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Abstract

How do cognitive pressures shape the lexicons of natural languages? Here, we reframe George
Kingsley Zipf’s proposed “law of abbreviation” within a more general framework that relates it to cog-
nitive pressures that affect speakers and listeners. In this new framework, speakers’ drive to reduce
effort (Zipf’s proposal) is counteracted by the need for low-frequency words to have word forms that
are sufficiently distinctive to allow for accurate recognition by listeners. To support this framework, we
replicate and extend recent work using the prevalence of subword phonemic sequences (phonotactic
probability) to measure speakers’ production effort in place of Zipf’s measure of length. Across lan-
guages and corpora, phonotactic probability is more strongly correlated with word frequency than word
length. We also show this measure of ease of speech production (phonotactic probability) is strongly
correlated with a measure of perceptual difficulty that indexes the degree of competition from alterna-
tive interpretations in word recognition. This is consistent with the claim that there must be trade-offs
between these two factors, and is inconsistent with a recent proposal that phonotactic probability facil-
itates both perception and production. To our knowledge, this is the first work to offer an explanation
why long, phonotactically improbable word forms remain in the lexicons of natural languages.
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1. Introduction

While natural languages are highly diverse in many respects, they display striking structural
regularities (Evans & Levinson, 2009; Futrell, Mahowald, & Gibson, 2015; Greenberg, 1963).
How these structural regularities relate to human cognitive and physiological constraints—
which affect both speaking and listening—remains an open question with implications for
linguistics, psychology, and neuroscience (Evans & Levinson, 2009; Fedzechkina, Jaeger,
& Newport, 2012; Hauser, Chomsky, & Fitch, 2002; Kemp & Regier, 2012). Insights about
languages have the potential to inform our knowledge about language users as well as vice
versa: regularities in languages may provide evidence of cognitive pressures, and increasingly
well-specified models of cognitive processes generate new hypotheses about the structure
of languages.

One of the most robust statistical laws that describe human languages is the relationship
between word frequency and word length, often called Zipf’s Law of Abbreviation: that “the
magnitude of words tends, on the whole, to stand in an inverse (not necessarily proportionate)
relationship to the number of occurrences” (Zipf, 1935). This relationship is thought to reflect
a tendency toward compression to support efficient communication (Ferrer-i Cancho et al.,
2013; Mahowald, Dautriche, Gibson, & Piantadosi, 2018). To date, this basic relationship
between words and their corresponding word forms (i.e., the sounds that compose them in
speech) has been demonstrated to hold in all of the approximately one thousand languages
that have been tested, with no known counter-examples (Bentz & Ferrer-i-Cancho, 2016).

Despite its robustness, questions remain as to how Zipf’s Law of Abbreviation may emerge,
or how it relates to the cognitive challenges inherent in both speaking and listening. Word
lengths and frequencies are only two attributes in a complex network of correlated properties
in the lexicon: previous work has found robust correlations between many pairs of variables
among word frequency, average in-context predictability of words (Piantadosi, Tily, & Gib-
son, 2011), neighborhood density (number of perceptually similar words; Luce, Pisoni, &
Goldinger, 1990), phonotactic probability (Vitevitch, Luce, Pisoni, & Auer, 1999), age of
acquisition (Kuperman, Stadthagen-Gonzalez, & Brysbaert, 2012), number of distinct word
senses (Baayen & del Prado Martín, 2005; Casas, Hernández-Fernández, Catala, Ferrer-i Can-
cho, & Baixeries, 2019), concreteness (Brysbaert, Warriner, & Kuperman, 2014), centrality
in a semantic network (Vincent-Lamarre et al., 2016), and rate of word change (Bybee, 2003;
Pagel, Atkinson, & Meade, 2007). Furthermore, these word-level properties are reflected in
language processing, including recognition rates in noise (Luce & Pisoni, 1998), response
times in lexical decision tasks (Balota et al., 2007), reading times (Smith & Levy, 2013), and
measurements of neural activity (e.g., DeLong, Urbach, & Kutas, 2005; Shain, Blank, van
Schijndel, Schuler, & Fedorenko, 2020; Weissbart, Kandylaki, & Reichenbach, 2020). Estab-
lishing precisely which correspondences among these variables are the most robust across
languages will help identify which ones should be considered the core manifestations of cog-
nitive pressures, and in turn improve our understanding of other aspects of language structure
(though see Ladd, Roberts, & Dediu, 2015 regarding the limitations of correlational studies).

To that end, in the current work, we revisit Zipf’s Law of Abbreviation and consider this
empirical observation under a more general framework that relates the cognitive processes
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of speakers and listener. First, we generalize Zipf’s measure of speaker’s production effort
as word length to a graded, probabilistic metric of the prevalence of subword sequences
(phonotactic probability). We then consider how production effort trades off with robustness
of word recognition in language processing using a Bayesian model of spoken word recog-
nition. To preview our results: we find evidence that the classic relationship between the
length of word forms and their frequency is a special case of an even broader relationship
between phonotactic probability and frequency. However, we also find that high phonotactic
probability incurs high competition in spoken word recognition, in that such forms are
more likely to have more strong competing interpretations. While speakers may prefer to
simplify and shorten words to reduce their production effort, they may be limited by listen-
ers’ requirements for sufficiently distinctive word forms in order to successfully recognize
words.

1.1. Zipf’s law and speaker effort

Zipf (1935) originally posited that the relationship between word length and word fre-
quency emerges from speakers’ desires to minimize speaker effort to the degree possible by
using the shortest form for words that are used most often, following what he later labeled the
Principle of Least Effort (Zipf, 1949). However, a word’s length is just one aspect of its form.
Another aspect is the specific sequences of sounds of which it is comprised, that is, whether it
is composed of common sound sequences or rare ones (“something” vs. “xylophone”). This
brings the question of how word forms are comprised into contact with the language’s phono-
tactics, or the rules and patterns that govern the arrangement of sounds within words and
syllables. Phonotactics can also be used to characterize the ways in which speakers synchron-
ically modify words, especially under- or over-articulating word forms in fluent speech. The
process of phonetic reduction— the systematic under-articulation, shortening, weakening, or
wholesale omission of linguistic material in word forms (Aylett & Turk, 2006; Bell, Brenier,
Gregory, Girand, & Jurafsky, 2009; Gahl, Yao, & Johnson, 2012; Jaeger & Buz, 2017) results
in appreciable variation how words are realized in fluent speech. For example, speakers may
use “probly” in place of “probably” at high speech rates in conversational English. On longer,
diachronic timescales, reduced or clipped variants of word forms may eclipse their long-form
predecessors to become the dominant (or indeed only) form in the lexicon, for example, bus
superseding omnibus (Mahowald, Fedorenko, Piantadosi, & Gibson, 2013).

One useful way to characterize these processes of reduction is that any of the above edits to
a word form has the potential to change its phonotactic probability. For example, substituting
“weaker” phonemes for stronger ones tends to result in more phonotactically probable forms
(Jaeger and Buz, 2017). This includes many cases that leave word length (as measured by the
number of phonemes or the number of characters) intact. Vitevitch and Luce (2005) found that
speakers produce words consisting of common phoneme sequences faster, an effect which is
robust for nonwords and in the absence of listeners. This idea of probabilistic reduction is also
consistent with a work that suggests that repeated access and production of sound sequences
results in automatic reduction, either because of practice effects in articulation or enhanced
availability of word form representations in production (Bybee & McClelland, 2005).
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If sequence probability is a better measure of speaker effort than word length (or word dura-
tion), then Zipf’s Principle of Least Effort should generalize: a more accurate measure of pro-
duction cost—a measure that assigns context-dependent costs to phonemic material—should
correlate more strongly with word frequency. Extending work by Landauer and Streeter
(1973) and Frauenfelder, Baayen, and Hellwig (1993), Mahowald et al. (2018) found support
for this hypothesis across a sample of 97 typologically diverse languages using corpora from
Wikipedia. In interpreting this empirical result, they proposed that forms with high phono-
tactic probability are both easier to produce and comprehend, and that this empirical result
provides evidence that languages “maximize the use of good word forms.” Languages, they
claim, use phonotactically probable forms for highest frequency forms because this confers
processing advantages for both speakers and listeners. In the current work, we further moti-
vate these claims by relating them to proposals about reduction and conduct a replication on a
complementary dataset. We then re-examine their second claim—that high probability forms
facilitate comprehension—as described in the next section.

