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Abstract

As experimentation in the behavioral and social sciences moves from brick-and-
mortar laboratories to the web, new opportunities arise in the design of experiments.
By taking advantage of the new medium, experimenters can write complex com-
putationally mediated adaptive procedures for gathering data: algorithms. Here,
we explore the consequences of adopting an algorithmic approach to experiment
design. We review several experiment designs drawn from the fields of medicine,
cognitive psychology, cultural evolution, psychophysics, computational design,
game theory, and economics, describing their interpretation as algorithms. We
then discuss software platforms for efficient execution of these algorithms with
people. Finally, we consider how machine learning can optimize crowdsourced
experiments and form the foundation of next-generation experiment design.

1 Introduction

The repertoire of experiment designs used in the behavioral and social sciences has hardly changed
over the last century [12]]. For example, to test a hypothesis an experimenter may randomly assign
participants to groups (e.g., treatment or control), manipulate some factor for one group but not
the other, and observe whether the participants behave differently as a result. Or, to understand a
functional relationship between two variables, an experimenter may ask each participant to judge a
set of stimuli that vary along one variable and observe the impact on the other. In some ways, these
designs result from constraints on how experiments are typically conducted. Human participants
often visit the laboratory for a predetermined amount of time (e.g., an hour) and so it makes sense to
have each participant perform a time-consuming task or respond to a number of stimuli. And because
experiments are run manually by the experimenter, reconfiguring more than the group assignment or
changing the set of stimuli seen by the participant can be challenging.

Recently, behavioral and social scientists have begun to move from brick-and-mortar laboratories to
the web, where participants are recruited through crowdsourcing services such as Amazon Mechanical
Turk and use browsers to interact with web applications hosted on a server [0, 8,29, 18}, [19]. However,
the experiment designs that are used in these virtual laboratories are still largely those developed in
the context of physical laboratories — crowdsourcing supports larger and more diverse samples, rapid
prototyping, and high-throughput, but has not changed the fundamental structure of experiments.

This is a missed opportunity. Crowdsourced experiments differ from traditional experiments in two
important ways. First, participants can be recruited to complete short tasks consisting of as little as a
single judgment. Second, the tasks that people are asked to perform can depend on the responses
of previous participants. Because experiments are orchestrated by a computer rather than by the
experimenter, there is more room for customizing the task that each participant performs. Combining
these two properties, a crowdsourced experiment can be understood as a complex, computationally
mediated adaptive iterative procedure for gathering data: an algorithm.
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By taking this perspective, it becomes possible to ask what the best algorithms are for learning about
human cognition and behavior. Experiment design becomes algorithm design. In this paper, we
explore the consequences of adopting this algorithmic approach to experiment design. To begin, we
review several experiment designs from the behavioral and social sciences and show how they can be
interpretted as algorithms. We then discuss software platforms that can efficiently execute algorithms
with people, providing a testbed for experiment design. Finally, we close by describing areas where
machine-learning techniques show promise for improving experimentation in the behavioral and
social science, optimizing known experiment designs and forming the basis of new ones.

2 Experiments as algorithms

Several experiment designs from the behavioral and social sciences can be understood as implement-
ing algorithms commonly used in machine learning, but with people rather than machines. In this
section, we review these designs, identifying the properties of people-based algorithms that must
be accommodated by crowdsourcing software and providing background for thinking more broadly
about the contributions that machine learning can make in this area.

2.1 Adaptive clinical trials and the multi-armed bandit

The Belmont Report formalizes principles and standards of medical ethics so as to prevent egregious
breaches of a doctor’s professional duty to the patient while recognizing that even careful research
may expose participants to a risk of harm, a risk that must be minimized [13]]. Clinical trials, which
measure the efficacy and safety of new medical treatments, typically employ randomized, double-
blind, placebo-controlled experiments. In these studies, some of the participants are assigned the
new treatment, while the others are assigned to a placebo treatment. An ethical dilemma arises
whenever partial results of a clinical trial suggest a significant improvement or worsening in the group
receiving the new treatment as compared to the control. It has been argued that by continuing the
study as originally planned, through their inaction the experimenters harm one set of participants or
the other. Adaptive trials, which have grown in popularity over the past several decades, can solve the
dilemma by considering the results of an ongoing trial when deciding whether new participants will
be assigned to receive the new treatment or the placebo [43]].

