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Abstract

The human mind appears to be equipped with a toolbox full
of cognitive strategies, but how do people decide when to use
which strategy? We leverage rational metareasoning to derive
a rational solution to this problem and apply it to decision mak-
ing under uncertainty. The resulting theory reconciles the two
poles of the debate about human rationality by proposing that
people gradually learn to make rational use of fallible heuris-
tics. We evaluate this theory against empirical data and exist-
ing accounts of strategy selection (i.e. SSL and RELACS). Our
results suggest that while SSL and RELACS can explain peo-
ple’s ability to adapt to homogeneous environments in which
all decision problems are of the same type, rational metarea-
soning can additionally explain people’s ability to adapt to het-
erogeneous environments and flexibly switch strategies from
one decision to the next.
Keywords: Strategy Selection; Decision Making; Heuristics;
Bounded Rationality; Cognitive Control; Learning

Introduction
Many of our decisions and judgments systematically violate
the laws of logic and probability theory (Tversky & Kahne-
man, 1974). These violations are known as cognitive biases.
Cognitive biases have been interpreted as evidence that peo-
ple do not reason by the rules of logic and probability theory
but by simple yet fallible heuristics. Whether or not these
findings prove that humans are irrational has been debated
for decades (Stanovich, 2009). While some view heuristics
and biases as a sign of human irrationality, recent work sug-
gests that some heuristics can be understood as rational strate-
gies once computational costs are taken into account (Lieder,
Griffiths, & Goodman, 2013; Griffiths, Lieder, & Goodman,
2015; Lieder, Hsu, & Griffiths, 2014). Furthermore, Gigeren-
zer and colleagues argue that having a toolbox of simple
heuristics that are well adapted to the structure of our envi-
ronment makes us smart (Gigerenzer & Todd, 1999).

Yet, being a skilled carpenter requires more than a tool-
box: you also have to know when to use which tool. Todd and
Gigerenzer (2012) postulate that we choose heuristics that are
well-adapted to our current situation (i.e. ecologically ratio-
nal), but they do not explain how we are able to do so. Empir-
ical evidence suggests that people do indeed choose heuristics
adaptively (Payne, Bettman, & Johnson, 1988; Bröder, 2003;
Pachur, Todd, Gigerenzer, Schooler, & Goldstein, 2011). De-
spite some progress, the computational principles of strategy
selection remain unclear (Marewski & Link, 2014). Previ-
ous theories of strategy selection, namely SSL (Rieskamp &
Otto, 2006), RELACS (Erev & Barron, 2005), and SCADS
(Shrager & Siegler, 1998) predict the formation of rigid men-
tal habits that always pursue the same strategy, whereas peo-
ple are more flexible (Lieder, Plunkett, et al., 2014; Payne et
al., 1988).

This paper proposes a rational solution to the strategy se-
lection problem: in analogy to model-based reinforcement
learning (Dolan & Dayan, 2013) our theory posits that peo-
ple learn a mental model that enables them to predict each
heuristic’s accuracy and execution time from features of the
problem to be solved and choose the heuristic with the best
predicted speed-accuracy tradeoff.

In the remainder of this paper we first review previous
strategy selection theories and introduce our new theory of
strategy-selection. We then test our theory against those pre-
vious accounts by fitting published data on multi-attribute de-
cision making, conducting a novel experiment, and demon-
strating that our theory can account for people’s adaptive flex-
ibility in risky choice. We close with a discussion of the im-
plications of our results for the debate about human rational-
ity and directions for future research.

Models of Strategy Selection
According to previous theories of strategy selection we learn
to choose the strategy that works best on average across all
problems in an environment (Rieskamp & Otto, 2006; Erev &
Barron, 2005) or category (Shrager & Siegler, 1998). This ap-
proach ignores that every problem has distinct characteristics
that determine the strategies’ effectiveness. After reviewing
these context-free theories, we propose a model that chooses
strategies based on the features of individual problems.