1.2. Robust word recognition

Of course, speakers’ ease of production is not the only pressure on a word’s form—it must
also be able to be reliably recognized by listeners. Languages have long been thought to reflect
a balance between ease of production on the part of speakers and the ease of recognition on
the part of listeners. Work by the early German linguist Georg von der Gabelentz in the late
19th century characterized language change as reflecting the competing pressures of “striv-
ing for ease” (Bequemlichkeitsstreben) and “striving for clarity” (Deutlichkeitsstreben, 1901;
translation in Haspelmath, 1999). Subsequent psycholinguistic work has characterized these
pressures at the level of individuals as language users, motivating speaker choice of hypo-
versus hyper-articulation in terms of what achieves “sufficient discriminability” (Lindblom,
1990).

With this need for sufficient discriminability in mind, we revisit the claim from Mahowald
et al. (2018) that phonotactically probable forms are, in addition to being easier to produce,
easier for listeners to comprehend. These authors motivated this characterization of high
phonotactic probability forms as easier to comprehend by pointing to the finding that phono-
tactically probable words are more easily recognized than less probable ones (Vitevitch et al.,
1999). They also noted that children more easily learn higher probability word forms (Coady
& Aslin, 2004; Hoover, Storkel, & Hogan, 2010; Storkel, 2004). Interestingly, the frame-
work offered in Lindblom (1990) makes the opposite prediction: high phonotactic probability
words should be harder to discriminate because of the number of competing intended mean-
ings on the part of the speaker that could have plausibly generated the observed acoustic data
(see also, Gibson, Bergen, & Piantadosi, 2013; Meylan, Nair, & Griffiths, 2021). Further, nei-
ther of the points raised by Mahowald et al. should be taken as conclusive evidence of the
ease of processing phonotactically probable sequences. Vitevitch et al. (1999) did indeed find
a facilitatory effect of high phonotactic probability on a speeded same-different task; however,
an auditory lexical decision task revealed slower recognition for nonword stimuli with high
phonotactic probability. This is consistent with a number of studies that suggest that words
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from dense neighborhoods are recognized more slowly and less accurately than ones from
sparse neighborhoods (Goldinger, Luce, & Pisoni, 1989; Luce & Pisoni, 1998; Vitevitch &
Luce, 1999, 1998). Likewise, a stronger theoretical motivation is necessary to link improved
learnability for higher probability forms among children to more robust spoken word recog-
nition among adults.

In fact, the hypothesis that higher probability word forms facilitate comprehension gener-
ates a prediction about the structure of natural languages: if indeed high phonotactic prob-
ability word forms were both easier to produce and comprehend, languages should then be
expected to pack their entire lexicons into the highest probability, shortest word forms possi-
ble (though there may be other constraints as well).1 However, many phonotactically proba-
ble, short word forms are left unused by natural languages; for example, English leaves many
possible word forms unused, like dob, fiss, lub, and gep. This suggests the possibility of some
countervailing pressure which limits reduction, for example, that excessive reduction may
create problems for listeners who are trying to recover speaker’s intended words under noisy
conditions (see also Piantadosi, Tily, & Gibson, 2012). This points to the potential utility of
a computational model that make predictions about which word forms are likely to lead to
recognition failures.

1.3. Current work

In the current work, we revisit Zipf’s Law of Abbreviation and the cognitive processes that
might give rise to it. We provide formal characterizations of these processes: quantitative,
model-based approximations of production effort and ease of comprehension, formalizing the
intuitions of previous work using principles of information theory and (relatedly) Bayesian
cognitive science. In the Models section below, we first clarify the relationship between word
length and phonotactic probability, which provides a theoretical basis for the utility of the
latter as a measure of speaker effort. We then provide an argument against the equivalence of
word forms that are easy to produce and word forms that are easy to recognize, and propose a
method to measure discriminability under a Bayesian model of spoken word recognition. This
model shows why excessive reduction should be problematic for recognition, formalizing
and extending ideas set forth in Jaeger and Buz (2017). This model predicts that word forms
that are insufficiently diagnostic of the speaker’s intended word (i.e., their intended message)
are likely to lead to transmission failures. Instead, speakers need to produce sufficiently
distinctive word forms such that each word can be recognized by a listener in spoken word
recognition.

We then use these models to characterize regularities seen in corpus data. In Study 1, we
find evidence of a relationship between phonotactic probability and word frequency across
a wide range of languages and datasets, consistent with previous work in Mahowald et al.
(2018). In Study 2, we test the hypothesis phonotactic probability corresponds with the
strength of competition in effects in word recognition. This analysis suggests that uncom-
mon words must have rare word forms in order to maintain a minimum rate of recognition
by listeners.
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2. Models

Here, we present two computational models, the first characterizing speaker effort involved
in encoding words, and the second one characterizing how listener’s infer which word a
speaker meant on the basis of their beliefs and observed data. We present these models in the
abstract, using simplified probabilistic models to provide approximate characterizations of
complex linguistic structure (first model) and complex behavior (second model). The models
are presented at Marr’s computational level of analysis (Marr, 1982), and as such are intended
to provide abstract, high-level characterizations of the processing problems that need to be
solved by a language user. We explain how we parameterize these models on specific lan-
guages (e.g., datasets and fitting procedures) in the Methods sections of each particular study.

2.1. A model of speaker effort

The process of speech production requires that speakers retrieve a word form from memory,
plan, and then execute motor actions that yield signals observable to listeners (Levelt, 1992).
Difficulty in speech production may thus reflect both representational and motoric complexity.
In contrast to work that tries to decompose complexity into component parts (e.g., Romani,
Galuzzi, Guariglia, & Goslin, 2017), in the current work, we do not try to distinguish between
sources of complexity, and instead adopt an information theoretic measure of information
content that reflects both sources of complexity in the characterization of speaker effort (for an
analogous proposal for information theoretic measures of language comprehension difficulty,
see Levy, 2008a and Wilcox, Pimentel, Meister, Cotterell, & P. Levy, 2023). We motivate this
simplified approach by noting that frequent usage potentially facilitates all three aspects of
production (retrieval, encoding, and motor articulation).2

In order to have a metric that is both theoretically comparable and on a similar numerical
scale to word length, we take the phonological information content, or the negative log prob-
ability of a phoneme sequence under a probabilistic phonotactic model (Cohen Priva, 2008;
Mahowald et al., 2018). Under this model, the difficulty of producing a word corresponds to
its phonological information content PIC(dw) of a word form dw is defined as:

PIC(dw) = − log P(dw) (1)

= − log P(l1, . . . , l|dw|) (2)

≈ −
|dw|∑
i=1

log P(li|li−(n−1), . . . , li−1), (3)

where l are the phonemes that comprise the sequence dw, |dw| is the length (in phonemes) of
dw, and n is the sequence length, or order, of the model (e.g., 1 = unigram, 2 = bigram, 3
= trigram). Here, we estimate phonotactic probability by fitting an n-gram model on a list of
unique word types in the language. This model thus reflects two consequential decisions: first,
to treat words as sequences of phonemes rather than considering a more complex hierarchical
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generative process, and second to consider the probabilities of phone sequences under the
inventory of unique word forms in a lexicon (i.e., a type-weighted model) rather than the pure
frequencies of these sequences in a sample of speech.

Regarding the first decision, a sequence model over phonemes constitutes a simplistic mea-
sure of phonotactic probability in that it does not explicitly posit subword structure. We jus-
tify this decision by noting several points. First, n-gram models partially capture higher-order
structure implicitly because the prevalence of subword units is reflected in phoneme transi-
tions. Second, the correct choice of subword unit in a hierarchical model is unclear (i.e., mor-
phemes or syllables), and in either case only a subset of languages have large-scale resources
to characterize these sub-word segments (e.g., CELEX; Baayen, Piepenbrock, & Gulikers,
1995), which would limit the number of languages in our sample (see also Mahowald et al.,
2018, who offer a similar justification). Finally, neuroimaging work suggests that phonotactic
constraints may emerge from lexical regularities without strong constraints on intermediate
representations of sound patterns (Gow, Schoenhaut, Avcu, & Ahlfors, 2021; Gow, Segawa,
Ahlfors, & Lin, 2008). We return to these issues in more detail in the Discussion, particularly
in limitations in modeling the recognition of nonwords.