The multi-armed bandit problem provides a formalization of this dilemma, describing in abstract
form the problem faced by a decision-maker who aims to maximize reward in a setting where there
are multiple options with unknown value [26]. On each trial, the decision-maker selects an arm and
perhaps receives a reward. The decision-maker must balance the benefit of exploiting options known
to provide good rewards with the cost of failing to explore the other options, which may provide even
better rewards.

A variety of algorithms have been proposed that aim to maximize expected reward. For example,
Thompson sampling is an algorithm that addresses the exploration—exploitation dilemma by probabil-
ity matching to the posterior probability that an arm provides the highest reward, and under certain
conditions converges to the optimal policy [[7]. Other algorithms, such as UCB1 and e-greedy, take
different approaches [7]].

2.2 Markov chain Monte Carlo with People

A central goal of cognitive psychology is to elucidate the mental representations underlying people’s
perceptions, inferences, and decisions about the world around them. The psychologist’s toolbox
includes several methods for estimating these mental representations by asking participants to make
judgments about a fixed set of stimuli chosen at the outset of the experiment. For example, one such
method, multidimensional scaling (MDS), begins with a matrix of pairwise dissimilarity judgments
between the items in a set (e.g. relative distances between major cities in the U.S.) and reduces it to a
low-dimensional space preserving the similarity structure (e.g., a 2D map) [39]. Though successful,
these methods are inefficient because they do not use information acquired during an experiment to
inform its design.

A more efficient technique to reveal human mental representations is based on Markov chain Monte
Carlo (MCMC), a class of algorithms from statistical physics that sample from a probability distribu-
tion by constructing a Markov chain that converges on the distribution of interest [15]]. A Markov



chain is a stochastic process defined by a matrix of probabilities of transitions from a given state
to any other. Variants of MCMC differ in how each new state of the chain is proposed and then
perhaps accepted or rejected. By noting an equivalence between the Barker acceptance function
[[L] and the Luce choice axiom, a classic decision rule in psychology [25]], Sanborn et al. designed
an experimental procedure that reveals human mental representations by inserting human decisions
into an MCMC algorithm [35]]. Specifically, on each iteration of the algorithm, the participant is
asked which of two stimuli belong to the category under question. Because under both the Luce
choice axiom and the Barker acceptance function stimuli are chosen with probability proportional
to their probability under distribution in question, the resultant chain converges on a probability
distribution matching the human’s mental representations. To validate the technique, Sanborn et al.
asked participants to choose which of two stick-figure quadrupeds represents a particular animal
species (e.g., a giraffe). Over many iterations of the algorithm, the chain converges on a stationary
distribution that visits stick-figure forms in proportion to their probability under the human partic-
ipant’s mental representation of that species. The technique has been applied to uncover diverse
mental representations, including those of phonemes [32], facial affects [27], and colliding objects

[9].

2.3 Transmission chains and computing the prior

The transmission chain is an experimental technique that, much like the children’s game Telephone,
passes information from one person to the next in succession [2]. As the information changes hands,
it is transformed by the perceptual, inductive, and reconstructive biases of the individuals. This
eventually leads to erasure of the information contained in the input, leaving behind a signature of the
transformation process itself. For this reason, transmission chains have been used to study language
evolution [37, 23] and the effect of culture on memory [2].

Transmission chains can be formally modeled as a Markov chain by assuming that perception,
learning, and memory follow the principles of Bayesian inference [22]. Under this analysis, in which
agents use Bayes’ rule to infer the process that generated observed data, each agent holds a set of
hypotheses #H about the process that produced the observed data d. A prior probability distribution
p(h) encodes perceptual, inductive, and reconstructive biases in the form of the agent’s assigned
probability of each h € H before observing the data. In context of a transmission chain, each agent
uses Bayes’ rule to compute the posterior distribution
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A hypothesis is then sampled from the posterior distribution and used to generate the data passed to the
next person in the chain by sampling from the hypothesis’s likelihood function. When a transmission
chain is set up in this way, iterated learning is equivalent to a form of Gibbs sampling, a widely-used
Markov chain Monte Carlo algorithm [[17]. The convergence results for the Gibbs sampler thus apply,
with the prior p(h) as the stationary distribution of the Markov chain on hypotheses.

