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Abstract

Identifying patterns in the world requires noticing not only unusual occurrences, but also unu-

sual absences. We examined how people learn from absences, manipulating the extent to which

an absence is expected. People can make two types of inferences from the absence of an event:

either the event is possible but has not yet occurred, or the event never occurs. A rational analysis

using Bayesian inference predicts that inferences from absent data should depend on how much

the absence is expected to occur, with less probable absences being more salient. We tested this

prediction in two experiments in which we elicited people’s judgments about patterns in the data

as a function of absence salience. We found that people were able to decide that absences either

were mere coincidences or were indicative of a significant pattern in the data in a manner that

was consistent with predictions of a simple Bayesian model.
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1. Introduction

Bayesian inference prescribes how ideal rational agents make inferences. Under the

Bayesian framework, inferences update probabilities to hypotheses in light of observed

data. If a single hypothesis must be chosen, then a natural criterion is to choose the

hypothesis that is most probable in light of the observed data and the prior probability

assigned to the hypotheses. Bayesian models have been used to describe how humans

make inferences about categories and rules from observed data (Anderson, 1991; Chater

& Vit�anyi, 2002; Feldman, 2000; Goodman, Tenenbaum, Feldman, & Griffiths, 2008;
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Griffiths, Canini, Sanborn, & Navarro, 2007; Tenenbaum, 2000; Tenenbaum & Griffiths,

2001). In addition to the data that are present, inferences are also made from observations

about data that are absent. Absent data could be explained in two different ways: We can

assume the absent event will never occur, or we can assume the event is possible but has

not yet been observed. A substantial body of previous work has suggested that the Baye-

sian approach captures the degree to which people are convinced by arguments based on

absent evidence, for example, “This drug is safe because no side effects have been

observed or Ghosts exist because it has not been proven otherwise” (Corner & Hahn,

2009; Hahn & Oaksford, 2007; Hahn, Oaksford, & Bayindir, 2005; Harris, Corner, &

Hahn, 2013; Oaksford & Hahn, 2004).

Our current work seeks to examine how people learn from their own experience of

absent data. For example, consider trying to infer whether men in a club wear ties or not

for a weekly dinner. A new member, Bob, has attended two dinners so far and did not

wear a tie both times. One may infer that “Bob never wears ties.” Here, if Bob does

sometimes wear ties, one is at risk of what we will refer to as an undergeneralization.
Undergeneralizations are easily corrected because a single counterexample, that is, seeing

Bob without a tie, forces an expansion of the generalization. On the other hand, one

could infer, “Bob, like other men, sometimes wears ties and sometimes doesn’t.” If Bob

actually always wore ties, this would be what we refer to as an overgeneralization.1

When working with positive examples only, recovery from overgeneralization requires

the prolonged absence of evidence, that is, “Bob is never seen without a tie,” to become

evidence of total absence.

In the context of learning exceptions from absent data, Bayesian inference supports the

intuition that absences of events that are considered more probable should be spotted

more easily and be more likely interpreted as exceptions to a general rule. To return to

our previous example, suppose ties are worn frequently and attire without ties is only

occasionally observed in club members. With finite observations of a man who has only

been seen in a tie, it is hard to be certain that he will never appear without a tie (because

perhaps it can happen, but is just rare). However, several sightings of Bob without a tie,

when ties are very common, may lead one to suspect more strongly that Bob actually

never wears ties. Conversely, if ties are not worn most of the time, but are occasionally

worn, it would require a very long time (if ever) before one suspected that Bob never
(rather than merely rarely) wears ties. So, in the same vein, noting that you have never

seen a particular friend wearing a purple tie, or a diagonally striped tie, does not provide

strong evidence that this friend will never wear such ties, because such ties are fairly

rarely seen in any case.

