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Abstract We explored people’s inductive biases in category
learning—that is, the factors that make learning category
structures easy or hard—using iterated learning. This method
uses the responses of one participant to train the next, simu-
lating cultural transmission and converging on category struc-
tures that people find easy to learn. We applied this method to
four different stimulus sets, varying in the identifiability of
their underlying dimensions. The results of iterated learning
provide an unusually clear picture of people’s inductive
biases. The category structures that emerge often correspond
to a linear boundary on a single dimension, when such a
dimension can be identified. However, other kinds of category
structures also appear, depending on the nature of the stimuli.
The results from this single experiment are consistent with
previous empirical findings that were gleaned from decades of
research into human category learning.
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The ability to learn new categories from labeled examples is a
basic component of human cognition, and one of the earliest to be
studied by psychologists (Hull, 1920). As with many cognitive
tasks, category learning can be characterized as a form of induc-
tion—an inference to underdetermined hypotheses from limited
data (Bruner, Goodnow, & Austin, 1956). This directly implies a
role for what machine learning researchers refer to as the induc-
tive biases of a learner—those factors that make a learner more
likely to entertain one hypothesis than another (Mitchell, 1997).
In category learning, these inductive biases determine whether
a particular category structure is easy or hard to learn.

Inductive biases for category learning have often been
studied using “supervised” learning tasks, in which partici-
pants learn experimenter-designed categories in order to study
the rates at which they learn and how they generalize
(e.g., Ashby, Alfonso-Reese, Turken, & Waldron, 1998;
Erickson & Kruschke, 1998; Nosofsky, 1986, 1987;
Nosofsky, Palmeri, & McKinley, 1994). However, this is an
inefficient way to study human inductive biases. Establishing
what is easy or hard to learn requires teaching people many
different kinds of categories and comparing the results
(e.g., Shepard, Hovland, & Jenkins, 1961). Over the last few
decades, a clear picture has emerged from pursuing this meth-
od, but it has taken many experiments to produce this picture.

An alternative approach has been to use an “unsupervised”
learning task, in which participants are asked to organize a set of
stimuli into categories by themselves in order to examine which
structures they naturally identify (e.g., Ahn & Medin, 1992;
Anderson, 1991; Handel & Imai, 1972; Imai & Garner, 1965;
Love, Medin, & Gureckis, 2004; Medin, Wattenmaker, &
Hampson, 1987; Milton & Wills, 2004; Pothos & Chater,
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2002; Pothos et al., 2011; Regehr & Brooks, 1995). Unsuper-
vised learning clearly reflects people’s inductive biases, but
arguably taps different cognitive processes than does supervised
learning (Milton & Wills, 2004; Regehr & Brooks, 1995).

For this article, we used a new approach to investigate
human category learning, in which participants performed a
standard supervised learning task, but we manipulated the
categories that they learned so as to directly reveal their
inductive biases using a single, compact experiment. The
novel method that we used is known as iterated learning
and has its roots in accounts of language evolution (Kirby,
2001). Participants are arranged into a chain in which the
responses from the first participant are used as training data
for the second participant, and so on. The result is a simple
simulation of the cultural transmission of information that can
be conducted in the laboratory. Mathematical analyses of this
process have shown that as the chain gets longer, the re-
sponses that people produce come to reflect their inductive
biases (Griffiths & Kalish, 2007). Intuitively, each time that
people learn, they impose their inductive biases on the data, so
iterating this process converges on responses that just express
those biases. Experiments using this method have confirmed
that the results are consistent with those of more traditional
methods for estimating human inductive biases (Griffiths,
Chris t ian, & Kalish, 2008; Kalish, Griff i ths, &
Lewandowsky, 2007; Lewandowsky, Griffiths, & Kalish,
2009). Iterated learning can be seen as striking a middle
ground between unsupervised and supervised learning, since
the feedback that is provided comes from other participants.

Supervised and unsupervised learning have been used to
explore several basic questions about human inductive biases
for category learning: Does category learning differ when the
dimensions used to define the stimuli are separable (i.e.,
clearly individuated; Garner & Felfoldy, 1970) or integral
(Handel & Imai, 1972; Nosofksy, 1987)? Are boundaries
defined along a single dimension easier to learn than those
defined using multiple dimensions (Ahn & Medin, 1992;
Ashby et al., 1998; Imai & Garner, 1965; Kruschke, 1993;
Medin et al., 1987)? Do people form abstract prototypes,
remember specific exemplars, or learn rules (Ashby & Gott,
1988; Erickson &Kruschke, 1998; Nosofsky, 1986; Nosofsky
et al., 1994; Reed, 1972)? We used the iterated-learning ap-
proach to conduct a single experiment that generated a clear
picture of human inductive biases for category learning, pro-
viding new insight into these basic questions.