Context-free strategy selection learning
According to the SSL model (Rieskamp & Otto, 2006) the
probability that strategy s will be chosen (P(St = s)) in trial t
is proportional to its reward expectancy qi:

P(S = s) ∝ qt(s), (1)

where qt(k) is the sum of the rewards obtained when strategy
k was chosen prior to trial t plus the initial reward expectancy

q0(k) = rmax ·w ·βk, (2)

where rmax is the highest possible reward, w is the strength
of the initial reward expectancy, and β1, · · · ,βN ∈ [0,1] are
the agent’s initial relative reward expectancies for strategies
1, · · · ,N and sum to one.

The RELACS model (Erev & Barron, 2005) chooses strate-
gies according to their recency-weighted average payoffs

Wt+1(k) =

{
α · rt +(1−α) ·Wt(k) if St = k
Wt+1(k) =Wt(k) else

(3)

P(St = k) ∝ eλ·Wt (k)
Vt (4)



where the parameters α and λ determine the agent’s learn-
ing rate and decision noise respectively, and Vt is the agent’s
current estimate of the payoff variability.

The SCADS model (Shrager & Siegler, 1998) presupposes
that each problem has been identified as an instance of one or
more problem types and assumes associative learning mech-
anisms similar to those of SSL.

Feature-based strategy selection learning
In this section, we present a theory according to which people
learn a mental model predicting the effectiveness of cognitive
strategies from features of the problem to be solved.

Strategy selection is a metacognitive decision with uncer-
tain consequences. We therefore leveraged rational metarea-
soning – a decision-theoretic framework for choosing com-
putations (Russell & Wefald, 1991) – to develop a rational
model of strategy selection that is theoretically sound, com-
putationally efficient, and competitive with state-of-the-art al-
gorithm selection methods (Lieder, Plunkett, et al., 2014).

Rational metareasoning chooses the strategy s? with the
highest value of computation (VOC) for the problem speci-
fied by input i:

s? = argmax
s∈S

VOC(s, i), (5)

where S is the set of the agent’s cognitive strategies. The
VOC of executing a cognitive strategy s is the expected net in-
crease in utility over acting without deliberation. If the strat-
egy chooses an action and the utility of the available actions
remains approximately constant while the agent deliberates,
then the VOC can be approximated by the expected reward
of the resulting action minus the opportunity cost of the strat-
egy’s execution time T :

VOC(s; i)≈ E [R|s, i]−E [TC(T )|s, i] , (6)

where R is the increase in reward and TC(T ) is the opportu-
nity cost of running the algorithm for T units of time. The re-
ward R can be binary (correct vs. incorrect output) or numeric
(e.g., the payoff). Equations 5-6 reveal that near-optimal
strategy selection can be achieved by learning to predict the
strategies’ expected rewards and execution times from fea-
tures f(i) of the input i that specifies the problem to be solved.
These predictions can be learned by Bayesian linear or logis-
tic regression as described in Lieder, Plunkett, et al. (2014).

Equation 5 is optimal when the VOC is known, but when
the VOC is unknown the value of exploration should not
be ignored. To remedy this problem, we employ Thomp-
son sampling (Thompson, 1933) – a near optimal solution
to the exploration-exploitation dilemma (May, Korda, Lee, &
Leslie, 2012). Concretely, each strategy s is chosen (S = s)
according to the probability that its VOC is maximal:

P(S = s) ∝ P
(

s = argmax
s

VOC(s; i)
)
. (7)

This is implemented by drawing one sample from each strat-
egy’s VOC model and picking the strategy with the highest

sampled value (ties are broken at random). This proposal is
line with behavioral (Vul, Goodman, Griffiths, & Tenenbaum,
2014) and neural evidence (Fiser, Berkes, Orbán, & Lengyel,
2010) for sampling as a cognitive mechanism.

Learning when to use fast-and-frugal heuristics
Fast-and-frugal heuristics perform very few computations
and use only a small subset of the available information
(Gigerenzer & Gaissmaier, 2011). For instance, the Take-
the-Best (TTB) heuristic for multi-attribute decision making
chooses the option with the highest value on the most pre-
dictive attribute that distinguishes the options and ignores
all other attributes. This strategy works in so-called non-
compensatory environments in which the attributes’ predic-
tive validities fall off so rapidly that the recommendation of
the most predictive attribute cannot be overturned by ratio-
nally incorporating other attributes. Yet it can fail miserably
in compensatory environments in which no single attribute
reliably identifies the best choice by itself.