2.4 Contrast sensitivity and adaptive, sequential procedures

The study of human sensation and perception is often concerned with measuring the threshold
intensity at which a stimulus can just barely be detected, recognized, or identified. For example,
the contrast sensitivity function, which tracks human sensitivity to a faint pattern as a function of
the pattern’s spatial frequency, is a useful diagnostic tool for visual dysfunction [33]]. The classic
experiment design for measuring a threshold is the method of constant stimuli, which begins by
measuring human performance at each of a fixed set of stimulus intensities and proceeds by fitting
some kind of parametric form to the resultant data in order to estimate threshold [31]. This procedures
typically requires several hundred human judgments.

More efficient techniques for measuring thresholds adaptively adjust the intensity of the stimulus
between trials, on each iteration recomputing the stimulus placement based on the partial results of
the ongoing experiment. Designing an efficient measurement procedure then becomes a question of
designing an active learning algorithm that places the stimulus at whichever intensity will be most
informative with respect to determining the threshold [38]. The algorithm QUEST, for example,
recommends placing each trial at the mode of the posterior probability density function [45]. More



recent methods, such as the FAST algorithm, efficiently measures thresholds that vary as a function
of another variable [44].

2.5 Automated mechanism design through optimization

Game theory considers the behavior that results when rational decision-makers cooperate and compete
in well-defined strategic games. In contrast, mechanism design, sometimes called “reverse game
theory”, considers the design of arrangements, rules, and procedures under which rational decision-
makers will behave in accordance with the designer’s stated objective [[L1]]. For example, in the
context of auctions, the theory can identify incentive-compatible mechanisms that maximize the
seller’s expected revenue [28]].

Mechanisms are usually hand crafted by a designer who uses experience and intuition as a guide.
In contrast, automated mechanism design uses computational techniques to craft a mechanism for
the specific problem at hand [36]]. To do so requires a formal specification of the design space of
possible mechanisms and a means of evaluating the objective function for a given mechanism. It then
becomes possible to use search and optimization algorithms to find mechanisms that score well. For
example, in an early application of this approach, an automated procedure reinvented the Myerson
auction [28] and created expected-revenue-maximizing combinatorial auctions [[10]].

2.6 Interactive evolutionary computation

Preferences can be elicited experimentally by asking a participant to choose which of two options is
preferable. For example, in psychology and behavioral economics, studies of temporal discounting
ask a person to select between a small sum given now and a larger sum given later [16]]. Two-
alternative forced-choice designs over all possible pairs of competing forms can find the preferred
form when the set of options is small, but the procedure scales poorly when there are many forms to
compare. Consider for example vanity numbers, telephone numbers with a custom and often easily
remembered sequence of digits (e.g., +1 202 456-1111). An algorithm that finds preferred vanity
numbers by taking as input pairwise preference judgments across all valid telephone numbers is
intractable.

Interactive evolutionary computation can solve problems like finding good vanity numbers by
inserting human participants into various parts of an evolutionary process [41]. In interactive genetic
algorithms, for example, a human participant may act as the selection mechanism, using aesthetic
judgment to select which forms will replicate to form the next generation [41]]. In many cases, these
algorithms quickly converge on preferred forms.

3 Programming languages for algorithms with people

Executing an algorithm that incorporates human computation requires a means by which to interface
with people. Over the past several years, a variety of systems have been created and deployed
that provide such interfaces. In fact, having drawn here the link between experiment design and
algorithm design, there is a sense in which all web-based experiments are automated algorithms with
people. However, most of these web-based experiments use designs that were developed for physical
laboratories. Here, we focus on three systems that exploit the change in medium:

TurKit is a Java-based toolkit that executes algorithms that include human computation as a function
call [24]]. TurKit recruits participants using Amazon Mechanical Turk and uses a crash-and-rerun
programming model. Interestingly, it is possible to define higher-order functions that have as sub-
elements individual human judgments, such as group voting among a set of alternatives. The toolkit
was initially validated on a range of simple tasks such as iterative editing of prose, OCR of highly
degraded text, sequential decision making in a group setting, and collaborative sorting of salient
imagery [24].