We motivate the second decision—our choice to fit the model on type lists—both theoreti-
cally and pragmatically. Our theoretical justification for using the type-weighted model is that
such a model reflects the fact that speakers’ generalization behaviors are highly sensitive to
the composition of lexical entries in the lexicon, more so than their token frequencies (Pier-
rehumbert, 2003). Modeling work in the “adaptor grammar” framework offers convergent
evidence that both tokens and types have effects on speakers’ generalizations of linguistic
structure, including at the level of words (Goldwater, Johnson, & Griffiths, 2005). Finally,
experiments with children also suggest that early phonotactic knowledge reflects the preva-
lence of patterns across word types (Richtsmeier, Gerken, & Ohala, 2011). Our pragmatic
justification is that it helps us avoid a circularity: by building a model of phoneme transition
probabilities over unique word types in the lexicon and using only short sequences, we avoid
the obvious circular relationship between word frequency and token-weighted phonotactic
probability (which would necessarily be equivalent for higher-order n-gram models).

2.1.1. Phonotactic probability and word length
The above measure of phonotactic probability can be compared with word length to

provide a more motivated understanding of their relationship.3 The length of a word can be
seen as a measure of probability under a highly simplified generative phonotactic model,
specifically one that treats phoneme string generation as the result of a memoryless, uniform
random process where all phonemes are equiprobable. This kind of random process has
long been used as a null hypothesis in statistical language research, often characterized as
the random typing of “monkeys on typewriters” (Mandelbrot, 1954; Miller, 1957). While
notably deficient in capturing the key aspects of human-generated linguistic samples (Ferrer-
i-Cancho & Solé, 2002), this simplified model captures the key correspondence that longer
word forms are less probable in a language: as long as there is more than one phoneme in the
language—such that the probability any phoneme is less than 1—then a word form that is
one phoneme longer is necessarily less probable.
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Table 1
Estimates of the information content (in bits) of the word “motorcycle” under a naive model versus under a
probabilistic model for English character transitions

“M” “O” “T” “O” … � Bits

Uniform Character Probabilities
− log2 P(M ) − log2 P(O) − log2 P(T ) − log2 P(O)
4.700 4.700 4.700 4.700 … 47.004
3-Character Phonological Information Content Model
− log2 P(M| �) − log2 P(O| � M ) − log2 P(T |MO) − log2 P(O|OT )
4.400 2.184 3.217 3.672 … 35.602

Note. The negative log probability of a word form under the uniform character probability model is computed
assuming 27 characters in the inventory and an end symbol for the word form. The probabilistic language model
takes into account sequential dependencies up to length 3, obtained from 25,000 most frequent words in the
English Google Books (2012) corpus.

Specifically, if a word form dw is comprised of a string of symbols dw
1 , . . . , dw

n that are
each equiprobable and independent—P(dw

i ) = 1/|P|, where |P| is the number of items in
the relevant (phonemic or orthographic) inventory P —then PIC under this naive phonotactic
model is strictly proportional to the length of the word form:

− log P(dw) = − log P(dw
1 ) × ... × P(dw

n ) (4)

− log P(dw) = − log P(1/|P|)n (5)

− log P(dw) = n × − log P(1/|P|). (6)

Finally because − log P(1/|P|) can be factored out as a constant scaling factor,

− log P(dw) ∝ n (7)

PIC(dw) ∝ n (8)

This result establishes a correspondence between length and phoneme sequence probability,
and implies that Zipf’s original formulation may be a special case of a more general relation-
ship between frequency and phonotactic probability. Phonotactic probability computed under
the more sophisticated n-gram model produces some predictions contrary to the length-only
model. Depth /dɛpθ / (depth) contains fewer phonemes yet has a higher PIC (28.7 bits) than
/grɑʊnd/ (ground, 12.89 bits) because the latter is comprised of significantly more probable
subsequences. A comparison of phonotactic probability (PIC) estimates from the monkeys-
on-typewriters model and a more sophisticated trigram model for the word motorcycle is
presented in Table 1.

2.2. A model of robust word recognition

Our second model concerns understanding the role of word form distinctiveness in spoken
word recognition. Particularly, we offer a model-based measure of the degree of competition
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for a given word form using a Bayesian model of spoken word recognition in the vein of
Norris and McQueen (2008). This model relates the probability that a listener assigns to the
speaker’s intended word to the frequency and the specific word form of a target word, as
well as the the frequencies and word forms of competing words in the lexicon. Critically, this
formulation captures the fact that listeners are known to rely on prior probabilities of possible
interpretations to infer speaker’s intended meanings (Gibson et al., 2013). Under the model,
an idealized listener evaluates support for the correct word interpretation w∗ of the received
phonemic4 data d , by computing:

P(w∗| d ) = P(d|w∗)P(w∗)∑
w′∈V P(d|w′)P(w′)

, (9)

where p(d|w∗) is the probability that the speaker’s intended word w∗ would generate the
observed data d (the likelihood), p(w∗) is the prior probability of the word, and the denom-
inator reflects the aggregate strength of all possible words in the lexicon V (reflecting both
their respective fit to data and their prior probabilities). From this, we can thus derive the pos-
terior odds ratio of the listener recovering the speaker’s intended word (w∗) versus recovering
some other word, P(¬w∗| d ):

P(w∗| d )

P(¬w∗| d )
= P(d|w∗)P(w∗)∑

w′∈V,w′ �=w∗ P(d|w′)P(w′)
. (10)

We define the denominator on the right-hand side,
∑

w′¬w∗ P(d|w′)P(w′), as a special quantity
that we call aggregate competitor probability, as it indexes the number of strength of competi-
tor words that could have generated the observed data. This quantity is closely related to the
marginal probability of the data, p(d ), except that it excludes the contribution of the intended
word (i.e., it only considers competitors). By considering the relationship of a target word’s
frequency, the number and strength of similar word forms, and bounds on the posterior odds
ratio, we can establish an intuitive relationship between the distinctiveness of a word form (as
reflected in aggregate competitor probability) and its prior probability of use. The probability
that the true word w∗ would generate the observed data d , p(d|w∗), can be considered as a
constant, and the likelihood that any competitor word w′ would generate the observed data d ,
p(d|w′), is less than or equal to that constant.

We then consider the relationship between the numerator and the denominator from Eq. 10
for a high-frequency word w1 and low-frequency word w2: To have the same posterior odds
ratio in spoken word recognition, the lower prior probability word w2 must have a smaller
aggregate competitor probability than the higher probability word w1. This requires that w2

has a word form dw which is more diagnostic: that there are few competing forms w′ in the lex-
icon that have a high likelihood of generating the form dw. If p(d|w′) is too high for too many
competing word forms, the posterior probability of the correct interpretation for w1 would fall
below some threshold, making it impossible for listeners to correctly identify it, and it would
in theory exit the language (as it would be incorrectly identified as another word or con-
struction). Alternatively, repeated communicative failures could shift the listener’s contextual
beliefs until they eventually recognize the speaker’s intended message, but this would result
in substantive additional effort on the part of both the speaker and the listener. By contrast,
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10 of 32 S. C. Meylan, T. L. Griffiths / Cognitive Science 48 (2024)

the high-frequency word w2 can still be recognized with the same probability of success when
there are more/higher frequency similar words, by virtue of its higher prior probability P(w2).
The abstract relationship between likelihood, prior, aggregate probability of competitors, and
the posterior probability of the correct hypothesis regarding word identity hold regardless of
specific form of prior and likelihood, but for concreteness we now operationalize these terms.