Bröder (2003) found that people use Take-the-Best more
frequently in non-compensatory environments than in com-
pensatory environments. Rieskamp and Otto (2006) con-
ducted an experiment suggesting that this adaptation might
result from reinforcement learning: Two groups of partici-
pants made 168 multi-attribute decisions with feedback in a
compensatory versus a non-compensatory environment. Over
time, the choices of participants in the non-compensatory en-
vironment became more consistent with TTB, whereas the
choices of participants in the compensatory environment be-
came less consistent with TTB and more consistent with
the weighted-additive strategy (WADD) that computes the
weighted average of all attributes.

These findings raise the question how people learn when
to use TTB. This problem could be solved either by learn-
ing how well TTB works on average, as postulated by SSL
and RELACS, or by learning to predict the performance of
TTB and alternative strategies for individual problems as sug-
gested by rational metareasoning.

As a first test of our model we demonstrate that it can ex-
plain the findings of Experiment 1 from Rieskamp and Otto
(2006). This experiment was structured into seven blocks
comprising 24 trials each. In each trial participants chose
between two investment options based on five binary at-
tributes whose predictive validities were constant and explic-
itly stated. To apply our general rational metareasoning the-
ory to multi-attribute decision making, we manually selected
a small set of simple features that are highly informative
about the relative performance of TTB versus WADD: The
first feature predicts the performance of TTB by the validity
of the most reliable discriminative attribute ( f1), the second
and the third feature measure the potential for WADD to per-
form better than TTB by the gap between the validity of the
most reliable attribute favoring the first option and the most
reliable attribute favoring the second option ( f2) respectively
the absolute difference between the number of attributes fa-



voring the first option and the second option respectively
( f3). The simulated agent’s toolbox contained two strategies:
Take-The-Best (s1 = TTB) and the weighted-additive strat-
egy (s2 = WADD). The probability that strategy s leads to
the correct decision was modeled by

P(R = 1|s) = 1
1+ exp(−f ·αs +bs)

. (8)

To accommodate people’s prior knowledge about the strate-
gies’ performance we parameterized its prior distribution by

P(αs) = N
(
µ = 0,Σ−1 = τ · I

)
(9)

P(bs) = N (µ = b(s)0 ,σ−2 = τ). (10)

where b0 and τ are free parameters and 0 and I are the zero
vector and the identity matrix respectively.

We created compensatory and non-compensatory environ-
ments similar to those used by Rieskamp and Otto (2006): In
the non-compensatory environment TTB always makes the
Bayes-optimal decision, and in the compensatory environ-
ment WADD always makes the Bayes-optimal decision. In
both environments TTB and WADD make the same decision
on exactly half of the trials. To determine the Bayes-optimal
decision and generate payoffs, we computed the probability
that option A is superior to option B by Bayesian inference
under the assumption that their order is uninformative and
that positive and negative ratings are equally common. Pay-
offs were sampled from the posterior distribution given the
attributes’ values and validities. Furthermore, we assumed
that the participants’ opportunity cost c corresponded to $5
per hour at 1 computation per second. Since the initial bias
in strategy selection only depends on the difference between
the prior beliefs about the two strategies, we set b(TTB)

0 to zero

and fit ∆b0 = b(WADD)
0 −b(TTB)

0 and τ to the average frequency
with which Rieskamp and Otto’s participants used TTB ver-
sus WADD in each block by minimizing the mean squared er-
ror using grid search. For each grid point we simulated trial-
by-trial learning and decision making and averaged the choice
frequencies within each block across 1000 simulations. The
resulting parameter estimates were ∆b̂0 = 0.14 and τ = 80.

We found that rational metareasoning can explain people’s
ability to adapt to compensatory as well as non-compensatory
environments (see Figure 1): When the environment was non-
compensatory rational metareasoning learned to use TTB, but
when the environment was non-compensatory rational metar-
easoning learned to avoid TTB and use WADD instead. Our
simulation results show that rational metareasoning captured
that people gradually adapt their strategy choices to the deci-
sion environment. The fits of rational metareasoning and the
fit of SSL reported by Rieskamp and Otto (2006) were about
equally good (MSE: 0.0050 vs. 0.0048; see Figure 1).