The learning of such over- or undergeneralizations from absent evidence has been widely

studied in the domain of language learning (Ambridge, 2013; Ambridge, Pine, & Rowland,

2011; Ambridge, Pine, Rowland, & Young, 2008; Baker & McCarthy, 1981; Bowerman,

1988). This is because mastering language requires making generalizations while also learn-

ing absence exception to general rules. For example, “The rabbit hid” and “The rabbit disap-

peared” are both grammatical sentences. However, “I hid the rabbit” is considered

grammatical, whereas “I disappeared the rabbit” is not. Much research suggests children
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learn their first language from positive examples alone (Bowerman, 1988), with little regard

to the small amount of corrective negative feedback they receive from carers when they pro-

duce ungrammatical sentences. Because children do eventually learn these absence excep-

tions, the question arises of how such absence exceptions are learned without explicit

negative feedback. Bayesian models offer a perspective on this problem and have been used

to show how cognition-general principles of statistical learning can be used to identify

absence exceptions (Dowman, 2000; Hsu & Chater, 2010; Hsu, Chater, & Vit�anyi, 2011;
Kemp, Perfors, & Tenenbaum, 2007; Langley & Stromsten, 2000; Onnis, Roberts, & Cha-

ter, 2002; Perfors, Regier, & Tenenbaum, 2006; Perfors, Tenenbaum, & Regier, 2011; Stol-

cke, 1994). Further experimental work has suggested that absence exceptions in first

languages may indeed be learned in a manner corresponding to the predictions of Bayesian

rational models (Hsu & Chater, 2010; Hsu et al., 2011; Perfors, Tenenbaum, & Wonnacott,

2010; Wonnacott, Newport, & Tanenhaus, 2008).

Outside of the language domain, there has been little work using learning tasks to

examine how people generalize from absences in cognition-general contexts. Here, we

present two experiments examining how people learn from absence in a simple cognitive

task. By manipulating the probability of an absence, we test whether people’s sensitivity

to absences is consistent with the predictions of a Bayesian model.

2. Experiment 1: Salience of absence

In Experiment 1, we examined whether participants’ confidence judgments concerning

conclusions from absent data varied in a way consistent with Bayesian model predictions

in a game-like task. People had to sweep “mines” from areas of land—in the critical

“absence of evidence” trials, where no mines are encountered, how confident are they that

this area of land is completely mine-free? Crucially, how does this confidence depend on

the “base rate” at which mines are generally found? According to the Bayesian account,

the higher the “base rate” in the surrounding area, the greater confidence people should

have that absence of mines implies that an area is “mine-free.”

2.1. Method

2.1.1. Participants
Fifty participants over the age of 18 were recruited through Amazon’s Mechanical

Turk. Only Mechanical Turk users with an approval rating of at least 96% were allowed

to participate, and participants were paid $0.35 to complete the 12-minute experiment.

2.1.2. Stimuli
We created an experimental paradigm akin to the game Minesweeper (Johnson, 1990).

A central plot of land (10 9 10 grid) was fully surrounded by eight equally sized plots

of land, which were already “dug up” to reveal the presence of mines of a particular

density (see Fig. 1).
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2.1.3. Procedure
We conducted a within-participants experiment with 30 trials each. Participants were

told they were acting as land inspectors and asked to click on covered plots to make digs.

In each trial, participants could make up to 10 “digs” by clicking on one of the 10 9 10

squares in the center plot of land. Participants were told that there were two types of

plots, Type 1, where the central plot contained the same density of mines as the surround,

and Type 2, where the central plot has been cleared to be completely mine-free. Every

click would reveal that square to contain either a mine or no mine. Mine density in the

surrounding plots randomly varied across trials, evenly spread between density values of

0.01, 0.1, 0.2, 0.4, and 0.7. Participants were told that in about half the trials, the uncov-

ered plots would contain mines occurring at the same frequency as the surround (Type

1), and in the other half the uncovered plots will be mine-free (Type 2). Participants

encountered a new plot in each trial. Once participants encountered a mine, or the limit

of 10 digs was reached, we asked participants to indicate on a slider how likely they

believed the plot to be Type 1 versus 2, corresponding to left- and right-hand sides of the

sliding scale, respectively. Example Type 1 and 2 plots were placed on either side of the

scale to ensure it was clear which was Type 1 versus 2. For trials where a mine is

encountered, the rational response would be complete certainty of it being a Type 2 plot,

which was indeed the response of all participants on these trials.

