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Reconciling shared 
versus context‑specific information 
in a neural network model of latent 
causes
Qihong Lu 1*, Tan T. Nguyen 2, Qiong Zhang 3, Uri Hasson 1, Thomas L. Griffiths 1,4, 
Jeffrey M. Zacks 2, Samuel J. Gershman 5 & Kenneth A. Norman 1

It has been proposed that, when processing a stream of events, humans divide their experiences in 
terms of inferred latent causes (LCs) to support context‑dependent learning. However, when shared 
structure is present across contexts, it is still unclear how the “splitting” of LCs and learning of shared 
structure can be simultaneously achieved. Here, we present the Latent Cause Network (LCNet), a 
neural network model of LC inference. Through learning, it naturally stores structure that is shared 
across tasks in the network weights. Additionally, it represents context‑specific structure using a 
context module, controlled by a Bayesian nonparametric inference algorithm, which assigns a unique 
context vector for each inferred LC. Across three simulations, we found that LCNet could (1) extract 
shared structure across LCs in a function learning task while avoiding catastrophic interference, (2) 
capture human data on curriculum effects in schema learning, and (3) infer the underlying event 
structure when processing naturalistic videos of daily events. Overall, these results demonstrate a 
computationally feasible approach to reconciling shared structure and context‑specific structure in a 
model of LCs that is scalable from laboratory experiment settings to naturalistic settings.

In naturalistic settings, the stream of experiences is often not independent and identically distributed (iid). In 
particular, humans are constantly confronted with experiences that are context-dependent, and the underly-
ing context is often temporally persistent. Consider the example of learning two similar languages, such as 
Norwegian and Swedish. First, natural language inputs are temporally auto-correlated—as a Norwegian travels 
to Sweden, he or she will experience Swedish for an extended period of time. As experiences are governed by 
auto-correlated contexts (Sweden versus Norway), learning can be facilitated by partitioning experiences accord-
ing to their underlying contexts (or tasks) to prevent inter-context interference. In this example, lumping the 
two contexts, Sweden versus Norway, can cause interference for context-dependent responding (e.g., the word 
“water” is “vann” in Norwegian and “vatten” in Swedish). However, as many of the words are shared across these 
two languages (the word “book” is “bok” in both Norwegian and Swedish), it is also beneficial to dedicate a set 
of shared representations to maintain the regularities common across contexts. How should the brain maintain 
shared structure and context-specific structure simultaneously?

One promising approach to context-dependent learning is the theory of latent cause inference (LCI). This 
theory proposes that humans assign latent causes (LCs) to experiences to facilitate learning, prediction, memory, 
and generalization in a context-dependent manner (Fig. 1)1–7. In the domain of event cognition, this theory was 
recently instantiated as a computational modeling framework known as Structured Event Memory (SEM)3. 
SEM addresses several important problems. First, SEM uses a Bayesian nonparametric algorithm to assign 
LCs to the observations. As the number of inferred LCs grows in an adaptive manner, SEM does not need to 
assume the number of contexts is known a priori. Second, SEM uses a dedicated neural network to represent 
each  LC3, which is related to the mixtures of experts  architecture8. As representations of different LCs are fully 
separated into different networks, this circumvents catastrophic interference even if experiences are presented 
according to a blocked curriculum (i.e., a temporally extended period of exposure to experiences from one 
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context, followed by a temporally extended period of exposure to experiences from a different context)—this is 
a key advantage of SEM over standard neural networks lacking this LC inference mechanism, which can show 
catastrophic interference in this  situation9 (see the "Discussion" section for a summary of other relevant models 
of context-dependent learning).

The SEM framework accounts for a wide range of human data. First, SEM captured recent human data where 
blocked curricula facilitated learning of simple event  schemas9 (see Simulation 2). In this case, having separated 
context representations was important in reducing catastrophic interference. Second, SEM was able to explain 
the way humans divide up continuous streams of experiences into discrete events, a process known as event 
 segmentation10–15 (see Simulation 3).

While SEM has its strengths, it also has important shortcomings. In particular, its use of distinct repre-
sentations for different LCs prevents it from representing shared structure. Because observations assigned to 
a particular LC are only used to train that assigned LC, other LCs do not learn at all from these observations. 
As such, SEM does not provide an answer to the question, raised above, of how we simultaneously represent 
context-dependent knowledge and shared structure. Moreover, when using fully separated neural networks to 
store knowledge about different contexts, the amount of required neural resource scales linearly as a function of 
the number of inferred LCs, which is computationally infeasible. The goal of this paper is to assess whether it is 
possible to modify the SEM architecture to better represent shared structure, without compromising its ability to 
account for human event segmentation (as evidenced by the two findings noted above). We know that the brain 
can do this, and it is a fundamental challenge for cognitive modeling to identify architectures that can jointly 
satisfy these two objectives. In the next section, we present a model as a step toward addressing this challenge.

LCNet—Indexing latent causes with context vectors
We propose an alternative model, the Latent Cause Network (LCNet), which indexes LCs using context vec-
tors (Figs. 2b, 3c, 4c). This is inspired by the classic connectionist idea of  context16,17. At a high level, instead 
of representing different LCs as different networks, LCNet represents different LCs in different regions in the 
hidden activity space of the same network. Similar to SEM, given an observation, LCNet decides whether to 
assign this observation to a known LC or a new LC using the same Bayesian LCI process, including the prior 
(see the "Methods" section for details of the latent cause inference procedure). Unlike SEM, in LCNet, each LC 
is represented by a unique random context vector sampled from a standard Gaussian distribution. There are 
two advantages of using random vectors: (1) new context vectors can be generated efficiently, and (2) random 
vectors in high dimensional space are approximately orthogonal (Supplement 1).