Strategy selection in mixed environments
Since both SSL and rational metareasoning can explain
the results of Rieskamp and Otto (2006), a new exper-
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Figure 1: Rational metareasoning explains experimental find-
ings by Rieskamp and Otto (2006).

iment is needed to determine if strategy selection learn-
ing is context-free as postulated by SSL and RELACS or
feature-based as postulated by rational metareasoning. We
thus investigated under which conditions rational metar-
easoning predicts different strategy choices than SSL and
RELACS: We evaluated the performance of context-free ver-
sus feature-based strategy selection learning in 11 environ-
ments with p ∈ {0%,10%,20%, · · · ,100%} compensatory
problems (in which WADD makes the right and TTB makes
the wrong decision) and 1− p ∈ {100%,90%,80%, · · · ,0%}
non-compensatory problems (in which TTB makes the right
and WADD makes the wrong decision). Each environment
comprised 168 decision problems in random order. We eval-
uated the performance of rational metareasoning with b0 = 0
and τ = 1, SSL with β1 = β2 = 0.5 and w = 1, and RELACS
with α = 0.1 and λ = 1. These parameters correspond to a
weak bias towards using both strategies equally often, but this
is not critical since any bias is eventually overwritten by expe-
rience. Our simulations revealed that the variance p · (1− p)
of the problems’ compensatoriness has qualitatively different
effects on the performance of feature-based versus context-
free strategy selection learning; see Figure 2. Concretely, the
performance of context-free strategy selection learning drops
rapidly with the variance in the environment’s compensatori-
ness: As the ratio of compensatory to non-compensatory
problems approaches 50/50 the performance of SSL and
RELACS drops to the chance level. The performance of ra-
tional metareasoning, by contrast, is much less susceptible to
the variance and stays above 70%. The reason for this dif-
ference is that rational metareasoning learns to use TTB for
non-compensatory problems and WADD for compensatory
problems whereas SSL and RELACS learn to always use the
same strategy. Rational metareasoning outperforms RELACS
across all environments. In purely (non)compensatory envi-
ronments SSL and rational metareasoning perform equally
well, but as the environment becomes variable the perfor-
mance of SSL drops below the performance of rational metar-
easoning. Thus context-free and feature-based strategy selec-
tion make qualitatively different predictions about people’s



performance in mixed environments. We can therefore de-
termine if people use context-free or feature-based strategy
selection by measuring their performance in a mixed envi-
ronment with the following experiment:

Methods
We recruited 120 participants on Amazon Mechanical Turk.
Each participant was paid 50 cents for about five minutes of
work. The experiment comprised 30 binary decisions. Par-
ticipants played the role of a banker deciding which of two
companies receives a loan based on the companies’ ratings
on six criteria. The criteria and their success probabilities
were the same as in Rieskamp and Otto’s first experiment.
On each trial, the two companies’ ratings on these criteria
were presented in random order, and the criterias’ validities
were stated explicitly. After choosing company A or com-
pany B participants received stochastic binary feedback gen-
erated according to the cue validities. The relative frequency
of positive feedback was 75.96% following the correct re-
sponse and 25.04% following the incorrect response. The
decision problems were chosen such that TTB and WADD
make opposite decisions on every trial. In half of the trials,
the decision of TTB was correct and in half of the trials the
decision of WADD was correct. Thus, always using TTB,
always using WADD, choosing one of the two strategies at
random, or context-free strategy selection would result in an
accuracy of 50%; see Figure 2.

Results and Discussion
People chose the more creditworthy company in 64.6% of
the trials. Assuming a uniform prior on people’s perfor-
mance, the 99% highest-posterior density credible interval
is [62.5%;66.6%]. We can thus be more than 99% confi-
dent that people’s average performance is above 62.5% and
conclude that they performed significantly better than chance
(p < 10−15). This is qualitatively consistent with feature-
based strategy selection but inconsistent with context-free
strategy selection; see Figure 2. Consistent with Rieskamp
and Otto (2006) performed worse on non-compensatory tri-
als than on compensatory trials. Thus the deviation from op-
timal performance is not due to saving mental effort by using
the simpler TTB strategy when the more demanding WADD
strategy would be required. To measure learning we regressed
our participants’ average performance on the trial number and
a constant. We found that the increase in our participants’
performance was not statistically significant (95% CI of the
slope: [−0.1%,0.2%]). The observation that participants nev-
ertheless performed above chance, suggests that they entered
the experiment with moderately high strategy selection skills.
Alternatively, participants could have used a single, more
complex strategy that works for both kinds of problems, but
note that with a larger number of trials systematic changes in
strategy use have been demonstrated in a similar task; see Fig-
ure 1. The absence of evidence for learning is not necessarily
incompatible with previous findings, because Rieskamp and
Otto (2006) found small changes in performance after 168
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Figure 2: Rational metareasoning outperforms SSL and
RELACS–especially when the environment is heterogeneous.