Wallace [40] is a software-based tool for orchestrating experiments in the behavioral and social
sciences using crowdsourcing, originally developed to run large-scale experiments on cultural trans-
mission, but which we have more recently extended to a diverse set of experimental paradigms.
Wallace provides efficient high-throughput automation for running the full pipeline of experimenta-
tion: it recruits participants through crowdsourcing services, obtains their informed consent, arranges
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them into a network, coordinates their communication, records the data they produce, pays them, and
validates and manages the resultant data. Critically, because Wallace both exposes its configuration
settings in a standard format and is fully automated, it is possible to write algorithms that use entire
Wallace-based experiments as subroutines.

EvoSpace-i [14] is a framework for running interactive evolutionary algorithms to create, for example,
art. The framework’s architecture is a web application that integrates with the Facebook social graph
to recruit people who then evaluate or otherwise interact with the evolving artistic forms.

4 Using machine learning to design better experiments

Machine learning can contribute to rethinking experiment design as algorithm design in two ways:
by offering algorithms that can be translated into new experiment designs, and by providing tools for
optimizing existing experiment designs.

4.1 Developing new algorithms to run with people

Many of the experimental procedures discussed above are linked to machine learning algorithms —
the multi-armed bandit, Markov chain Monte Carlo, Gibbs sampling, etc. This correspondence is no
coincidence: machine learning problems often infer the structure of a complex object, be it a reward
function or a probability distribution, and this is exactly the problem faced by a scientist who seeks to
identify the nature of some aspect of human cognition.

The known correspondences between experiment designs and machine learning algorithms raise the
question of whether other ideas from machine learning can form the basis of new experiment designs.
There are a few added constraints associated with running algorithms with people. For example,
because human behavior is noisy, any learning algorithm must accommodate noise. And because
of the timescales associated with recruitment and performance of human participants, these in vivo
algorithm may require a different set of computational tradeoffs than algorithms run in silico. Within
these constraints, however, it seems likely that there are many algorithms that can be translated into
new experiment designs.

Problems that seem particularly pertinent include methods such as manifold learning that can be
used to recover complex non-linear embeddings of stimulus domains [42} 34], and methods used for
optimization that might make it possible to identify optimal stimuli for eliciting a particular response
(for example, the most memorable images [21} 15]]). Methods based on stochastic gradient descent [4],
for example, might provide a way to find optimal stimuli in complex spaces, provided it is possible to
develop tasks that reliably measure the gradient of the behavior of interest.

4.2 Optimizing experimental designs

Machine learning methods can also be used to optimize existing experimental designs. Recent work
in machine learning has started to explore “meta-learning” methods — procedures that use machine
learning ideas to speed up or otherwise improve machine learning algorithms [3}20]. For example,
Bayesian optimization [30] uses Bayesian inference over functions to better select the next steps in
an algorithm that aims to maximize those functions. In the context of experiment design, Bayesian
optimization can potentially be used to tune the parameters of experiments in real time as participants
produce their responses.

Consider, for example, a basic design decision that affects nearly all crowdsourced experimentation:
how much time should the participant be given to complete the task? If that duration is too short, the
participant will be unable to complete the task in the alloted time or a speed—accuracy tradeoff may
preclude collection of data of sufficient quality. But if that duration is too long, the participant may
delay unnecessarily, perhaps waiting until the end of the interval to begin the task, further delaying
the overall experiment. This parameter of the experiment’s design is often hand-tuned or chosen
arbitrarily; machine learning methods provide a more principled approach.



5 Conclusion

An experiment’s design is an algorithm for gathering data. From medicine to game theory, popular
experiment designs such as adaptive clinical trials and cultural transmission chains are equivalent to
familiar algorithms from computer science and machine learning. Platforms such as Wallace, TurKit,
and EvoSpace-i can efficiently execute these algorithms with people on the web. In combination,
machine learning and crowdsourcing provide the tools needed for a new generation of experiment
designs.
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