In Simulation 1, we provide a proof-of-concept simulation that LCNet can avoid catastrophic interference and 
also extract shared structure across tasks to make learning more efficient. Then, we show the ability to extract 
shared structure across tasks is fully compatible with two important sets of findings that SEM can explain. In 
Simulation 2, we show that, similar to SEM, LCNet can explain the finding showing that blocked curricula can 
facilitate learning of two simple event  schemas9, a result that is critically dependent on having separated rep-
resentations of the two schemas. In Simulation 3, we show that LCNet can also explain human data on event 
segmentation while they view natural  videos18,19. Overall, this set of results shows that it is possible to reconcile 
the tension between representing shared versus context-specific information.

Additionally, representing contexts as continuous vectors is a useful step towards a neurally plausible and 
computationally feasible context representation scheme; because LCNet uses context vectors to represent LCs 
instead of splitting off new networks, the size of the model no longer grows as a function of the number of 

Figure 1.  How latent cause inference partitions experience. Observations are governed by the current task 
identity, which is auto-correlated in time. At time t, the agent infers the latent cause (LC) of the current 
observation. Event segmentation is triggered when there is a switch of the inferred LC. Note that the inferred 
LCs do not always match the ground truth. In this work, the terms “context” and “task” are used interchangeably. 
Note that this is a conceptual diagram to clarify the terminology rather than a formal probabilistic model 
diagram. 
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inferred LCs—unlike SEM, inferring new latent causes does not lead to an increase in the number of parameters 
(weights) in the model.

Simulation 1: Reusing prior knowledge of shared structure across tasks 
while reducing catastrophic interference
It is well known that humans can learn shared structure across tasks, making it possible to re-use prior knowl-
edge more efficiently given a new  task20–24. In this simulation, we present a proof-of-concept demonstration that 
LCNet can use the learned shared structure to learn new tasks faster, while overcoming catastrophic interference. 
Inspired by the literature on function  learning25–30, we designed a task set where the model had to learn multiple 
polynomial functions with shared structure—unbeknownst to the model, each function (Fig. 2d) is a sum of an 
idiosyncratic term (Fig. 2e) and a shared term (Fig. 2f). As the shared term is shared across all tasks, learning 
the shared term should speed up the learning of new tasks. We performed this simulation N = 100 times. Every 
time, all polynomial terms were re-sampled to make sure the results did not depend on the specific form of the 
polynomials.

Each polynomial function is a regression task. At time t, given the input value for the currently active task xt 
and a context-indicative signal (CIS) for the current polynomial, the model has to produce the corresponding 
output value yt. Concretely, the CIS is simply a 128-dimensional random binary vector, sampled independently 
for every task. Noise is imposed by randomly flipping 10% of the values. The noise of the CIS was set to be low so 
that the LCI mechanism was guaranteed to be accurate for all models; this way, any differences in performance 
can be attributed to differences in the architectures being evaluated.

We compared three different models corresponding to three representation schemes for LCs: a standard feed-
forward neural network that uses fully shared representation (Fig. 2a), a feedforward LCNet that uses random 
context vectors (Fig. 2b), and a feedforward version of SEM that uses fully separated representations (Fig. 2c). 
In feedforward LCNet, the same network is responsible for learning all polynomials, and that network receives 
context vectors that indicate which polynomial is currently active. In feedforward SEM, a unique network is 
dedicated to learning each polynomial. For both models, the LCI mechanism is responsible for inferring the 
ongoing LC. Finally, the regular feedforward model has to learn the task-dependent mapping with the CIS 
directly. See Algorithm 1 and Algorithm 2 in the methods section for a comparison of the differences between 
LCNet and SEM.

The results indicate that all models can learn to fit all four polynomials very well. To understand the role 
of LCI in LCNet, we lesioned the connection between LCI and the hidden layer (marked in blue, Fig. 2b) after 
training, and we found that the output of the lesioned models produced the shared term, given the trained range 
of x values (Fig. 2g). This indicates that the model can factorize its knowledge in two different pathways—after 
training, the input-to-hidden pathway was mainly responsible for representing the shared term across all poly-
nomials, while the LCI-to-hidden pathway was mainly responsible for the idiosyncratic term of the polynomials. 
The LCI-to-hidden pathway biases the final model output in a task-specific manner, and in the absence of it, the 
model produces what is common across tasks.

To examine if our model can (1) overcome catastrophic interference and (2) re-use prior knowledge efficiently, 
we looked at the learning curves, measured in terms of the mean squared error (MSE). All models were trained 
in a fully blocked setting where training was organized into distinct epochs. In epoch one, the model was only 
trained on randomly sampled observations from polynomial zero; in epoch two, the model was only trained on 
randomly sampled observations from polynomial one, and so on. Each observation is an x–y pair such that the 
model had to make a regression prediction.