Method

Participants

A total of 1,440 participants were included in the experiment,
and a further 570 were excluded for reasons explained below.

Of the included participants, 480 were students at the Univer-
sity of California, Berkeley, who received course credit, and
960 were recruited from Amazon Mechanical Turk (www.
mturk.com, restricted to participants from the United States
with a 95 % approval rating or greater) and received a
payment of $0.50. The experiment had 16 conditions,
resulting from the combination of four stimulus sets and four
initial category structures. Each condition was replicated with
six chains, two of which were made up solely of Berkeley
participants, and four of which were made up solely of
Mechanical Turk participants. Each replication of each
condition consisted of an iterated learning chain of 15
generations. Each participant was randomly assigned to an
incomplete chain in their pool (either Berkeley or Mechanical
Turk), occupying the next available generation in the chain.

Stimuli

Four sets of stimuli were used, two with separable dimensions
and two with integral dimensions (see Fig. 1). The stimuli
with separable dimensions were “Shepard circles”—circles of
varying diameters, each with a radius drawn at a varying angle
(Shepard, 1964)—and rectangles that varied in height and
width (Krantz & Tversky, 1975). The stimuli with integral
dimensions were both sets of amorphous blobs, one from
Cortese and Dyre (1996), which we call “Cortese blobs,”
and the other from Shepard and Cermak (1973), which we
call “Shepard blobs.” The two dimensions used to define these
stimuli correspond to the parameters of periodic functions that
are converted to closed loops and are not easily identified from
the stimuli themselves.

For each stimulus set, we constructed an equal-spaced, 8-
by-8 square grid of stimuli. The grid of 64 stimuli used for
each type of stimulus set is depicted in the second and
third rows of Fig. 1. We refer to the position of a
stimulus in this 8-by-8 grid as the canonical coordi-
nates of that stimulus. We also derived the multidimen-
sional scaling (MDS; Kruskal, 1964) coordinates, shown
in the fourth row of Fig. 1, which depict the ways that
the stimuli are represented in psychological space. The-
se coordinates were computed using similarity ratings
provided by a different group of participants (details of
this analysis appear in the supplementary materials).

Procedure

Each participant completed a training session and a test ses-
sion. In the training session, the participant was trained
to reproduce the category memberships of a random
selection of 32 of the 64 stimuli. In each training trial,
the participant classified a single stimulus from the training
set, with feedback.
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For participants in the first generation of a chain, the
feedback was based on one of the four initial category struc-
tures, shown in the first and second columns of Fig. 2 (the first
column shows canonical coordinates, the second MDS coor-
dinates, with different colors indicating category member-
ship). The different initial category structures are includ-
ed so as to allow diagnosis of the chains losing the
influence of their initialization and converging on cate-
gory structures that simply reflect inductive biases, and
the initial structures were selected to represent a range
of possible category structures. The first two are linear
boundaries, one aligned with a single dimension and
one using both dimensions. The other two are

discretized versions of the category structures described
by McKinley and Nosofsky (1995), corresponding to
boundaries produced by taking each category to be a
mixture of Gaussians.

For the participants in the remaining generations,
feedback was provided according to the test session
responses of the participant in the previous generation.
Participants were not made aware that their test responses
would be used in later generations, and they did not have
any contact with other learners from different generations. The
training session was organized into blocks containing 32 trials
each, with the order of presentation of the stimuli being
randomized within each block.
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Fig. 1 The four stimulus sets. Each of the four columns corresponds to
one stimulus set, as specified by the titles along the top of the figure. The
first row shows representative items from the stimulus set. The second
row presents all 64 stimuli from each stimulus set in the 8-by-8 grid of the
canonical coordinate space. The third row represents each stimulus as a

different colored square, arranged in the same 8-by-8 grid of canonical
coordinates. The final row represents the stimulus sets in their multidi-
mensional-scaling coordinates; in these images, each marker represents
one stimulus, with the color corresponding to the color used to represent
the same stimulus in the third row
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In the test session, the participant classified all 64 items in a
random order without feedback. Participants continued to the
test session only if they had correctly answered at least 22 of
the 32 training trials in any training block.1 Otherwise, the

participant completed another block of the training session,
with exactly the same set of stimuli. If a participant had not
reached the learning threshold after 20 blocks or 30 min, the
experiment was ended and the participant was excluded. Of
the participants, 38 reached the maximum number of blocks,
and 25 reached the time limit without achieving the learning
criterion. A further 31 participants were excluded because
some of their data were not sent to the database server due
to network connection issues. All of the excluded participants
were identified in the course of the experiment and replaced