2.2.1. Operationalizing the prior
Our primary analyses here operationalize the prior probability of the target word, P(w∗), as

the normalized frequency of the speaker’s intended word in a large corpus; we explain how
we use word frequencies from specific corpora in the Methods. We also consider an alter-
native of in-context predictability, P(w∗|c), that has been treated in detail in previous work.
Questioning the relevant aspect of word predictability in predicting word forms, Piantadosi
et al. (2011) demonstrated that word length is better predicted by average in-context proba-
bility (i.e., predictability under an n-gram model at the level of words) rather than frequency
alone across the lexicons of 11 European languages. This empirical pattern is consistent with
the theory of Uniform Information Density (UID) that speakers modulate the information
rate of their utterances to maximize information transfer without exceeding channel capacity
(Jaeger, 2010; Levy & Jaeger, 2007). Meylan and Griffiths (2021) and Levshina (2022) both
suggest limitations in the corpus analyses in Piantadosi et al. (2011) and find that frequency is
the better predictor of word length in many language samples. On the other hand, Mahowald
et al. (2013) obtain consistent experimental results that speakers choose long or short vari-
ants of words (e.g., rhino vs. rhinoceros; info vs. information) as a function of in-context
predictability, as predicted by UID. Seyfarth (2014) also found that speakers moderate the
acoustic duration of individual realizations of a word form according to their contextual pre-
dictability, also consistent with the predictions of UID. This leaves open the possibility that a
word’s predictability in longer preceding contexts helps to determine its word form. We thus
test the correlations between average in-context predictability of words and the phonotactic
probability of their corresponding wordforms.

2.2.2. Operationalizing the likelihood
The likelihood, P(d|w∗), can be realized as any function that yields the highest value for

data d∗ corresponding to w∗ (up to 1) and decreases with the dissimilarity of the expected
phonemic form for the word and the observed data. A common choice in noisy channel mod-
els of language acquisition is “negative exponentiated edit distance” (e.g., Levy, 2008b) where
zero edits results yield a likelihood of 1 (e0) and an increasing number of edits yield an expo-
nentially decreasing probability.

This simple edit-distance-based likelihood has the drawback of equating the probability
of all insertions, deletions, and substitutions, when in fact speakers are much more likely
to delete phonemes than add them, and that certain phoneme substitutions are much more
likely than others (/p/ is likely to be confused with /b/, but not with /m/). A more expressive
parameterization is thus the exponentiated path weight under a weighted finite state transducer
(WFST; Mohri, Pereira, & Riley, 2002). This can be seen as a generalization of edit distance,
where the cost of edits, deletions, and substitutions may all be different for each phoneme (or
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S. C. Meylan, T. L. Griffiths / Cognitive Science 48 (2024) 11 of 32

pair of phonemes, in the case of substitution). In the study presented here, FST weights are
set using phoneme confusion probabilities obtained from a lab-based experiment with adults
identifying phonemes in noise, as well as some free parameters (see Study 2: Methods).

2.2.3. Neighborhood density
The likelihood function presented above is closely related to a word’s neighborhood den-

sity, or the number of words with similar word forms, which is known to have an effect
on word recognition (Coltheart, Davelaar, Jonasson, & Besner, 1977; Luce & Pisoni, 1998;
Suárez, Tan, Yap, & Goh, 2011). While proposals vary on how to best operationalize the def-
inition of similarity, proposals share the intuition that words with more similar word forms
(“neighbors”) are harder to recognize because there are more competitors consistent with a
given received acoustic signal (or visual form in the case of reading; here, we focus on the
case of spoken word recognition). The most common definition of a “neighbor” is a word form
within an edit distance of one phoneme or letter (one substitution, deletion, or insertion; see
Greenberg & Jenkins, 1966; Landauer & Streeter, 1973; for a similar measure in the recog-
nition of written words, see a closely related measure in Coltheart et al., 1977). Neighbors
defined in this way have a special status under the Bayesian spoken word recognition model
above: under the exponentiated negative edit distance likelihood above, they represent the set
of highest likelihood competitors. Intuitively, the number of such competitors is higher for
short sequences; however, competition dynamics may be more complex when word recogni-
tion is considered as a realtime process that unfolds within a word (e.g., Luce & Pisoni, 1998
Study 1; Strand & Liben-Nowell, 2016).

Previous work (Dautriche, Mahowald, Gibson, Christophe, & Piantadosi, 2017; Mahowald
et al., 2018; Vitevitch et al., 1999) has demonstrated a strong correlation between phonotactic
probability and neighborhood density. Against this basic pattern, neighborhood density
and phonotactic probability are known to decouple in certain ways. First, it is possible
to find words with high phonotactic probability but no neighbors within a single edit for
words of moderate length. Previous work has used this distinction to investigate differences
between listeners’ phonological and word-level expectations in word recognition (Storkel,
Armbrüster, & Hogan, 2006). Second, cross-linguistic work suggests another dissociation
in that neighborhood densities may be on average higher in natural languages than expected
under a lexicon-wide phonotactic model (Dautriche et al., 2017). In the current work, we
investigate the degree to which metrics of neighborhood density track the proposed quantity
of aggregate competitor probability under the Bayesian spoken word recognition model.

2.3. From cognitive processes to language change

The above models help characterize word forms along two gradients: how easily they are
produced by speakers, and how susceptible to mishearing they are by listeners. In the current
work, we refrain from providing an explicit process model for language change because
lexicons undoubtedly reflect a variety of other concerns, such as transparency of morpho-
logical paradigms, exogenous social factors related to language contact, and interactions
of existing items in the lexicon with lexicalization. In lieu of a comprehensive account, we
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12 of 32 S. C. Meylan, T. L. Griffiths / Cognitive Science 48 (2024)

offer a sketch of how these two competing pressures of minimization of speaker production
effort and maximization of the listener’s probability of recognition could interact to influence
lexicons over time: First, a speaker wanting to transmit a message (a specific word) considers
alternative word forms, each of which has an associated production cost and a posterior
probability of recovery by an idealized listener. The speaker chooses the word form with the
lowest production cost which can still be recognized by the listener as the intended word with
some error rate (this could vary by word; some words may have higher and lower thresholds,
but the error rates are in some way constrained for each word). All speakers in a language
choose word forms in this fashion, seeking to reduce their articulation costs while remaining
intelligible to listeners given the lexicon and their understanding of the use frequencies of
words at that point in time. This moves the language toward the shortest possible word forms
that are still intelligible to listeners—though of course such strong optimization is unlikely
given the other pressures noted above that are likely to influence languages.

3. Study 1: Phonotactic probability and frequency

Study 1 tests the hypothesis that the phonotactic properties of word forms reflect variation
in frequency above and beyond that captured by word length. To approach this problem empir-
ically, we examine the strength of the relationship between word frequency and phonotactic
probability using the speaker model above across a wide range of languages and datasets. If
indeed phonotactic probability captures fine-grained changes in word reduction on the basis of
frequency, we expect it to outperform word length as a correlate of word frequency. The null
hypothesis is that the correlation between frequency and phonotactic probability is no stronger
than the correspondence between frequency and word length. We evaluate this hypothesis
across 13 languages drawn from three large-scale corpora.

3.1. Methods

To provide a brief overview of this process: we compute new frequency estimates for web-
scale corpora in 13 languages and three datasets. For each corpus, we take the top 25,000
most frequent words and construct a type-weighted phonotactic probability model following
the reasoning in “A Model of Speaker Effort” above. We then use the model for each lan-
guage to produce model-based information content estimates —negative log probability of
each word form under the phonotactic model (see Estimating Phonotactic Probability)—for
those 25,000 highest-frequency word forms. We then evaluate the correspondence between
frequency and phonological information content across the words and corresponding word
forms in each corpus.

3.1.1. Datasets
The Google Web 1T datasets were downloaded from the Linguistic Data Consortium

(Brants & Franz, 2006, 2009); the Google Books 2012 datasets were downloaded from stor-
age.googleapis.com/books/ngrams/books/datasetsv2.html (Michel et al., 2011), and OPUS
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S. C. Meylan, T. L. Griffiths / Cognitive Science 48 (2024) 13 of 32

(2013) from opensubtitles.org (Tiedemann, 2012). All punctuation-only word tokens were
discarded, and punctuation marks appearing with other text (with the exception of apostro-
phes) were removed. We make the simplifying assumption that the tokenized written forms
correspond to lexical items used by speakers; while this assumption may not hold for all
forms (e.g., German compound nouns, French contractions), it holds for the vast majority of
word forms in the analysis (see Baayen, Milin, & Ramscar, 2016 for further discussion of the
importance of variation in orthographic segmentation conventions for frequency analyses).
Following best practices for web-based corpus analysis proposed in Meylan and Griffiths
(2021), all tokens were converted to lowercase using the relevant POSIX locale; U.S. English
and European Portuguese were used for English and Portuguese, respectively. In the case of
Google Books 2012, part-of-speech tags were discarded, and instances from earlier than 1800
removed from the analysis. UTF-8 encoding was maintained throughout for all languages and
datasets; Hebrew strings were represented with right-normalized forms.