At the end of every epoch, all models were tested on all polynomials. The test MSE for the four polynomials 
was plotted separately, and the lines with lower color transparency correspond to polynomials that were trained 
earlier (Fig. 2h). This allows us to see how learning one polynomial affects knowledge about other polynomials. 
At the end of epoch zero, we found that all three models were successful at reducing the error on the trained 
polynomial. At the end of epoch one, again, all models were successful at reducing error for polynomial one, 
but the error for polynomial zero (1) increased significantly for the regular neural network, (2) only slightly 
increased for LCNet; and (3) did not increase for feedforward SEM. The results were similar for later polynomi-
als. In general, learning more polynomials caused (1) a severe level of forgetting for the standard neural network, 
(2) a slight amount of forgetting for LCNet, and (3) no forgetting at all for the SEM model with fully separated 
representations. A priori, it is not entirely obvious that using random vectors would be sufficient for reducing 
interference—the projected patterns of these random vectors to the hidden layer might not be orthogonal, as the 
task-specific parameters (in blue; Fig. 2b) were learnable. However, our results empirically showed that indexing 
different polynomials using random vectors is still effective at reducing interference.

To understand the extent to which prior learning speeds up new learning, we looked at the learning curves 
while these models went through each individual training observation within every epoch (Fig. 2i; Note that 
the learning rates across models were the same to ensure learning curves are comparable.). For the SEM model 
with fully separated representations, since there is no re-use of prior knowledge, the learning curve for each 
polynomial was qualitatively similar. However, for LCNet and the standard neural network, having learned the 
first polynomial, learning became much faster since they can re-use the previously learned information about 
the shared term to facilitate new learning.

Overall, there is a tradeoff between representing the shared structure versus eliminating interference across 
tasks. By using completely separated representations for different LCs, SEM can completely eliminate interfer-
ence across LCs, but it cannot extract the shared structure. On the other hand, a regular neural network can 
learn the shared structure, as it uses overlapping representations for all tasks, but it suffers from catastrophic 
interference. Notably, LCNet can store the shared structure in a common neural network using overlapping 
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Figure 2.  LCNet can overcome catastrophic interference and efficiently reuse the shared structure across 
tasks. (a) A standard feedforward neural network model. The weights are shared across all latent causes. (b) In 
LCNet, the latent cause inference (LCI) mechanism infers the ongoing latent cause and feeds the corresponding 
context vector to modulate the activity of the hidden layer. Note that the neural network part is shared across 
tasks. (c) A feedforward SEM  model3, which uses K different neural networks to represent K latent causes. The 
LCI mechanism chooses which network to  activate3. (d) The polynomials that the models have to learn—each 
polynomial is a sum of the task-general shared term and a task-specific idiosyncratic term shown in panel e. 
These polynomials were resampled for every simulation run so that the results (h and i) were not specific to any 
particular choice of polynomials. (e) The task-specific terms used to generate the polynomials in panel d. (f) 
The shared term used to generate the polynomials in panel d. (g) The model produces the shared term when the 
LCI module is lesioned, which suggests that LCNet can factorize the task into a shared term and a task-specific 
term. (h) Learning curves for all polynomials plotted separately over epochs. The model was only trained on the 
i-th polynomial at epoch i. Error bars indicate 3SE. N = 100 models per condition. (i) Learning curves for each 
polynomial. Each curve is the learning curve within an epoch over the number of observations.
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representations and store the task-specific structure in its LCI module. As a result, LCNet combines the advan-
tages of both representational schemes—it can extract the shared structure across LCs and use it to make new 
learning more data efficient while overcoming catastrophic interference. This result resonates with findings from 
the study of cognitive control, showing that separated representations can support parallel execution of multiple 
tasks (multitasking) at the cost of learning efficiency, while representation of the structure shared across tasks 
facilitates learning at the cost of inability to multitask due to inter-task  interference31–33. In practice, an agent 
needs to balance the risk of catastrophic interference and the amount of shared structure across LCs. These two 
factors depend on the similarity structure across  tasks34,35, as well as the number of tasks in the environment.

Simulation 2: Modeling the curriculum effect on schema learning
In this simulation, we demonstrate that LCNet can explain recent findings on curriculum effects on schema 
learning that depend on having separated representations for different contexts. The effect of interleaved versus 
blocked curriculum has been extensively studied in the domain of learning and  memory36–44. Selecting between 
an interleaved and blocked curriculum determines the autocorrelation structure of the context: In the blocked 
setting, the ongoing context rarely changes, whereas in the interleaved condition, the context changes very 
frequently.

In a recent  study9, participants learned a context-dependent state prediction task using either an interleaved 
or a blocked curriculum. Each state was a small part of a narrative, and a sequence of states formed a coherent 
event. During training and testing, the participants were prompted to make a two-alternative-forced-choice 
about the upcoming state. The state transition graph is shown in Fig. 3a. At the beginning of each trial, partici-
pants observed if the event was in a cafe context or a bar context. Unbeknownst to the participants, this location 
(cafe vs bar) was the context-indicative signal (CIS) that determined the state-transition structure for this trial. 
Figure 3b shows an example sequence from the graph, conditioned on the cafe context. Overall, the participants’ 
goal was to learn how events tend to unfold in the two contexts.

The study found that, during the test phase, participants in the blocked curriculum performed much better 
than participants in the interleaved curriculum (Fig. 3d, e)9. Notably, a standard recurrent neural network makes 
the opposite prediction—it performs poorly in the blocked curriculum due to catastrophic interference and 
performs much better in the interleaved  curriculum9. Finally, a simplified version of SEM was able to capture 
the data—this SEM model maintains a transition matrix for every unique LC, which keeps track of the counts 
of the observed transitions. Then, SEM predicts upcoming states according to the transition counts of the cur-
rently inferred LC. When the model hyperparameters were set to promote autocorrelation of LCs in time, LCI 
was much more accurate in the blocked condition compared to the interleaved  condition9.