Three training trials were given prior to the main experiment. In the main experiment,

participants encountered 15 “Type 1 trials,” where they encountered a mine before the

10-click limit, randomly mixed with 15 “Type 2 trials,” where 10 clicks were made

without encountering a mine. For Type 1 trials, the number of clicks participants made

Fig. 1. An individual trial of the kind encountered by participants in Experiment 1. The participant was

asked to make 10 “digs” by clicking the mouse over one of the red squares in the central plot. The density

of mines in the surrounding area varied with trial number.
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before encountering a mine was sampled from a specialized capped geometric distribution

(see Appendix).

2.2. Bayesian model predictions

To determine how far participants responded in line with the Bayesian model in their

confidence judgments, participants’ confidence in the appearance of a Type 2 plot was

compared to the posterior probability of a Type 2 plot2 given as follows (see Supplemen-

tary Materials for full derivation):

p Z ¼ 2jXi ¼ k; qið Þ ¼ 1

1þ 1� qið Þk ð1Þ

where Xi is the number of mine-free digs made in the ith plot, qi is the density of mines

surrounding the ith plot, Z is the plot type, and the prior probability of Z = 1 and Z = 2

are assumed to be equal.

2.3. Results and discussion

Responses for relevant trials were grouped by the surrounding mine density and aver-

aged within groups. Participant completion rate was 83% (dropout rate 17%). Degree of

confidence in a Type 2 plot was taken to be the proportion to which the slider was placed

toward the right-hand side of the slider. A one-way ANOVA on confidence responses,

grouped as above, yielded F(4,740) = 26.8, MSE = 0.049, p < .0001, leading to the con-

clusion that altering the surrounding mine density had a significant effect on the salience

of absences. There was a positive correlation between participants’ confidence in a Type

2 plot and the posterior probability given by our Bayesian model, r(3) = .897, p < .05

(see Fig. 2). Except for the plots where the surrounding density was qi = 0.01, partici-

pants’ judgments tended to fall below the predictions of the Bayesian model, showing a

kind of conservatism in judgment that has been found in previous work (Fischhoff &

Beyth-Marom, 1983; Philliip & Edwards, 1966).

The fact that participants’ average judgments fell above the Bayesian model predic-

tions when the surrounding plot density was very low (qi = 0.01) may have been due to

a slight ambiguity in our question: Is a mine-free plot interpreted as one with a density of

0 (i.e., mines cannot occur) or one in which no mines happen to occur by chance (analo-

gous to Bob never actually wearing one of his few ties to the club, despite having no rule

against it)? This can plausibly arise in our experiment only for the lowest mine density in

the surrounding sarea qi =0.01. If we include within the definition of “Type 2” plots,

those plots who have the same density as the surrounding plots but, due to chance, hap-

pen to not have any mines in the middle, the model prediction for the probability of

being empty in the middle becomes .71 (see Equation 2 below). The average participant

response lies in between the model predictions under these two different assumptions.
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3. Experiment 2: Inferences from absent data

Experiment 1 suggested that people were sensitive to the salience of an absence when

making judgments about the source of their observations, as predicted by a simple Baye-

sian model. However, there was a slight ambiguity in how participants might have inter-

preted the phrasing of our question. Thus, in Experiment 2, we asked participants to make

the unambiguous judgment of whether there are mines in the central plot. Also, in Experi-

ment 2 we wanted to investigate absence judgments in a more controlled situation com-

pared to Experiment 1, where mine density varied across trials. Hence, we used a design

where participants first gained experience making judgments from absence with fixed sur-

rounding mine densities and were only later exposed to plots with a different density. This

gave participants more experience in making these types of judgments before the surround-

ing density changed. Furthermore, to create a stronger test of the Bayesian model, we

chose the parameters in Experiment 2 such that the model has a distinctive U-shape predic-

tion—the plot is assumed to be clear when surrounding mine density is either very low

(because it is likely that no mine will be present, by chance) or high (so that finding no

mines in the central area is highly surprising, unless it is cleared, unlike the surround).