Shepard circles

Rectangles

Cortese blobs

Shepard blobs

Fig. 2 Samples of responses from the iterated-learning experiment. Each
row is an iterated-learning chain; one chain is shown for each combina-
tion of stimulus set and initial category structure. The colors indicate
category membership, and each image shows the generalization re-
sponses of a single learner. Each learner learned from examples of the

category structure shown to the immediate left. In each chain, the first and
second images show the initial category structure in canonical and mul-
tidimensional-scaling (MDS) coordinates, respectively. All of the subse-
quent images are category structures produced by human learners, pre-
sented in MDS coordinates

1 This threshold was selected because 22 correct responses out of 32 trials
indicates with p < .05 that the responses are not purely random, according
to an exact binomial test. This also corresponds to the threshold for
“positive evidence” (a Bayes factor of 3 or more; Kass & Raftery,
1995) in favor of the probability of a correct response being greater than
.5.
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by others to fill in their positions in the chains before the
experiment continued. The data of 31 additional partici-
pants were excluded because they were assigned to
duplicate positions in a chain that had already been
filled by another participant; this occurred when many
participants attempted to take the experiment simultaneously
and our system was unable to properly allocate them all to
unique chains.

Supervised category-learning experiments have almost ex-
clusively used relatively balanced categories, with roughly
equal numbers of members of each category. To focus our
investigation of human inductive biases on these cases, we
excluded 445 participants who assigned more than twice as
many stimuli to one category than to the other in the test
session. These participants were identified as the experiment
was running and replaced immediately. This had an effect that
was equivalent to conditioning the resulting distribution over
category structures on the categories being relatively bal-
anced. Although excluding these participants may seem
wasteful, it prevented the iterated learning chains from explor-
ing the very large space of unbalanced category structures,
which would ultimately produce a large amount of uninfor-
mative data.

Results

No qualitative differences were found between the two
participant pools in the analyses presented below, so
their data were combined. Figure 2 shows one represen-
tative chain of 15 generations for each of the 16 con-
ditions, with different colors being used to indicate
category membership.2

Convergence analysis

The chains shown in Fig. 2 appear to have converged to
similar category structures for each stimulus set, regard-
less of initialization. To quantitatively verify that all
chains converged, we examined the distribution of re-
sponses across generations to determine whether this
distribution was influenced by the initial category struc-
tures. First, we performed a cluster analysis of the test
session responses, with the variation of information (VI)
metric (Meila, 2003) being used as the distance func-
tion. The VI metric is an information-theoretic measure
of the distance between partitions that depends only on
how stimuli are classified, and not on the locations of

those stimuli. The VI metric is invariant to relabelings of the
categories, so two structures that are identical but switch the
category labels would have a VI value of zero.3

For each of the 15 generations, the 96 category struc-
tures from all six replications of the four stimulus types and
four initial conditions were automatically allocated to ten
clusters using the k -means algorithm. We then examined
how the frequencies with which category structures were
assigned to these clusters were influenced by the initial
category structures, for each stimulus type separately. We
aggregated the frequencies of the clusters over the last ten
generations and then used a Bayesian test for independence
(Nandram & Choi, 2007, p. 222) to compare each pair of
initial category structures (i.e., six pairs for each stimulus
type). Of the 24 resulting comparisons, four produced a
Bayes factor greater than 1 (i.e., providing evidence for an
effect of initial category structure). One comparison
corresponded to the two linear boundaries for rectangles,
which resulted in a difference in the boundaries being
produced by participants in those chains (although both
boundaries appeared with some frequency in the chains
resulting from the other initial category structures). The
other three comparisons showed a difference between the
one-dimensional linear boundary and the other initial cat-
egory structures for the Shepard circles. The dimension
that this rule picked out was not the dimension that the
other chains producing a one-dimensional linear boundary
favored. This difference endured through most of the exper-
iment, being reduced only in the last couple of generations.
We thus omitted the chains for the Shepard circles initialized
with a one-dimensional linear boundary from our subsequent
analysis.4

Visualizing inductive biases

In order to characterize both the overall pattern and the
variability in the category structures produced by iterat-
ed learning in the chains for a stimulus set, we per-
formed an analysis that made it possible to visualize all of
the category structures for each stimulus set simultaneously.
We used the VI distances between category structures as the
input to a metric MDS analysis (Torgerson, 1958) of the last

2 A set of figures showing all of the results are included in the supple-
mentary materials. To promote further exploration of the results by other
researchers, the full set of results is available online at http://cocosci.
berkeley.edu/iteratedCatData/.