Figure 3c shows the architecture of the model used in this simulation. At a high level, the learning objective 
of the model is to predict “what would happen next.” More concretely, at time t, once the model gets the current 
state xt, the LCI mechanism chooses the LC with the maximum posterior probability (see the "Method" section 
on the Details of the latent cause inference procedure). Then, the model predicts the next state xt+1 given xt, and 
the context vector that corresponds to the selected LC.

We found that LCNet can account for human data. Its performance during the test phase was much better in 
the blocked condition compared to the interleaved condition (Fig. 3f, g). This is because the model’s prior on LC 
inference was set to be sticky; this assumption that contexts are autocorrelated in time has been incorporated in 
other models of continual  learning3,43,45, including models of this particular  task9,46. In our case, the stickiness 
prior matches the autocorrelation structure in the blocked curriculum, where LCs are persistent, compared to 
the interleaved curriculum, where LCs have low autocorrelation. As a consequence, LCI was much more accurate 
in the blocked condition (Fig. 3h, i). Supplement 2 shows the distribution of the number of LCs inferred in the 
interleaved condition.

In general, different factors can affect the relative benefits of blocked versus interleaved learning. For example, 
prior work has shown that—in category learning tasks—the two kinds of curricula can differentially direct peo-
ple’s attention to different dimensions of the  stimuli44. Providing a comprehensive account of the many nuanced 
ways in which curriculum manipulations can affect learning is out of scope for this paper. However, in Supple-
ment 3, we further demonstrate that LCNet does not always perform better in the blocked curriculum—instead, 
its performance depends on how well its stickiness prior matches with the level of autocorrelation of the task 
environment. As the stickiness decreases, the model’s performance during the test phase (1) increases in the 
interleaved condition and (2) decreases in the blocked condition.

Overall, in this simulation, we found that LCNet can explain human  data9 on how curriculum affects schema 
learning. Our model qualitatively captured the finding that people performed better in the blocked condition 
than in the interleaved condition, in contrast to a standard recurrent neural network that made the opposite 
 prediction9. Critically, though explaining the human data might seem to depend on separated representations, 
as the transition structures for the two contexts are highly dissimilar, having a common network did not prevent 
LCNet from explaining this data.

One limitation of this simulation is that LCI was performed all the time (for all time points and all trials), 
which is not plausible. In Supplement 4, we present a proof-of-concept simulation in which LCNet is augmented 
with an episodic memory mechanism that can retrieve previously used LCs in response to sensory cues; the 
use of episodic memory allows the model to rely less often on full Bayesian inference, while still qualitatively 
capturing human data.
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Figure 3.  The experiment design and empirical results from ref. 9 and the corresponding simulation results. (a) The 
state-transition graph (event schemas) used in the experiment. At the beginning of every trial, the participants observe 
if the event will happen in a cafe or a bar. Unbeknownst to the participants, this (cafe vs bar) is the context-indicative 
signal (CIS) that signals the true underlying context which determines the transition structure—in a cafe, the blue 
transition structure is used, so sequences 1–4–5 and 2–3–6 can occur; in a bar, the green transition structure is used, 
so sequences 1–3–5 and 2–4–6 can occur. Note that the transition structure is the only difference across the two 
contexts. The states are aliased in the sense that state i in the blue graph is identical to state i in the green graph for all i. 
“CIS” = context-indicative signal. (b) A sample sequence from the graph conditioned on the “cafe” context. (c) The model 
architecture. The LCI (latent cause inference) mechanism uses the current state to infer the ongoing LC (see "Methods" 
details). This is identical to the architecture shown in Fig. 4c without the recurrent connection. (d and e) Human 
performance in the blocked versus interleaved condition. The background colors indicate the training curriculum—
blue/green indicates that participants were trained on context 1/2 (i.e., bar/cafe) only. Yellow indicates the participants 
were trained in the interleaved condition, in which the two contexts alternated from trial to trial. Red indicates the test 
phase, in which contexts were sampled randomly from trial to trial. During the test phase, participants in the blocked 
setting performed much better compared to the interleaved condition. This cannot be explained by a standard neural 
network model since a blocked curriculum would trigger catastrophic interference. Figures from ref. 9. (f) and (g) show 
the model performance over trials in the blocked versus interleaved condition. Error bands indicate 3SE. N = 20 models 
per condition. (h) and (i) show LCI cluster purity during the test phase in the blocked versus interleaved condition.
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Simulation 3: Modeling human event segmentation behavior on naturalistic stimuli
Here, we demonstrate that LCNet can be applied at scale to account for human data and learn ground truth 
structure from naturalistic videos of daily events, where (1) the structure of the LCs is more realistic and (2) the 
context-indicative signal (CIS) is implicitly embedded in the sensory input rather than explicitly presented. We 
used the META (Multi-Angle Extended Three-Dimensional Activities) corpus, a naturalistic dataset generated 
in a controlled  manner19. META consists of 25 h of videos of natural events with a realistic hierarchical structure 
(Fig. 4a). As its generative structure is known, there are moment-by-moment event labels, which can be thought 
of as the underlying LCs.