3.1.2. Estimating phonological information content
For each language and dataset, a three-character transition model (see “A Model of Speaker

Effort”, Section 2.1) was estimated using the 25,000 most frequent in-dictionary words also
appearing in the corresponding OPUS subtitle corpus (following Piantadosi et al., 2011).
Diphthongs (vowel sequences) were treated as sequential discrete vowels. We also produced
analogous three-phone transition models (excluding the Hebrew OPUS and Hebrew Google
Books 2012 datasets) using the International Phonetic Alphabet (IPA) transcriptions from an
automatic speech synthesizer, eSpeak. While these broad phonological transcripts are imper-
fect, using IPA representations for words accounts for language-specific variation in ortho-
graphic conventions. For example, written Spanish includes accents only when the placement
of prosodic stress cannot be deduced from more general rules in the language. Using an IPA
transcription avoids the need for developing language-specific processing rules, for example,
deciding whether “a” versus “á” should be merged or kept as separate orthographic variants
in Spanish. Diphthongs were treated as multiple distinct phonemes.

Loan words and acronyms can greatly affect the obtained transition probabilities for the
phonotactic model, especially because types contribute equally to the transition weighting
(e.g., the transitions in “Okeechobee,” “mañana,” and “ACLU” would be as heavily weighted
in a phonotactic model of English as the transitions in “they” and “will”). To minimize these
effects, we used only noncapitalized word types present in the relevant Aspell dictionary to
build sound and character transition models for each language (with the exception of German,
in which nouns, which are capitalized by convention, were retained).

In that phonological inventories are much smaller than lexicons, sparsity is less prob-
lematic for phoneme-level language models than for word-level ones. Nonetheless, to avoid
overfitting among higher-order sequences, phone and character transition probabilities were
computed with Witten–Bell smoothing (Chen & Goodman, 1999) with interpolation on
transitions of order 3 using the SRILM toolkit (Stolcke, 2002), as is commonly used for
character-level language models. Finally, some amount of probability mass must be assigned
to unseen phonemes, in case they are encountered in the test set. While this is not a concern
for the core phonemes that comprise a phonological inventory, loanwords may contain rare
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phonemes (e.g., “rapprochement” may be pronounced with a word-final nasilized vowel,
reflecting its pronunciation in French). Here, we map these out-of-vocabulary phonemes to
an unknown phoneme token, which is assigned a small probability mass; this unknown token
is then treated as any other by the smoothing scheme.

Each word’s phonotactic probability was calculated as the product of the probabilities of
each symbol given the preceding symbol string up to two symbols, including a start symbol
� and an end symbol �, for example, P(the) = P(t | �) × P(h| � t ) × P(e|th) × P(� |he).
We convert this sequence probability to phonological information content—which keeps the
same directionality and approximate range of word length—by taking the negative base 2
logarithm (yielding bits).

3.1.3. Evaluating correlations
Following the basic methodology adopted in Piantadosi et al. (2011), we examine the corre-

lation between log frequency and each of two quantitative measures of structural form (either
word length or PIC) for the 25,000 most frequent types in each language. Unlike that work,
we limit our analysis to in-dictionary types, thereby excluding person names, place names,
acronyms, and loan words from the analysis (Meylan & Griffiths, 2021).

We evaluate the strength of each of these correlations using Spearman’s rank correlation
coefficient, which evaluates the degree of monotonicity of the function rather than linear
correspondence. Word form measures included the length in phonemes, the length in char-
acters, the phonological information content as estimated under a trigram model of phoneme
transitions, and the approximation of phonological information content as estimated under a
trigram model on character transitions. The statistical significance of the difference between
correlations is evaluated in each case using bootstrapped estimation of the difference scores
(orthographic PIC vs. length; phonemic PIC vs. length) and comparing the resulting distribu-
tion to 0.

To evaluate the relationship of PIC and frequency in the absence of word length, we also
partial out word length (i.e., use the residuals from predicting PIC from word length with a
linear model) and compute the correlation with frequency (following Piantadosi et al., 2011);
following the recommendation of an anonymous reviewer, we also present an analysis where
we partial word length out of both PIC and frequency and compute the correlation among the
yielded residuals. We perform the analogous operation on length, and compute the residuals
when predicting length from PIC, and test the correlation with word frequency. This provides
a strong test of the unique predictive value of each of these variables.

Finally, we compute correlations between frequency and PIC for three random baselines
for each language in Google 1T to confirm that the obtained correlations are nontrivial. In the
first set of baseline models, the assignment of word form to frequency is randomly permuted
in each baseline lexicon, such that a short word like “the” could have a rare and unlikely word-
form like “giraffe” (we call this a “Shuffled Lexicon”). In the second set of baseline models,
word forms are drawn from the phoneme inventory of the language (without replacement),
maintaining each word form’s length in the source language but not the inventory of char-
acters for a word (“Drawn with same length”). In the third set of baseline models, the order
of phonemes or characters for each word are permuted (“Shuffled within word form”). All
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baselines maintain the same unigram phoneme statistics, the second two baselines perturb the
higher-order phoneme transitions in the natural language. For this reason, we refit the relevant
phonotactic model on each sample and recompute PIC over all word forms in the sample. We
expect the correspondence in the actual language to exceed all three of these baselines.

Models and analyses can all be accessed through OSF: https://osf.io/wza8k/.

3.2. Results

We investigate the correlation between word frequency and two different measures of
speaker effort: word length and phonotactic probability in a sample of large corpora (43m
to 266b words) in 13 languages, across three large-scale datasets from different linguistic
sources. If a word’s phonotactic probability is indeed a stronger correlate of frequency (tech-
nically, that phonological information content is a stronger negative correlate of log word
frequency), then we may conclude that speaker effort is better reflected in the phonotactic
probability of word forms than their length alone, providing evidence of an important gener-
alization of Zipf’s Law of Abbreviation.

3.2.1. Phonotactic probability versus word length
Across languages, we obtain a systematically stronger negative correlation between log

frequency and PIC than log frequency and word length (Fig. 1). Building the model from
phonemic transcriptions, this pattern holds in 11 of 11 languages in the Google 1T datasets,
4 of 6 languages from Google Books 2012, and 12 of 12 languages from the 2013 OPUS
corpus (phonemic transcriptions were not available for Hebrew). Building the model from
characters—as an approximation of phonological forms—this pattern holds in all languages
from Google 1T, 4 of 7 in Google Books 2012 (results are consistent in two of the remaining
languages, but fail to reach significance), and all languages from the 2013 OPUS corpus. Par-
tial correlations reveal a significant length-related contribution to PIC and vice versa, though
in some cases, PIC with length partialed out is a stronger correlate of frequency than length
is, for example, English 1T when PIC is computed over IPA representations.5 In other words,
among words of the same length in a given language, PIC explains substantial additional vari-
ance in word frequency: high frequance words contain higher phonotactic probability (lower
PIC) sound sequences (Fig. 2).

A similar pattern of results emerges regardless of whether PIC is computed over char-
acters or phonemic representations. The Russian Google Books 2012 dataset is the only
dataset showing consistent evidence in favor of a stronger relationship between word length
and frequency—however, this is contrary to the results of the Russian OPUS results, which
reflect the prevailing dominance of PIC. Looking across datasets, Russian shows the lowest
correlation between frequencies between Google Books and OPUS (Pearson’s r = .48), as
well as the lowest correlation between PIC estimates derived from Google Books and those
derived from OPUS (Pearson’s r = .63). Across languages, models built over phonemes and
character transitions provide similar estimates of PIC (Pearson’s r between .789 and .919
across languages, median = .874). While more research is required to extend these findings
beyond Germanic, Romance, and Slavic languages, Hebrew provides an important first test
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Fig. 1. Spearman’s ρ between frequency and phonological information content (red) and frequency and number
of characters (green). Frequency exhibits a stronger negative correlation with PIC than length for the n = 25, 000
most frequent words in each dataset. Gray vertical lines indicate the 99% bootstrapped confidence interval. Black
horizontal lines indicate the correlation with the other measure of word difficulty partialed out, and are shown
with corresponding 99% bootstrapped confidence intervals. All comparisons are statistically significant (p < .01)
unless otherwise noted: “ns” indicates non-significant contrasts and contrasts that are significant in the opposite
direction to that predicted (Russian in both datasets) are marked with red asterisks.

of whether this relationship holds in the lexicon of a language from Afroasiatic language
family.