3.1. Method

3.1.1. Participants
In all, 149 participants over the age of 18 were recruited through Amazon’s Mechani-

cal Turk. Only Mechanical Turk users with an approval rating of at least 96% were

allowed to participate, participants were paid $0.30 to complete the 10-minute

experiment.
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Fig. 2. Participants’ report of confidence of being a Type 2 versus Type 1 mine, as a function of surrounding mine

density. Error bars show 1 SE. The predictions of a rational model for the probability of a Type 2 plot is also shown.
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3.1.2. Stimuli
The animated experimental stimuli were similar to those in Experiment 1.

3.1.3. Procedure
This was a between-participants experiment. As stated earlier, participants, acting as

land inspectors, were asked to click on the covered plots to make digs on covered plots

of land where there were the two types of plots, Types 1 and 2. They were again told

these two types of plots were about equally likely.

Participants were told, for each trial, there would be funds that they could potentially

invest in building on the central plot of land and that mine-free center plots would gener-

ate returns in proportion to the investment, whereas a center plot with even a single mine

present would result in a loss of all the money invested. After each trial, participants

were told to indicate what percentage (between 0% and 100%) of total possible funds

allowed for that trial would they be willing to spend investing on this center plot for

building. Available funds were renewed on each trial, so that up to 100% investment

could be made on each trial. The actual amount of funds was left unspecified. Thus, per-

centage of investment on the trial was now a proxy for a participant’s confidence that the

central plot was free of mines. Note that there was no longer the ambiguity of whether a

Type 2 plot was one that did not have mines in the center due to having a “mine density

of 0,” in contrast to the surrounding land, or to having the same density as the surround

but, by chance, having no mines. Under the new instructions, both of these are valid

causes for a mine-free central plot, and the only task is to judge whether the central plot

if free of mines.

We employed a between-participants design with five conditions. Participants under-

went 22 trials total. So that all participants had a similar initial experience of learning to

make judgments from absence, all participants in all conditions experienced 18 trials of

reporting investments for land plots with surrounding mine density of q1, q2, . . .

q18 = 0.1, where qi is the density of the surround on the ith trial. We did this to get

participants into a mode of steady response for the amount they were willing to invest,

and to familiarize them with the concept of investing between 0% and 100% of funds

on each trial for building on a plot. Participants received no feedback on the outcome

of their investments. To minimize between-participant noise, all participants experi-

enced the same sequence of Type 1 versus 2 plots in the following fixed order:

2,1,1,1,2,2,1,2,1,2,2,2,1,2,1,1,2,2. Also, the number of digs before a mine appeared in tri-

als with Type 1 plots was also determined by a fixed sequence: 6,7,8,9,7,8,6,9. Because

Type 1 plots revealed a mine in one of the 10 digs, the sensible investment here would

be 0, which was indeed the choice of all participants in these trials. The final two trials

17 and 18 before shifting to the new density, q19–22, were Type 2 (with no mines

revealed in 10 clicks) because we wanted participants to have their recent betting

amounts for q1–18 = 0.1 fresh in their memory. After the first 18 trials, participants

answered four final trials, for which the surrounding mine densities, q19–22, were fixed at

0.01, 0.03, 0.1, 0.3, and .9, respectively, for the five conditions. For all of these final four

trials, participants made 10 digs without encountering a mine and were asked what
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proportion out of the maximum money allowed for each plot they would invest from 0%

to 100%. The outcome measures were the proportion of investments made in these last

four trials.

3.2. Bayesian model predictions

The rational Bayesian solution for the probability of a plot with surrounding density qi
having No Mines given number of digs, Xi (= 10), were made without turning up a mine

is as follows (see Supplementary Materials for full derivation):

PqðNo MinesjXi ¼ 10Þ ¼ ð1� qiÞ90
ð1� qiÞ10

1þ ð1� qiÞ10
þ 1

1þ ð1� qiÞ10
ð2Þ

3.3. Results and discussion

Random assignments resulted in the following numbers of participants N = 31, 30, 27,

30, 31 assigned to conditions 1–5, respectively. The completion rate was 85% (dropout rate

15%). There was no difference in dropout rates between conditions: A chi-square test for

dropouts versus completers between conditions was insignificant, X2(4, N = 149) = 0.296,

p = .99. Each individual’s investments in the last four trials were averaged into a mean

investment. A one-way between-subjects ANOVA found significant differences in these aver-

age investments as a function of condition, F(4,144) = 4.6, MSE = 897.15, p < .005.