Event segmentation data were collected at two different timescales; while participants were viewing the 
META videos, they were instructed to press a button to indicate event boundaries for “the largest meaningful 
units of activity” (i.e., coarse-grain segmentation), or “the smallest meaningful units of activity” (i.e., fine-grain 

Figure 4.  Learning event structure from naturalistic videos. (a) The hierarchical structure of the META data 
set. For the full hierarchical structure, please refer to the META data  paper19. (b) The pre-processing steps used 
to compress each video frame to a 30D vector. The details of this preprocessing procedure are documented in 
the META data  paper19. (c) The architecture of a recurrent LCNet. It is identical to the architecture shown in 
Fig. 3c with recurrent connection. (d) The inferred event boundaries versus human boundaries over time for 
one example video. (e) and (f) The correlation between model boundaries and (e) coarse-level/(f) fine-level 
human boundaries relative to permutation distributions. The red dashed lines mark the mean correlation across 
all human subjects in the META dataset. (g) The adjusted mutual information over time between inferred LCs 
versus the ground truth. Panels e, f, and g were generated using dabest  package50; N = 12 models.
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segmentation)19. Consistent with prior findings, participants tend to have high agreement on where event bound-
aries  are10,47–49. These event boundary data can shed light on LCI in humans.

For feasibility reasons, META video frames were compressed to 30D vectors using a combination of human 
pose annotation with Microsoft Kinect 2, convolutional neural networks, word embedding  models51, and prin-
cipal component analysis (Fig. 4b)19. Conceptually, the compressed representation encodes the body motion of 
the actors, information about objects in the scene, whether a new object appeared or if some object disappeared, 
and the correlation of pixel luminance between consecutive video frames. This dimensionality reduction captured 
76% of the total  variance19.

In META (and in naturalistic events in general), shared structure exists at multiple timescales. However, 
the standard version of SEM cannot extract this shared structure as it uses fully separated representations for 
different LCs. To address this issue, a recent work presented the “SEM 2.0” model, which augments the original 
SEM by training an additional “generic neural network” on all past experiences in  parallel18. SEM 2.0 still uses 
separate networks to handle experiences from different LCs, but when it infers a new LC, it initializes that new 
neural network using the weights of the generic neural  network18. This initialization scheme can be viewed as 
an approximation of the Bayes-optimal initialization for a hierarchical model, since the generic network can 
be thought of as an average of all past experiences. More details of SEM 2.0 are documented in the "Methods" 
section for Simulation 3 below.

In our simulation, we used a recurrent LCNet (Fig. 4c) with Gated Recurrent Units (GRU; see the "Methods" 
section for Simulation 3 for more details)52. We used a recurrent neural network (RNN) in this simulation since 
this is a time series prediction task, and using an RNN to integrate information about recent history in this set-
ting is more cognitively plausible than using a feedforward  network53. We used a GRU architecture to make the 
results more comparable to the SEM results, as the GRU architecture was also used in the SEM  model3,18. The 
training procedure is the same as SEM 2.018—the objective function is to predict the upcoming state (see "Meth-
ods" section for Simulation 3 for more detail). At time t, the model receives the current scene and predicts the 
scene that will appear at time t + 1. Importantly, there is no feedback on LCI. In Supplement 5, Figure S6 shows 
the number of LCs inferred over time, which qualitatively matches SEM 2.0, and Figure S7 shows that inferred 
LCs were indeed reused throughout learning.

To model human data on event segmentation, we extracted event boundaries from our model (operationalized 
as switch points between inferred LCs) and compared these boundaries with human data. Figure 4d illustrates an 
example comparison for a single video. The point biserial correlation between the model boundaries and human 
boundaries (see the "Methods" section for more details) was significant (p < 0.00001) (Fig. 4e, f), even though 
there is no supervision on event segmentation and the model objective is to predict the upcoming state. This 
can be explained in terms of the idea that prediction performance will be most accurate when there is a strong 
correspondence between inferred LCs and the ground truth event structure; thus, models trained to optimize 
prediction accuracy will naturally learn to be sensitive to this event structure. To further investigate this, we 
measured the adjusted mutual information between the inferred LCs and the ground truth event labels over time 
(see the "Methods" section for more detail) and found a significant correspondence relative to a permuted base-
line (p < 0.00001) (Fig. 4g). This indicates that the inferred LCs captured the ground truth structure of the META 
videos. That said, the match between LCNet versus human data and ground truth event labels was slightly lower 
than SEM 2.0 (as SEM 2.0 has several extra mechanisms that we did not incorporate in LCNet). In Supplement 6, 
we present a quantitative comparison between SEM 2.0. Moreover, as LCNet uses a single neural network shared 
across all LCs, one can compare the representations across LCs. In Supplement 7, we performed representational 
similarity analysis (RSA)54,55 to compare the representational dissimilarity matrix (RDM) computed from LCNet 
hidden representation of LCNet versus the perceptual similarity RDM computed from META scene vectors and 
found that they are significantly correlated. Overall, these results show that, like SEM 2.0, LCNet can learn the 
ground truth event structure and explain human event segmentation data using a predictive objective.