PIC-Frequency correlations computed from three-phone and three-character transition
models from natural languages substantially exceed the correlations observed for PIC
computed under three random baseline languages (Fig. 3). We find that the correlations
obtained for natural language are larger than all same-language baselines for every language
(p <.001, by bootstrapped tests of the difference of correlations between each baseline
and natural language pair). This shows that alternative possible lexicons do not have the
same composition as natural languages and suggest that the correlations obtained here are
nontrivial.
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S. C. Meylan, T. L. Griffiths / Cognitive Science 48 (2024) 17 of 32

Fig. 2. Among words with the same number of sounds, more frequent words have higher phonotactic probability as
measured with PIC. This figure shows this relationship in the English Google Books (2012) dataset. Correlations
display Spearman’s ρ among words of the same length in phonemes.

Fig. 3. PIC computed from three-character transition models on the lexicons of natural languages (“Natural Lan-
guage”) have a significantly higher correlation with frequency than three baselines: (1) when PIC is computed
for randomly shuffled word forms (“Shuffled Lexicon”); (2) when the word form is drawn using single-character
probabilities (“Drawn with same length”); and (3) when the order of characters is shuffled within each word form
(“Shuffled Within Word form”).

4. Study 2: Phonotactic probability and word recognition

Study 1 yields empirical results that corroborate the stronger correlation between word fre-
quency and word form phonotactic probability (vs. word form length) found by Mahowald
et al. (2018). In Study 2, we revisit the explanation offered by Mahowald et al. (2018) for
this correlation and offer an alternative explanation following the arguments in “A Model of
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Robust Word Recognition” above. In contrast to the claims in Mahowald et al. (2018), our
model suggests that high phonotactic probability word forms should be harder to recognize
because they induce more competition effects from alternative interpretations, and this com-
petition must be proportional to the prior probability of the target word in order for it to be
reliably recognized. As an empirical test, we look at the correlation between phonotactic prob-
ability and the above term of “aggregate competitor probability” (ACP), which indexes the
degree of competition from all other word interpretations in the language under a Bayesian
model of spoken word recognition. We conduct this analysis only for English given the lim-
itations in available data for parameterizing the likelihood in the Bayesian model of spoken
word recognition, as detailed below.

To connect with a rich previous literature on the effects of phonemic neighborhood density
on spoken word recognition, we additionally compare aggregate competitor probability to
two measures of neighborhood density that have been previously in characterizing spoken
word recognition: the number of phonemic neighbors, and average Levenshtein distance to
the 20 nearest phonetic neighbors (PLD20, Suárez et al., 2011).

4.1. Methods

To estimate p(w∗) and p(w
′
) under the Bayesian spoken word recognition model proposed

in the introduction, we take normalized unigram probabilities from the Google Books corpus
(Michel et al., 2011). Likelihood terms, p(d|w∗) and p(d|w′

), are computed using a weighted
finite-state string transducer. We motivate this in relation to a commonly used likelihood in
visual and spoken word recognition of exponentiated negative edit distance (Levy, 2008b):

P(d|w) ∝ e−dist(d∗:w, d ) (11)

where dist(d∗ : w, d ) is the edit distance (or Levenshtein distance, or the minimal number of
deletions, insertions, and substitutions) between the citation form d∗ for candidate word w,
designated here (d∗ : w), and the received phonetic data d . In the case of the target word, the
received phonetic data d is identical to the citation form for the target word d∗, yielding a
probability of 1 (e0).

This treatment of edit distance fails to take into account perceptual similarity between
phonemes: some phonemes are more likely not to be pronounced or perceived by the listener,
and some are more likely to be confused with one another (e.g., /f/ and /θ /, per Cutler, Weber,
Smits, & Cooper, 2004). We account for this by using a weighted finite state string trans-
ducer (WFST; Mohri et al., 2002) which encodes variable edit costs, and parameterize the
model using estimates of phoneme confusion in noise from a lab-based recognition experi-
ment (Weber & Smits, 2003). For simplicity, we conduct this analysis only in English; to our
knowledge, the only other language for which appropriate datasets exist is Dutch, which is
sufficiently close in the phylogenetic tree of languages that demonstrating that it holds there
would provide little additional evidence of its generality. Probabilities are treated as positive
valued costs by taking the negative log transformation.
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Following Meylan, Foushee, Wong, Bergelson, and Levy (2023), we estimate P(w∗|d ) in a
similar fashion to exponentiated negative edit distance,

P(d|w∗) ∝ e− θWFST(d∗:w∗, d ). (12)

While Levenshtein distance relies on a single minimum edit distance between the input and
output string, the WFST captures the aggregate weight of paths through a finite state machine,
θWFST(d∗ : w∗, d ), which captures the many possible edit sequences that would transform the
expected form of a word into the received form. We create a finite state machine, FSM(d∗, dn),
for each combination of the citation form for the target word d∗ (from the CMU pronuncia-
tion dictionary) with the 10,000 highest-frequency words that form the candidate vocabulary
(dn).6Computationally, this involves composing a finite state acceptor for the conventional
form dn for each possible word identity with the transducer learned above, and then compos-
ing that state machine with the finite state acceptor for the citation phonetic form of the target
word, d∗. We then enumerate the weights along all paths through the resulting finite state
machine that represent possible sequences of edits from the input to output string,

θWFST(d∗ : w, d ) = −1 × log

⎛
⎝ ∑

path∈FSM(d∗,d )

P(path)

⎞
⎠. (13)

Following the chain rule, each path reflects the product of the conditional probabilities of its
component arcs:

P(path) =
∏

arc∈path

PFSM(d∗,d )(arc). (14)

The phoneme confusion data in Weber and Smits (2003) lack some critical information for
parameterizing the WFST (e.g., the probability of phoneme insertion), and other values may
deviate substantially between lab experiments and fluent spoken speech (e.g., the probabili-
ties of phoneme deletions). For these reasons, we use three free parameters to translate from
the substitution probabilities in lab experiments to edit probabilities in our likelihood model.
The lab-based phoneme confusion data do not contain probabilities of inserting phonemic
material, so we leave this as a free parameter (“insertion cost”). This parameter should be
expected to be relatively high (assigning low insertion probability) as it is unlikely that listen-
ers think that a short word generated a long word form (the opposite of prevalent reduction
processes). Lab-based data also most likely underestimate the rate at which participants fail
to detect phonemes in fluent speech, so we include a free parameter (“deletion scaling”) that
linearly scales the probability of deleting a phoneme (we distribute the remaining probability
mass proportional to the original phoneme-to-phoneme transitions). Finally, we experiment
with fractional additive smoothing to the phoneme/phoneme edit probabilities, in case real-
world substitutions are less peaked than those observed under lab conditions. The value of
this parameter indicates the probability mass that we take from the lab-based distribution and
spread equally across all other phonemes of the same class (consonants vs. vowels). We find
best values for these three parameters by grid sampling to maximize the correlation between
aggregate competitor probability and phonotactic probability. We report the best results below
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Spearman's���=�0.842 95��CI�=[0.835,�0.848]
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Fig. 4. Phonotactic probability versus the aggregate probability of competitors under a Bayesian model of spoken
word recognition (SWR) for n = 10,000 most frequent words in the English lexicon (each point represents a word).

as well as the results across the parameter range, and report the average posterior probability
that the model places on the speaker’s intended word.

All data, models, and analyses can all be accessed through OSF: https://osf.io/wza8k/.