trials in a simple environment, whereas our participants per-
formed only 30 trials and the environment was very complex.
Future experiments will employ a larger number of trials and
more reliable feedback to explore whether people learn in the
mixed decision environment too. In conclusion, people’s per-
formance in homogeneous decision environments is consis-
tent with feature-based and context-free strategy selection,
but context-free strategy selection is insufficient to explain
human performance in heterogeneous environments whereas
feature-based strategy selection can account for it. Thus our
results suggest that human strategy selection is feature-based.

Adaptive flexibility in strategy selection
People adapt their strategy not only to reoccurring situations,
but they can also flexibly switch strategies as soon as the sit-
uation changes. This flexibility has been empirically demon-
strated in decision making under risk: Payne et al. (1988)
found that people adaptively switch decision strategies in the
absence of feedback.

To determine whether rational metareasoning can account
for this adaptive flexibility we simulated Experiment 1 from
Payne et al. (1988). This experiment presented ten instances
of each of four types of decision problems in random order.
The four problem types were defined by the time constraint
(15 seconds vs. none) and the dispersion of the outcomes’
probabilities (low vs. high). In each decision problem par-
ticipants chose between four gambles with four possible out-
comes. The four gambles assigned different payoffs to the
four outcomes but they shared the same outcome probabil-
ities. The payoffs (range 0–999 cents) and their probabili-
ties were stated numerically. To see an outcome probability
or payoff participants had to click on the corresponding out-
come. This allowed Payne et al. (1988) to infer which kind
of strategies their participants were using. They measured the
use of fast-and-frugal attribute-based heuristics, that is TTB
and elimination-by-aspects (EBA; Tversky (1972)), by the
proportion of time participants spend processing the options’
payoffs for the most probable outcome. For the compensatory



expected value strategy WADD this proportion is only 25%,
but for TTB and EBA it can be up to 100%. When the dis-
persion of outcome probabilities was high, people focused
more on the most probable outcome. Time pressure also in-
creased people’s propensity for such selective and attribute-
based processing; see Figure 3. Thus, people seem to use
non-compensatory strategies such as TTB and EBA more fre-
quently when time is limited or some outcomes are much
more probable than others.

To simulate this experiment we applied rational metarea-
soning to choosing when to use which of the ten strategies
considered by Payne et al. (1988). These strategies included
WADD as well as fast-and-frugal heuristics such as TTB and
EBA. To simulate the effect of the time limit we counted
each strategy’s elementary operations according to Johnson
and Payne (1985), assumed that each of them takes one sec-
ond, and returned the strategy’s current best guess when it
exceeded the limit as described by Payne et al. (1988). Ra-
tional metareasoning represented each risky-choice problem
by five simple and easily computed features: the number
of attributes, the number of options, the number of inputs
per available computation, the highest outcome probability,
and the difference between the highest and the lowest pay-
off. These features were manually chosen to capture highly
predictive dimensions along which decision problems were
varied by Payne et al. (1988). Our rational metareasoning
model of strategy selection in risky choice learns to predict
each strategy’s relative reward

rrel(s) =
V (s(D),o)
max

c
V (c,o)

, (11)

where s(D) is the gamble that strategy s chooses in decision
problem D, V (c,o) is the payoff of choice c if the outcome is
o, and the denominator is the highest payoff the agent could
have achieved given that the outcome was o. The priors on all
coefficients in the score and execution time models of rational
metareasoning were standard normal distributions.