Investment proportion was strongly correlated with the posterior probability of no mines,

with r(3) = 0.95, p < .05 (see Fig. 3). To test for the significance of the U-shaped pattern

over the first three low-density conditions (qi = 0.01, 0.03, and 0.1), we ran two tests: First,

we ran a regression model, regressing the mean scores in these first three conditions for

each participant on predictors corresponding to quadratic, linear, and constant components,

and found all three coefficients were significant: t(85) = 2.3, p < .05 for quadratic, t
(85) = �2.3, p < .05 for linear, t(85) = 4.4, p < .0001 for constant. Second, we also

performed two t tests, one contrasting qi = 0.01 and qi = 0.03, and the other contrasting qi
= 0.03 and qi = 0.1. Significant differences in average investments were found between

qi = 0.01 (M = 60.7, SD = 38.0) and qi = 0.03 (M = 39.6, SD = 32.9) conditions, t
(59) = 2.3, p < .05 as well as between qi = 0.03 (M = 39.6, SD = 32.9) and qi = .1

(M = 57.7, SD = 25.6) conditions, t(55) = 2.3, p < .05. Thus, there was a strong corre-

spondence between people’s willingness to reason from absence in order to bet that there

were no mines in the plot and the posterior probability of there actually being no mines;

moreover, participants’ responses followed the distinctive U-shaped pattern of the Baye-

sian model. While results follow the predictions of the Bayesian model quite tightly, as

with Experiment 1, we again found that people were less willing to be confident in absence

than a perfect rational model would predict, displaying conservatism.

8 A. S. Hsu et al. / Cognitive Science (2016)



4. General discussion

Being able to make appropriate inferences from the absence of an event is a key part

of forming accurate generalizations. Our results suggest that people are able to reason

about absent events to form generalizations about the structure of patterns in data accord-

ing to the predictions of Bayesian inference. In Experiments 1 and 2, participants were

more likely to assess the absence of mines as an indication that no mines were present

when the base rate for finding mines was higher—the most fundamental prediction of a

Bayesian analysis of this problem.

While our results follow the trend predicted by Bayesian models, we did find people’s

responses, if interpreted as subjective probabilities, to be less confident in absence than a

perfect rational model would predict. However, it is unclear to what extent the elicited

judgments of confidence (Experiment 1) and proportion of investment (Experiment 2)

actually can be interpreted as subjective probabilities defined on a probability scale, and

it is possible we cannot expect anything more than ordinal relationships between the

judgments we elicited and the subjective probabilities predicted by Bayesian models.

There are a number of ways in which future work could build on this result. First, our

simple, controlled experiments inevitably do not capture the reality of exception-learning

situations in everyday life. These include demand characteristics, such as the prior proba-

bilities (visually displayed as surrounding mine density), were extremely salient and fixed,

and highlighted as the parameter that was changing. The training phase in Experiment 2

focused exclusively on a density of 0.1, which could produce anchoring effects. The

impact of all of these factors can be addressed in future work that explores absence
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Fig. 3. The proportion of total money participants were willing to invest in building in a central plot of land

as a function of surrounding mine density. Error bars show standard errors. The predictions of a rational

model for the probability that the center plot has no mines is also shown.
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learning in a wider range of settings. Also, we provided a clear explanation for why there

might be zero land mines, whereas in real life it is rarely so clear that “precisely zero” is

a reasonable hypothesis. The question of how people may arrive at the “precisely zero”

hypothesis, purely from patterns of observed data, is an interesting question that remains

to be explored in future research. Our current work also limited the number of digs to 10,

while in reality people may have more choice in how often can they look for absence

evidence. Further work could use paradigms with a more flexible amount of allowed

enquiries and examine the “stopping criteria” of when people become confident enough

in their hypotheses to stop looking for absence. Finally, future work might also examine

whether our results regarding learning of absence patterns extend to temporal data and

the extent to which this may be similar to such processes in language learning.
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Notes

1. Here, overgeneralization refers to inferring that more possibilities are possible than

are actually possible; undergeneralization is the reverse. This usage should not be

confused with the use of the terms “generalization” and “overgeneralization” in

colloquial language, which refers to all types of incorrect inferences (both over-

and undergeneralizations) on too little data. Thus, our term “undergeneralization,”

for example, “Bob never wears ties” may be commonly referred to, colloquially, as

overgeneralization. However, what we call overgeneralization, for example, “Bob

sometimes wears ties and sometimes doesn’t” may not, in everyday terms, even be

considered a generalization at all.