4.2. Results

In Study 2, we test if the measure of phonotactic probability of a word form from Study
1—phonotactic information content—correlates with the number and strength of competitor
words in the lexicon under an idealized Bayesian model of spoken word recognition. If there
is a strong positive correlation, it means that speaker articulatory cost for word forms trades
off with the number and strength of competing interpretations, consistent with out hypothesis
in the introduction. The proposal in Mahowald et al. (2018) predicts a negative correlation, as
the strength of competitors would need to decrease with phonotactic probability in order for
the recognition of high phonotactic probability to be easier, as they claim.

The obtained measure of the aggregate strength of competitors under a Bayesian model of
spoken word recognition is strongly correlated with phonotactic probability, consistent with
our proposal (Spearman’s ρ = .842, 95% bootstrapped CI = [.835 – .848]; Fig. 4).7 This
points to a fundamental constraint on the lexicon: higher phonotactic probability comes at
the expense of stronger competition in spoken word recognition from alternative words in the
lexicon. Only frequent forms are able to sustain such competition, because listeners are able
to use their prior expectations to recognize words with less distinctive wordforms.
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Fig. 5. Aggregate probability of competitors under a Bayesian model of spoken word recognition (SWR) versus
Phonotactic Levenshtein Distance-20 (PLD-20 Suárez et al., 2011) for n = 10,000 most frequent words in the
English lexicon (each point represents a word). This shows that a more sophisticated neighborhood density metric
tracks a key quantity in an idealized mathematical model of spoken word recognition.

4.2.1. Neighborhood density
How does the new measure here of aggregate competitor probability relate to neighborhood

density metrics previously used in spoken word recognition? Aggregate competitor probabil-
ity shows a strong positive correlation with PLD-20 (Spearman’s ρ = .901; 95% bootstrapped
CI = [.896,.905]; Fig. 5). The correlation with the number of phonemic neighbors (analogous
to Coltheart’s N in reading; Coltheart et al., 1977) is nearly as strong (Spearman’s ρ = –
8.43, 95% CI = [–.85, –.835]; Fig. 6). This correlation is striking given that the measures of
neighborhood density do not have access to the frequency of the competitors.

5. Discussion

The relationship between word length and frequency (Zipf’s Law of Abbreviation; Zipf,
1935) is one of the most robust empirical findings regarding the structure of lexicons. In
Study 1, analyses of large-scale corpora from 13 languages across three datasets suggest that
word frequency correlates more strongly with phonotactic probability than with word length,
suggesting that phonotactic probability better reflects speakers’ production effort. This cor-
roborates empirical findings in Mahowald et al. (2018). In Study 2, we found in an analysis of
the English lexicon that this phonotactic probability systematically trades off with the number
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Spearman's���=�−0.843 95��CI�=[−0.85,�−0.835]
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Fig. 6. Aggregate probability of competitors under a Bayesian model of spoken word recognition (SWR) versus
the number of phonological neighbors (Marian, Bartolotti, Chabal, & Shook, 2012) for n = 10,000 most frequent
words in the English lexicon (each point represents a word). This shows that the number of single-edit competitors
approximates a key quantity of competition in an idealized mathematical model of spoken word recognition.

and strength of competing words in the lexicon that a listener would need to distinguish from
a target word in the course of spoken word recognition. Taken together, these results suggest
a generalization to Zipf’s Law of Abbreviation, namely, “frequently-used words tend to be
phonotactically probable; infrequently-used words tend to be phonotactically improbable so
that they can be distinguished the higher frequency words.” This pattern in the lexicon is con-
sistent with competing pressures toward speaker- and listener-oriented optimization: phono-
tactically probable forms are easier to produce, but words must have sufficiently improbable
word forms in order to be reliably recognized. We now discuss some of the limitations of the
current approach and some of the prospects for future research.

5.1. In-context predictability versus frequency

Both of the analyses presented above treat normalized word frequency, or unigram proba-
bility, as the relevant feature of words that predict the structure of word forms. An alternative
possibility is that average word form predictability—how predictable a word is across the
contexts in which it appears—is the stronger determinant of word forms (Piantadosi et al.,
2011, but see also Meylan & Griffiths, 2021 and Levshina, 2022). Thus, in addition to testing
the relationship of frequency and phonotactic probability, we also estimate the overall pre-
dictability of each word, operationalized as its average lexical information content, and com-
pute correlations following the same procedure as above. Following Piantadosi et al. (2011),
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(A)

(B)

Fig. 7. (A) Correlations for phonotactic probability and in-context word predictability, treated as average trigram
surprisal versus phonotactic probability and word frequency (unigram surprisal). This shows a stronger relation-
ship between phonotactic probability and word frequency in most datasets. This shows no clear preference for
in-context predictability as a better predictor of phonotactic probability. (B) A direct comparison of the relation-
ship proposed in Piantadosi et al. (2011) between in-context predictability (average trigram surprisal) and the
number of characters, versus the current work’s proposal of unigram probability and phonotactic probability. The
mixed pattern of results suggests that languages may not be optimized for frequency or unigram probability (see
also, Levshina, 2022).

we compute the negative mean log trigram probability across contexts:

− 1

N

N∑
i=1

log P(w|ci), (15)

where ci is the context for the ith occurrence of w and N is the frequency of w in the dataset.
Because estimates of mean information content may be highly biased for small datasets, we
do not compute these values for datasets in the OPUS corpus.

Whereas Piantadosi et al. (2011) found that taking into account contextual predictability (in
the form of mean trigram surprisal) better predicts word length than using frequency (negative
log probability), we find that in-context predictability is not a better predictor of phonotac-
tic probability (Fig. 7A). In fact, for all languages except for English in the 1T dataset and
English and German in the Google Books corpus, unigram surprisal is a stronger predic-
tor than trigram surprisal for phonotactic probability. This result corroborates the findings in
Meylan and Griffiths (2021) and Levshina (2022) that unigram probability may be a better
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predictor of word form characteristics than in-context predictability once appropriate controls
and data filtering steps are taken into account.

A second question is how the relationship between average information content and word
length identified in Piantadosi et al. (2011) compares directly to the relationship between
word frequency and phonotactic probability in the current work. This analysis shows a mixed
pattern of results (Fig. 7B), with alternation across datasets, and even within a single language
in the case of German. Variation within a language suggests that datasets may vary in their
composition, perhaps according to the language registers that are represented. More research
will be required to tease out the relationship between these measures of word form magnitude
and expectedness, but we find no clear advantage of in-context predictability.

5.2. Morphology and more complex models of word forms

As noted above when we introduced a probabilistic model of speaker effort, n-gram models
are overly simplistic models of word form probability (Futrell, Albright, Graff, & O’Donnell,
2017). Further, the commitment to a single-stage model excludes the possibility that neigh-
borhood density effects and phonotactic probability are separable, and can thus make pos-
sibly contradictory contributions to different stages of spoken word recognition (Vitevitch
& Luce, 1999; Vitevitch et al., 1999). A one-stage model cannot, for example, explain why
there might be facilitatory effects of high phonotactic probability in certain tasks, for exam-
ple, the speeded repetition of nonwords (Vitevitch & Luce, 1999; Vitevitch & Luce, 2005).
A two stage-model that includes a separate mapping stage from acoustic input to subword
units (morphological or otherwise) offers a way for high phonotactic probability to support
the recognition of subword units, while tasks that involve decisions at the lexical level are
impeded by high neighborhood density.

In the current work, we adopted a simpler one-stage model to allow for broad coverage
across languages, albeit at the expense of a complete and accurate model that can account for
the breadth of results of word and nonword recognition. However, we briefly describe two
alternative probabilistic generative models of word form structure that have been used in lin-
guistics and psycholinguistics that are potentially appropriate for modeling word recognition
as a multistage process. In principle, both of these model classes can produce better estimates
of information content of word forms because they learn more abstract regularities in word
forms by positing another intermediate level of sublexical representation and could be used
to model facilitatory effects of phonotactic probability in nonword processing.

A hidden Markov model (HMM) captures an intermediate level of structure by positing
an inventory of unobserved states (e.g., vowels vs. consonants or onsets vs. codas), and
conditions observed data on the unobserved state. Besides their ubiquitous use in Natural
Language Processing and Automatic Speech Recognition, HMMs have recently been used to
examine the extent of gradient lexical competition effects (Strand & Liben-Nowell, 2016).