Discussion
We presented a neural network model that uses a latent cause inference (LCI) mechanism to support learning 
and generalization in a context-dependent manner. LCNet indexes LCs using vector representations that are 
approximately orthogonal (see Supplement 1), which is effective at reducing catastrophic interference (Simula-
tion 1). Additionally, by using a single common network that employs overlapping representations for all tasks, 
LCNet can also extract shared structure across tasks and leverage such structure to learn new tasks more rapidly 
(Simulation 1). Though SEM can also overcome catastrophic interference with fully separated representations, 
it cannot optimally reuse prior knowledge when learning a new related task (Simulation 1). Importantly, we 
showed that the ability to represent shared structure did not hinder LCNet from explaining two sets of findings 
that SEM explained using fully separated representations across tasks. First, LCNet can account for human 
data showing that blocked learning curricula can facilitate schema learning (Simulation 2). Standard neural 
networks incorrectly predict that blocked learning will lead to catastrophic  interference9. On the other hand, 
LCNet could explain human data because it does not suffer from catastrophic interference as much, and our 
experiments show that having a sCRP prior that matches the level of auto-correlation of the environment was 
important for explaining human learning. Finally, in the META video  dataset19, we found that the inferred LCs 
fit with the ground truth event labels, and the inferred event boundaries were significantly correlated with human 
boundaries, even though the model was only trained on predicting the upcoming video frame (Simulation 3). 
Simulation 3 also allowed us to verify that our modeling framework can be applied to naturalistic data. Overall, 
these results show that LCNet can reconcile the problem of representing context-specific structure and shared 
structure for event perception.
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While indexing different LCs using random vectors allowed LCNet to avoid catastrophic interference, evi-
dence from human neuroimaging suggests that tasks are sometimes represented in a structured (i.e., non-ran-
dom) fashion in the brain. For example, one study found that tasks composed of overlapping rules evoke similar 
patterns of functional connectivity in the fronto-parietal  network56. To some extent, LCNet can compensate for 
the lack of structure in its context representations by using the hidden layer to represent shared structure across 
tasks and learn task-specific information using the weights from the LCI module to the hidden layer. For exam-
ple, in Simulation 1, the model was able to represent the shared term of the polynomials in the hidden layer. The 
ability to represent task structure is crucial for explaining human performance: Shared structure across tasks is 
ubiquitous in naturalistic settings, and studies have shown that humans can extract structure shared across tasks 
and apply it to novel  domains57,58. It is unclear if the model’s use of orthogonal task representations will prevent 
it from fully capturing this important aspect of human performance. In the future directions section below, we 
mention some approaches that would allow subsequent versions of the model to represent shared structure 
directly in the context layer (in addition to representing it in the hidden layer), which would potentially boost 
the model’s alignment to both neural and behavioral data.

Related works on context‑dependent learning
Several computational modeling papers have addressed context-dependent learning in humans. Models based 
on standard neural networks without explicit context representation have been used to simulate the develop-
ment of representations for community  structure59, event  structure60, and people’s ability to segment  events53; 
in these works, the models were variants of standard feedforward or recurrent neural network models, and the 
task environments were interleaved. For example, the model in Reynolds et al.53 is similar to a standard long 
short-term memory network (LSTM)61, where the event representation is similar to the LSTM cell state and 
the instantaneous output loss is used to gate the cell state. However, standard feedforward and recurrent neural 
networks are known to exhibit catastrophic interference in blocked settings, where experiences are highly auto-
correlated62–64, so they cannot explain the human data modeled in Simulation 2. One solution to overcome 
catastrophic interference is to feed explicit context-indicative signals to the network or equip the network with 
a symbolic context  layer43,45,65. However, in these models, task labels are provided all the time, so the models do 
not need to infer the task identity and or detect switches between blocks (i.e., event boundaries). Additionally, the 
number of tasks in the environment is also given, so that the model can preallocate appropriate neural resources, 
such as the dimension of the context representation, to represent different contexts. Both of these assumptions 
are generally not fully valid in real-world settings. The SEM framework use fully separated representations for 
different contexts to overcome catastrophic interference and use a nonparametric LCI algorithm to (i) infer the 
ongoing task identity and (ii) allocate neural resources in an adaptive manner. LCNet goes beyond the stand-
ard SEM model to simultaneously represent the shared structure and context-specific structure using a shared 
network and context vectors.

From the perspective of machine learning, the setting of interest (Fig. 1) can be viewed as a continual learning 
 problem66–69 where agents have to learn a set of tasks sequentially without forgetting previous tasks. In the case 
of event cognition, both the task identity for the ongoing observation and the number of tasks are unknown. 
Additionally, observations in natural events are temporally  autocorrelated70. Effective approaches for continual 
learning have been an active direction of investigation in cognitive  neuroscience3,42,43,45,65,71–74 and machine 
 learning67,71,73,75–82.

SEM is similar to a mixture of experts  architecture8, where the LCI mechanism was used to select an appro-
priate network. If LCI is sufficiently accurate, then a continual learning of K tasks can be decomposed into K 
single-task learning problems. By contrast, LCNet uses continuous vectors to influence the hidden states, which 
is similar to continual learning algorithms based on context-dependent  modulation69,83,84. Though using continu-
ous context vectors to modulate a single shared network might not be as expressive as SEM, LCNet can better 
leverage from prior knowledge. That said, in this work, the primary goal is to understand and capture empirical 
data on human learning, rather than seeking an algorithm that performs more effectively on continual learning 
benchmarks from the machine learning literature.

Future directions
In the standard version of SEM, LCI has to be performed all the time, which is computationally costly. One way 
to reduce unnecessary inferences is gating—results from variants of SEM 2.0 suggest that it can be effective to 
perform full inference only when uncertainty or prediction error is  high18. We also experimented with a com-
plementary approach using episodic memory. In Supplement 4, we augmented LCNet with a simple episodic 
memory  module85,86, which allows the model to retrieve a previously inferred LC given the current observa-
tion, instead of performing full inference; using the task presented in Simulation 2 as a testbed, we were able to 
demonstrate that our model can work much more efficiently without compromising its ability to account for 
human data. Additionally, a recent computational model suggests that episodic memories can play a critical 
role in shaping the ongoing task  representation46,87. Overall, combining models of event segmentation, such as 
LCNet and SEM, with episodic memory would also allow us to address data on how event structure influences 
memory  encoding10,47,48,88 and  retrieval89.