3 In order to compare across the different stimulus sets, we identified
stimuli by their canonical coordinates. Although the MDS analysis
showed that people formed representations that differed from the canon-
ical coordinates for some stimuli, the analysis of convergence required
only that we find clusters that could be used to summarize the distribution
of responses for each generation. The canonical coordinates were thus
sufficient for this analysis.
4 The persistence of the other linear boundary suggests that it might
occupy another mode of the distribution over category structures
reflecting people’s inductive biases. However, since this mode was not
visited by any of the other chains, we made the conservative decision to
omit these results.
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ten generations of responses.5 The results are shown in Fig. 3,
with each dot in a panel corresponding to one of the category
structures generated by the participants. For all stimuli other
than the Shepard circles, there are 240 (six replications for
four initial category structures over ten generations) data
points. The omission of one initial category structure for the
Shepard circles resulted in 180 data points.

Discussion

The iterated-learning paradigm offers a new perspective on
the problem of characterizing how people learn categories. A
chain of participants each take part in a traditional supervised
category-learning task, with generalization judgments being
made on the basis of a training set. Each chain provides a
window into the dynamics of how people are learning from
other people’s judgments. Taken together, the structures
that emerge from this simulated process of cultural
transmission create a picture of human inductive biases
for a set of stimuli. In the remainder of this article, we
will consider how well this picture coheres with previ-
ous findings based on the empirical comparison of com-
putational models of category learning, focusing on the
three questions raised in the introduction.

Use of boundaries based on multiple dimensions

Previous work on category learning has provided strong evi-
dence that people find it easier to learn categories that have
boundaries that align with a single stimulus dimension than to
learn those that depend onmultiple dimensions (e.g., Ashby&
Maddox, 2005; Ashby, Queller, & Berretty, 1999; Goudbeek,
Swingley, & Smits, 2009; Kruschke, 1993; Shepard, Hovland,
& Jenkins, 1961), and that they tend to produce such struc-
tures in unsupervised learning tasks (Ahn & Medin, 1992;
Imai & Garner, 1965; Medin et al., 1987; Milton & Wills,
2004). The inductive biases revealed in our experiment,
shown in Fig. 3, are largely consistent with these results:
Where clear category boundaries were observed, those bound-
aries tended to be linear and aligned with a single
(psychological) dimension. The most interesting deviation
from this tendency was observed with the Shepard circles,
where one of the more prevalent category structures involved
a discontinuous category. However, even in this case the
resulting category boundaries were both linear and both
aligned with a single dimension.

Separable and integral stimuli

Consistent with existing findings on the relation between the
separability of dimensions and the formation of linear bound-
aries (e.g., Ashby & Maddox, 2005; Handel & Imai, 1972;
McKinley & Nosofsky, 1996), the bias toward one-
dimensional, linear boundaries varies with the stimulus type.
The distinction between separable and integral representations
is based partly on whether people can identify the dimensions
along which stimuli vary (Garner & Felfoldy, 1970). This has
direct implications for category learning, since people can
only form rules or allocate attention over dimensions that they
can identify. The results shown in Fig. 3 indicate that for the
separable stimuli—the Shepard circles and rectangles—the
vast majority of the category structures produced by the
participants were linear boundaries aligned with a single di-
mension, whereas for the integral stimuli—the Cortese and
Shepard blobs—these category structures were far less dom-
inant. Consequently, our results suggest that people have a
strong preference for simple category structures, using a one-
dimensional linear boundary when the stimulus type allows it.

Perhaps the main surprise yielded by these results is that
people still produced linear boundaries aligned with the di-
mensions that were used to define the integral stimuli. This
may be a result of these stimuli (and, in particular, the Cortese
blobs) not being truly integral, with participants being able to
identify an underlying dimension that correlates with the
complex dimensions used to define the stimuli. For example,
the “fatness” of the Cortese blobs correlates with the ampli-
tude dimension, and this may be why people produce category
structures that favor boundaries orthogonal to this dimension.
The use of a square array of stimuli might also provide a
distributional cue as to the underlying dimensional structure.
In future work, it would be interesting to explore inductive
biases for other clearly integral stimuli (such as color chips
varying in hue and saturation) with a circular stimulus array, to
investigate whether a similar strong bias for simple structures
could be observed.