2. Only Type 2 trials are analyzed. In Type 1 trials, where a mine is encountered

within 10 clicks, it is immediately clear that the current plot was Type 1.
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Appendix: Model details

Experiment 1: Geometric distribution

For Type 1 trials, the number of clicks the participant makes before encountering a

mine was sampled from a specialized capped geometric distribution, with the probability

of success (q) equal to the mine frequency of surround plots.

Geometriccapped q; xð Þ ¼
P X ¼ xjx\10ð Þ ¼ Geometric q; xð Þ
P X ¼ 10ð Þ ¼ P1

x¼10 Geometric q; xð Þ
P X[ 10ð Þ ¼ 0

8<
: ðA1Þ

Experiment 1: Model

In order to determine whether participants responded rationally in their confidence

judgments in response to the perceptual salience of absences in this minesweeping frame-

work, participants’ confidence in the appearance of a Type 2 plot was compared to the

posterior probability of a Type 2 plot. This probability was computed via Bayesian infer-

ence given the trial-specific density of mines in the surrounding plots that half the plots

were mine-free and that participants were only allowed 10 digs per trial. The posterior

probability of a Type 2 plot is given by:

p Z ¼ 2jXi ¼ k;qið Þ ¼ p Xi ¼ kjZ ¼ 2; qið ÞpðZ ¼ 2jqiÞP
z¼1;2 p Xi ¼ kjZ; qið ÞpðZjqiÞ

¼ 1ð0:5Þ
0:5þ 1:qið Þkð0:5Þ

¼ 1

1þ 1þ qið Þk

ðA2Þ
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where Xi is the number of mine-free digs made in the ith plot, qi is the density of mines

surrounding the ith plot where Z is the plot type, and the prior probability of Z = 1 and

Z = 2 are assumed to be equal.

Experiment 2: Model

In order to determine whether participants responded rationally, investment proportions

were compared to the posterior probability of a plot having no mines, given the density

of mines in the surrounding plots that half the plots were mine-free and that participants

were only allowed 10 digs per trial. However, calculating this posterior probability is a

little more involved than in the previous experiment.

First, we need the probability that it was a Type 1 plot, given that 10 digs were made

without turning up a mine and that the prior probability of Type 1 and Type 2 plots was

equal. This is the quantity calculated in Experiment 1, and is given in Equation 2 above.

We will abbreviate this probability as Pq(Z = 1|Xi = 10).

Next, we have to calculate the probability of no mines at all in a Type 1 plot given

that 10 digs have already been made without any mines. This is equivalent to the proba-

bility that 90 digs in a row will turn up to have no mines (because there have already

been 10 digs without mines, we assume each dig is independent, and there are 100 dig

locations total per plot). This is Pq(No Mine|Z = 1, Xi = 10) = (1�qi)
90. Finally, we have

to calculate the probability of no mines at all in a Type 2 plot. This is equal to one

because by definition Type 2 plots have no mines: Pq(No Mine|Z = 2, Xi = 10) =1.
The final probability of no mines in the center is the combination of the probability of

there being a Type 1 plot with the same density as surrounding lands, but by chance has

no mines in the center, combined with the probability of it being a Type 2 plot, giving

Pq No MinesjXi ¼ 10ð Þ¼ Pq No MinesjZ ¼ 1;Xi ¼ 10ð ÞPq Z ¼ 1jXi ¼ 10ð Þ
þPq No MinesjZ ¼ 2;Xi ¼ 10ð ÞPq Z ¼ 2jXi ¼ 10ð Þ

¼ ð1qiÞ90
ð1qiÞ10

1þ ð1qiÞ10
þ 1

1þ ð1qiÞ10
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