An important limitation of SEM-based models, including LCNet, is that inferred LCs are represented in an 
unstructured list. Concretely, SEM represents the inferred LCs as a list of networks, and LCNet represents LCs as a 
list of random vectors. The computational cost of full LCI (evaluating the posterior over LCs) is linear with respect 
to the number of inferred LCs, which is expensive. Additionally, there is no way to gracefully “merge” context 
representations that turn out to be redundant after they have been split apart into different LCs—they continue to 
exist in structurally distinct form for all subsequent time points. One potential way to comprehensively address 
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these issues is to learn a feature space of LC representations where distances reflect the relations across tasks, 
instead of representing all LCs with distinct random vectors. This idea dates back to classic parallel distributed 
processing models of semantic cognition, where activation space gradient descent was used to find hidden repre-
sentations of  objects90. Recent results have demonstrated that this algorithm can identify context representations 
to support controlled semantic  processing91 and context-dependent  learning87,92. Importantly, organizing LC 
representations in a structured feature space would potentially enable graceful similarity-based generalization.

Lastly, an important property of real-world settings is that multiple LCs can be active at the same time to 
affect the ongoing  events93. For example, suppose the agent previously observed some coffee-drinking events 
and some helicopter-riding events. Then, if the agent encounters a person who is drinking coffee on a helicop-
ter, one reasonable approach is to activate the two LCs used previously to process coffee-drinking events and 
helicopter-riding events.

Recently, large language models using a transformer-based architecture achieved impressive results in many 
application  domains94,95. Though these models are powerful, they do not always account for successes, and in 
particular, failures of human  cognition96. This is potentially because their computational mechanisms are sys-
tematically different from human  brains96. In the future, it would be informative to understand the potential 
contribution of an explicit LCI module to transformer-based architectures.

In conclusion, LCNet addresses a key limitation of the SEM framework regarding how to balance the ability 
to represent multiple LCs while managing interference across them. We view this as a useful step towards a more 
neurally plausible model of LCI in the context of event cognition.

Methods
Latent cause representation in SEM versus LCNet

The most important distinction between SEM and LCNet is the format in which latent causes are represented. In 
SEM, each latent cause is represented by a unique neural network. At time t, if the current observation triggers a 
new LC, a new neural network will be initialized and used to process the current observation. Otherwise, if the 
current observation activates an existing LC, the corresponding network will be used to process that observation. 
This algorithm can be written as follows: 

Given an observation at time t, xt, assuming the model has K latent causes so far  
If the model infers a new latent cause:

initialize the (K+1)-th network using random weights
use the (K+1)-th network to process xt

else, the model assigns xt to the k-th network (k in [0, K]): 
use the k-th network to process xt

Algorithm 1. Processing steps, SEM.

By contrast, LCNet represents LCs with random vectors; there is a single network that is shared for process-
ing observations regardless of the LC assignment, which enables that network to extract shared structure in the 
environment. Concretely, if the current observation triggers a new LC, then LCNet samples a new random vector, 
which will be fed to the network. Otherwise, if the current observation activates an existing LC, the correspond-
ing random vector will be fed to the network. This algorithm can be written as the following: 

Given an observation at time t, xt, assuming the model has K latent causes so far  
If the model infers a new latent cause:

sample a random vector cK+1, and feed it to the hidden layer 
else, the model assigns xt to the k-th network (k in [0, K]):

feed ck to the hidden layer 
Use the whole network to process xt

Algorithm 2. Processing steps, LCNet.

Details of the latent cause inference procedure
In both SEM and LCNet, LCI determines (i) whether a known LC best explains the current observation or (ii) if 
this observation has to be assigned to a new LC. The inference procedure combines the likelihood and prior to 
obtain a posterior distribution over all known LCs. Then, the LC with the maximal posterior is selected.

LCNet computes the likelihood by comparing all of the known LCs in terms of how well they explain the 
current observation. Concretely, assume that K LCs have been generated so far, and c1, c2, … cK are the corre-
sponding context vectors. Let f be an instance of LCNet, which maps an observation xt − 1 and a context vector 
 ck to the predicted next state x̂t . Then given an observation xt, the model computes the losses over all LCs. The 
loss of the k-th LC is the following:

We compute the loss of a new LC using a fixed preallocated random context vector. Then we take the softmax 
of the negative loss over LCs and treat it as the likelihood, which means the maximal likelihood LC will be the 

MSE Loss (t, ck) = MSE Loss
(
f (xt−1, ck), xt

)
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LC with the lowest loss. Note that, at time t, the goal of the model is to predict xt + 1—but since the model hasn’t 
observed xt + 1 yet, the likelihood is computed by using xt − 1 to predict xt (rather than using  xt to predict  xt + 1).

Similar to SEM, we use the sticky Chinese Restaurant Process (sCRP)  prior3,97,98:

where zt is the inferred LC at time t, k is the index for the LCs, K is the number of distinct LCs inferred so far, I 
is the indicator function,  countk is the number of observations assigned to the k-th LC previously, alpha is the 
concentration parameter that controls the chance of inferring a new LC index by K + 1, and lambda is the sticki-
ness parameter that boosts the previously used LC. Under the sCRP prior, LCs that were used to explain more 
observations in the past are boosted, and the currently active LC is also boosted.

At time t, the posterior distribution over LCs is computed by combining the sCRP prior with the likelihood. 
Similar to SEM, we use the local maximum a posteriori (MAP)  approximation98,99—the LC with the maximal 
posterior probability is selected to generate the prediction of the upcoming state.