Prototype and exemplar representations

Different models of category learning can be seen as positing
that people favor different kinds of category structures, and
thus have different inductive biases. The data produced by our
experiment thus offer the opportunity to compare the induc-
tive biases of computational models of category learning to
those of people.6 One enduring debate in the literature on
category learning concerns whether people make

6 We focused on a qualitative comparison here, providing a more quan-
titative comparison in Canini, Griffiths, Vanpaemel, and Kalish (2011).
Given the unusual size and richness of our data set, we hope that it will be
used as a benchmark for models of category learning in the future.

790 Psychon Bull Rev (2014) 21:785–793

5 Metric MDS was used because the sheer number of responses would
have made nonmetric MDS prohibitively computationally costly.



categorization decisions by comparison to a prototype ab-
stracted from the training stimuli (e.g., Reed, 1972) or by
recalling the training stimuli themselves (e.g., Nosofsky,
1986). One of the arguments in favor of storage of exemplars
is that people can (eventually) learn complex category struc-
tures that cannot easily be represented in terms of prototypes
(McKinley & Nosofsky, 1995). The inductive biases revealed
in our experiment provide an interesting perspective on this
debate. Complex category structures were produced by iterat-
ed learning for all stimulus sets. However, the proportion of
category structures falling into this class depended on the
stimulus set, being least pronounced for the separable stimuli
and most pronounced for the (arguably most integral) Shepard
blobs. The majority of category structures produced for most
of the stimulus sets took a form that was more consistent with
a prototype representation (or a simple rule), with a single
coherent region for each category. Although exemplar models
can mimic the predictions of prototype models (Medin &
Schaffer, 1978), they do not do so generically. That is, if
people were always using an exemplar strategy, we should
not see this degree of coherence in the outcomes of iterated

learning. Consequently, our results suggest that people can
adopt different modes of learning, using prototypes or rules
when the data allow it, and relying on exemplars when this is
not possible. This conclusion is consistent with several previ-
ous models that have explored how these different approaches
to category learning can be integrated (Ashby et al., 1998;
Erickson & Kruschke, 1998; Nosofsky et al., 1994;
Vanpaemel & Storms, 2008).

Limitations and extensions

Our experiment is intended as a first demonstration of the
power of the iterated-learning method in studying category
learning. Its findings could be extended in several ways. First,
we focused on the case in which participants learned only two
categories; some of the more complex category structures
might disappear if it was possible to learn multiple categories
(for some preliminary work in this direction, see Xu,
Dowman, & Griffiths, 2013). Second, the stimulus sets that
we used differed in their representations in psychological
space—forming a rough square for the Shepard circles, a

RectanglesShepard circles

A

B

C

D

A

B C

D

A

B C

D

A

B

C

D

Shepard blobsCortese blobs

Fig. 3 Two-dimensional representation of the category structures pro-
duced by the last ten generations of human learners. Each medium-gray
dot in the large squares represents the category structure produced by one

participant. For each stimulus set, four individual category structures are
shown in detail to demonstrate the variation among people’s responses
and identify the contents of the clusters
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horseshoe for the rectangles, and variations on circles for the
Cortese and Shepard blobs. It would be interesting to investi-
gate whether people’s inductive biases change when the dis-
tribution of stimuli over psychological space changes, and
whether this could account for some of the differences be-
tween separable and integral stimuli that were observed in our
experiment. Research on unsupervised learning has suggested
that surprisingly subtle factors can influence the category
structures that people tend to produce (e.g., Milton & Wills,
2004); if iterated learningwere to reveal a similar sensitivity in
inductive biases for a task based on supervised learning, this
might be a factor that needs to be taken into account bymodels
of category learning.

Conclusions

Iterated learning provides a way to explore human inductive
biases for category learning. By running a single experiment,
we obtained results that are consistent with insights that were
gleaned from decades of research into human category learning.
These results complement previous research and provide an
unusually clear picture of the factors that contribute to human
category learning. We view these results as a first step toward
gaining a more comprehensive understanding of how people
learn categories. By running iterated-learning experiments with
other stimuli and other tasks, we can begin to build toward a
catalogue of human inductive biases that can be used to guide
the development of both psychological theory and machine-
learning systems that come closer to human performance.
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