An alternative approach is to allow for full hierarchical structure in word forms. A proba-
bilistic context-free grammar (PCFG) posits that the observed data (terminals) are generated
from a set of latent states (nonterminals) following a set of probabilistic rewrite rules. Unlike
an HMM, a PCFG is capable of capturing recursion (though, the utility of such may be limited
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in the case of word forms). While PCFGs alone are not well-suited for capturing the linear
structure of phonemes within a word, an adaptor grammar (Johnson, Griffiths, & Goldwa-
ter, 2006) uses stochastic memoization to capture linear regularities in word form structure.
Futrell et al. (2017) show a modest improvement over n-gram models in predicting phonotac-
tic structure in 14 languages in the WOLEX corpus (Futrell et al., 2017).

While these more sophisticated generative models of word forms may provide better char-
acterizations of the magnitude of words, we adopt smoothed n-gram models for the analy-
ses presented here. Futrell et al. (2017) show relatively small advantages for a sophisticated
feature-interaction PCFG and Dautriche, Mahowald, Gibson, and Piantadosi (2016) show
slightly worse performance than higher-order n-gram models. Further, supervised PCFG
induction requires that word form data be annotated with nonterminal categories, which are
not available for many of the languages in the sample examined here. The unsupervised induc-
tion of useful PCFGs—which requires learning in a very large hypothesis space—remains an
open problem for research.

5.3. Heteroskedasticity and historical change

The analysis here was not intended to directly evaluate the relative utility of speaker- and
listener-oriented optimization accounts, unlike previous work in Gahl et al. (2012) or Kanwal,
Smith, Culbertson, and Kirby (2017). However, the obtained results regarding the relation-
ship between phonotactic probability and frequency reveal an intriguing asymmetry: while
high-frequency words are necessarily short and phonotactically probable, there are also some
low-frequency words which may also be relatively short and phonotactically probable, for
example, English ewe, gut, whey. This heteroskedastic relationship suggests that the pressure
from communicative robustness does not result in an augmentation of words to maintain a
correspondence between frequency and word form. This may be due to the fact that speakers
have a range of options for reducing a word form, but have limited options for augmenting
it, such as epenthesis, or varying the duration (Gahl, 2008). Many of these are forms that
have been in the language in their current form for a long time—suggesting the possibility
that word forms undergo optimization on longer timescales which cannot be undone. Further
work may explore the historical processes that affect word forms and their relationship to
use frequency.

5.4. Toward a “complete” optimization account for lexicons

In the current work, we provide a framework for thinking about how speaker and listener
pressures trade off in languages, but purposefully stop short of offering a full cooperative
optimization account for two reasons.

First, there are many other pressures that operate on word forms besides the opposition
described here between intelligibility to the listener and the production cost for the speaker.
For example, lexicons may have a preference for transparent morphological paradigms (i.e.,
where most words follow simple combinatorial rules and there are few irregular cases such
as those seen in English past tense verbs) as these may facilitate transmission across gener-
ations (Dale & Lupyan, 2012). A second broad family of pressures on lexicons may emerge
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in scenarios of language contact where competing phonologies come into contact for reasons
exogenous to the language. For example, the Norman Conquest of England in 1066 set in
motion social changes that results in an eventual influx of words from French in the 13th cen-
tury (Singh, 2013); in this case, some high-frequency words had low phonotactic probability
word forms borrowed from French. Third, word frequencies may change as their meanings
are extended to new communicative contexts (Brochhagen, Boleda, Gualdoni, & Xu, 2023).
As such, the trade-off between speaker effort and listener robustness are only two of many
pressures that we expect to operate on the word forms that comprise a lexicon (see also Pianta-
dosi et al., 2011 regarding the relatively small proportion of variance in word length that can
be accounted for by other lexical features).

Second, even if we make the strong simplifying assumption that the two forces treated
here are the only two pressures on language, it is still quite difficult to know how their rel-
ative importance across communicative contexts would conspire to produce the lexicons we
observe in natural languages. Some words are more critical to help listeners interpret utter-
ances than others, while others contribute less. Relatedly, some social situations require more
clarity from speakers, while others stress economy of expression. Further, production costs as
well as the costs of failed transmissions vary by modality. As such, we take care in the cur-
rent work to specify that we believe that the pressures toward economy of effort by speakers
and listener robustness place bounds on the space of possible word forms rather than strictly
determine them: if a word is unlikely to be recovered or is too much work for the speaker, then
it is likely to change or exit the language; however, words should also be expected to move
around an “acceptable” envelope of trade-offs, subject to the many competing pressures iden-
tified above. The current work provides a quantitative characterization of these bounds and
some evidence for them, setting the stage for future rigorous quantitative work that looks at
how all of these pressures interact, for example, adding a measure of morphological trans-
parency.

6. Conclusion

Here we provide evidence that the canonical relationship between the length of word forms
and their frequency of usage is a special case of an even broader relationship between phono-
tactic probability and frequency. However, phonotactic probability also trades off with the
number and strength of competing lexical interpretations for a given word form as measured
under an idealized Bayesian model of speech recognition. Maintaining a lower bound on the
rate of successful word recognition requires that low-frequency word forms have sufficiently
distinctive—and thus low phonotactic probability—word forms. Thus, while speakers may
prefer to simplify and shorten words to reduce production costs, they are limited by listeners’
requirements for sufficiently distinctive word forms for successful recognition. The observed
correspondences between frequency, phonotactic probability, and aggregate competitor prob-
ability in word recognition provide new evidence that the psycholinguistic processes at work
in producing and perceiving speech may help to shape human languages at the broadest
scales.
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Notes

1 One obvious constraint limiting speaker reduction is the need to keep consistent mor-
phological paradigms. However, the consistency of many such paradigms could easily
be maintained in languages with affixal morphology while still using shorter and more
probable forms. Consider, for example, replacing all “-ing” forms in English with a sin-
gle phoneme.

2 Correspondingly, our usage of the word “phonotactic” refers to processes and graded
knowledge at all three levels (retrieval, encoding, and motor articulation), rather than
the more limited usage regarding representational knowledge that specifies which word
forms are well-formed versus not in a given language, as the term is used in Romani et al.
(2017).

3 See also Frisch et al. (2000), who investigated the relationship between word length and
implicit measures of phonotactic probability in nonwords.

4 In principle, acoustic or narrowly transcribed phonetic data would be better, but our avail-
able datasets are limited to phonemic transcriptions.

5 While we follow the partial correlation procedure in Piantadosi et al. (2011), we thank an
anonymous reviewer for noting some of the shortcomings with this approach for comput-
ing partial correlations (Wurm & Fisicaro, 2014). We provide an auxiliary set of analyses
looking at the correlation between word frequency and PIC after residualizing both mea-
sures with respect to word length in Figs. S3and S4.

6 We limit the size of the vocabulary, |V |, to 10,000 words for computational tractable, as
we need to compose |V |2 state machines over the entire vocabulary.

7 This correlation is robust across the range of free parameters in the likelihood function;
the lowest obtained correlation was .68. The results reported above reflect a smoothing
parameter of. 1, an insertion cost of 7.0, and a deletion cost of 1.0, and yield an average
surprisal of 1.12 bits. If we instead optimize to maximize posterior probability of the tar-
get words, the best model has an average surprisal of. 41 bits. In this case, the correlation
between phonotactic probability and ACP decreases a small amount to. 82. The results
of the grid search are presented in Figs. S1and S2.
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Supporting Information

Additional supporting information may be found
online in the Supporting Information section at the end
of the article.

Fig. S1. The correlation between phonotactic probabil-
ity and aggregate competitor probability as a function of
free parameters in Study 2.

Fig. S2. The relationship between average posterior
probabilities under the model and the correlation between
phonotactic probability and aggregate competitor proba-
bility across the parameter space in Study 2.

Fig. S3. Partial correlations following Wurm and Fisi-
caro (2014) computed over phonemic representations
(compare with Fig. 1, top).

Fig. S4. Partial correlations following Wurm and Fisi-
caro (2014) computed over orthographic representations
(compare with Fig. 1, bottom).
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