Note that the LCI framework assumes that event segmentation is triggered by switches of the inferred LCs 
(Fig. 1). This view is an extension of a classic view, assuming that event segmentation is triggered by high sensory 
prediction  error53. Though sensory prediction error can cause switches of inferred LCs, the switches of inferred 
LCs can be caused by other factors, such as  uncertainty100,101, which can be dissociated from sensory prediction 
error. Recent modeling evidence also suggests that allowing uncertainty to drive LCI allows the SEM framework 
to better explain human event segmentation data, compared to the sensory prediction error view 18.

Simulation 2 methods details
Stimulus representation
Each state in the graph (Fig. 3a) is represented using a fixed random vector. At time t, the model receives 
a smoothed average of the current state and the previous state. Namely, the current input = w x current 
state + (1—w) x previous state. This ensures that the model has access to recent stimulus history, which allows 
us to make the simplification of using feedforward neural networks. Conceptually, this means that a recency-
weighted representation of the stimulus history is available to the model. The context-indicative signals (CIS; 
cafe versus bar) at the beginning of each trial are regular states, which were also represented as two fixed random 
vectors. Therefore, the CIS in our simulation is just a regular observation, similar to the human experiment.

Unpredictable transitions
As in a previous simulation using a simplified version of  SEM9, Bayesian inference was turned off at the tran-
sition from the CIS to state one versus state two, which is inherently unpredictable (see Fig. 3a). This imple-
ments the claim that people are able to learn which transitions are unpredictable, and that prediction errors are 
down-weighted for unpredictable transitions when making inferences (as hypothesized by normative models 
of  learning102,103).

Cluster purity to measure the inferred latent causes versus ground truth.
To measure the accuracy of the inferred LC, we computed cluster purity of the inferred LCs, which is a metric 
commonly used for evaluating the quality of a  clusterin104.

where Ĉ is the vector of LC assignments, and C is the true LC (context) ID for each observation. n is the total 
number of observations. K is the number of LCs inferred so far. J is the number of true LCs, which is 2 in this 
simulation.  Ĉk is the set of observations assigned to LC k. Cj is the set of observations that belong to true LC j.

Conceptually, purity measures the percentage of observations assigned to each inferred LC belonging to the 
same LC. A purity score of 1 means that all observations in each inferred LC belong to the same true LC, while 
a score of 0 means that the inferred LC over observations does not match the LCs at all.

Simulation 3 methods details
Gated recurrent unit
In Simulation 3, due to the complexity of time series prediction for naturalistic video, we used a widely used 
recurrent neural network (RNN) architecture known as the Gated Recurrent Unit (GRU) 52, which is also used 
in the SEM  model3. The temporal dynamics of a GRU-based RNN are governed by the following equations.

where xt and ht−1 are the current input and the previous hidden state. Square brackets indicate vector concatena-
tion. Wz ,Wr are the weights mapping from the previous hidden state and current input to the current read gate 
rt and the write gate zt . The read gate controls the level of impact of the previous hidden state on the proposed 

P(zt = k|z1:t−1 )∞

{
countk + �I[zt−1 = k] if k ≤ K

α if k = K + 1

Purity (Ĉ,C) =
1

n

K∑

k=1

J
max
j=1

∣∣∣Ĉk ∩ Cj

∣∣∣

zt = σ(Wz · [ht−1, xt ])

rt = σ(Wr · [ht−1, xt ])

h̃t = tanh (W · [rt ⊙ ht−1, xt ])

ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t
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change of the current hidden state h̃t . Note that in a GRU, the forget gate is simply 1− zt , so that the writing 
of new information and the forgetting of old information are synchronized. Concretely, the current, updated 
hidden state ht is simply an interpolation between ht−1 and h̃t weighted by the forget gate and the write gate.

Point biserial correlation between the model boundaries versus human boundaries.
Point biserial correlation is used to characterize the correlation between the human boundary probability at 
time t for all t (a continuous-valued vector) and whether there is a model boundary at time t for all t (a zero–one 
valued binary vector, where one indicates that the model inferred a boundary at time t):

where M1 is the mean human boundary probability value when the model inferred a boundary, M0 is the mean 
human boundary probability value when the model did not infer a boundary, n1 is the number of event bounda-
ries inferred, n0 is the number of time points without an inferred event boundary, n is the number of total time 
points (n = n1 + n0) and sn is the standard deviation of human boundary probability values over time.

Similar to the analysis in SEM 2.018, since the largest and the smallest achievable values of point biserial cor-
relation depend on the number of boundaries the model inferred (i.e., the number of ones in the zero–one valued 
vector), we scaled the raw correlation value by the largest and the smallest achievable values.

Adjusted mutual information between the inferred latent causes versus the ground truth event labels
Compared to real-life events, a unique advantage of META as a controlled video dataset is that we have the 
underlying event labels used to generate the META videos. These event labels over time can be viewed as the 
ground truth of the LCs. The finest level of event labels available in META is the 45 subevent classes.

Following the way SEM 2.0 was evaluated, we computed the mutual information between the inferred LCs 
versus the ground truth event  labels18.

where C and Ĉ are the true event labels and inferred LCs, MI is the mutual information function, H is the entropy 
function, and E denotes the expectation.

Data availability
All data and code are publicly available: Simulation 1 and Simulation 2: https:// github. com/ qihon gl/ LCNet. 
Simulation 3: https:// github. com/ qihon gl/ meta- model. META  data19 used in Simulation 3: https:// osf. io/ 3embr/.
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