We performed 1000 simulations of people’s strategy
choices in this experiment. In each simulation, we modeled
people’s prior learning experiences about risky choice strate-
gies by applying rational metareasoning to ten randomly gen-
erated instances of each of the 144 types of decision problems
considered by Payne et al. (1988). We then applied ratio-
nal metareasoning with the learned model of the strategies’
performance to a simulation of Experiment 1 from Payne
et al. (1988). Since their participants received no feedback,
our simulation assumed no learning during the experiment.
Outcome distributions with low dispersion were generated by
sampling unnormalized outcome probabilities independently
from the standard uniform distribution and dividing them by
their sum. Outcome distributions with high dispersion were
generated by sampling the outcome probabilities sequentially
such that the second largest probability was at most 25% of
the largest one, the third largest probability was at most 25%
of the second largest one, and so on.
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Figure 3: Rational metareasoning predicts the increase in se-
lective attribute-based processing with dispersion and time
pressure observed by Payne et al. (1988).

Rational metareasoning correctly predicted that time-
pressure and probability dispersion increase people’s propen-
sity to use TTB or EBA; see Figure 3. SSL and RELACS, by
contrast, predict that there should be no difference between
the four conditions. This is because SSL and RELACS can-
not learn to choose different strategies for different kinds of
problems. Their strategy choices only change in response to
reward or punishment but the experiment provided neither.
In conclusion, rational metareasoning can account for adap-
tive flexibility in decision making under risk but SSL and
RELACS cannot.

General Discussion
We have proposed a rational solution to the strategy selection
problem: feature-based strategy selection by rational metar-
easoning. We have previously shown that feature-based strat-
egy selection can – but context-free strategy selection cannot
– account for people’s adaptive choice of sorting strategies
(Lieder, Plunkett, et al., 2014). Here we have extended this
conclusion to decision-strategies that operate on internal rep-
resentations. The theoretical significance of rational metar-
easoning is twofold: First, it reconciles the two poles of the
debate about human rationality by proposing that people learn
to make rational use of fallible heuristics. Our theory formal-
izes the strategy selection principle of ecological rationality
(Todd & Gigerenzer, 2012) and specifies the computational
mechanisms of learning and cognitive control through which
it could be realized. Second, strategy selection by rational
metareasoning completes the resource-rational approach to
cognitive modeling: the principle of resource-rationality can
be used not only to derive heuristics (Lieder et al., 2013; Grif-
fiths et al., 2015; Lieder, Hsu, & Griffiths, 2014) but also to
predict when people should use which heuristic. Strategy se-
lection by rational metareasoning thereby provides the con-
ceptual glue necessary to build integrated theories out of our
scattered bricks of knowledge about tens or hundreds of cog-
nitive strategies.

If the brain had sufficient computational power and sophis-
tication to perform near-optimal strategy selection, then why
would it rely on simple heuristics to make economic deci-
sions? The reason might be that real-life decisions are much



more complex than the decisions modeled above: The com-
putational complexity of optimal decision making increases
with the size of the decision problem but the computational
complexity of strategy selection does not. Thus, as decision
problems become more complex normative decision strate-
gies take prohibitively long, but the time required for strategy
selection remains the same. Therefore, rational metareason-
ing is not only tractable but also worthwhile in complex real-
life decisions where the normative solution is intractable and
applying the wrong heuristic can have dire consequences.

The exact conditions under which the benefits of strategy
selection by rational metareasoning offset its cost will be de-
termined in future work. In addition, rational metareasoning
can be a used as a computational level theory (Marr, 1983) of
metacognition–just like Bayesian inference is a used as com-
putational level theory of inductive reasoning and learning.

In conclusion, strategy selection by rational metareasoning
is a promising framework for cognitive modeling. It could,
for instance, be used to explain paradoxical inconsistencies in
risky choice by identifying why people use different heuris-
tics in different contexts. Furthermore, our model of strategy
selection learning can be applied to education and cognitive
training: First, our model could be used to optimize problem
sets for helping students learn when to apply which procedure
(e.g. in algebra) rather than drilling them on one procedure at
a time. Second, our model could be used to design cognitive
training programs promoting adaptive flexibility in decision
making and beyond. Future work will also explore learn-
ing the VOC of elementary information processing operations
(Russell & Wefald, 1991) as a model of strategy discovery.
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