marginal value theorem policy for patch departures (horizontal-axis) and the
total number of words a walker produced.


