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Human decision making is plagued by systematic errors that can have devastating
consequences. Previous research has found that such errors can be partly prevented
by teaching people decision strategies that would allow them to make better choices
in specific situations. Three bottlenecks of this approach are our limited knowledge of
effective decision strategies, the limited transfer of learning beyond the trained task, and
the challenge of efficiently teaching good decision strategies to a large number of people.
We introduce a general approach to solving these problems that leverages artificial
intelligence to discover and teach optimal decision strategies. As a proof of concept,
we developed an intelligent tutor that teaches people the automatically discovered
optimal heuristic for environments where immediate rewards do not predict long-term
outcomes. We found that practice with our intelligent tutor was more effective than
conventional approaches to improving human decision making. The benefits of training
with our cognitive tutor transferred to a more challenging task and were retained
over time. Our general approach to improving human decision making by developing
intelligent tutors also proved successful for another environment with a very different
reward structure. These findings suggest that leveraging artificial intelligence to discover
and teach optimal cognitive strategies is a promising approach to improving human
judgment and decision making.

cognitive training | bounded rationality | heuristics | rationality enhancement

Planning skills are generally beneficial to the wellbeing of individuals (1) and the success
of organizations (2). But many people frequently fail to plan (3, 4) and consequently make
bad decisions (5). Furthermore, even when people do plan, they often use short-sighted
planning strategies that prevent them from achieving the best long-term outcomes (4).

Previous research on improving human decision making has found that incentivizing
or motivating people to make better decisions is not enough, because people sometimes
lack effective decision strategies (6, 7). People can learn more effective strategies through
practice (8–11), but experience is a good teacher only to the extent that it provides reliable,
valid, and prompt feedback (12–15). This is not the case in many important real-life
settings including financial investment, college admissions, and the diagnosis of mental
disorders (16).

To provide effective strategies, many interventions have instructed people in the
normative principles of logic, probability, and expected utility theory (17)—principles
that human decisions and judgments have been found to violate (7, 18–20). This approach
has had limited success, however, because trying to calculate the expected utilities of all
possible courses of actions is actually not a good decision strategy in complex real-life
situations where it is often prohibitively difficult and time consuming (21, 22). Subsequent
work has therefore sought to identify and teach simple heuristics that exploit common
properties of certain types of decision problems to quickly reach a good decision most of
the time (23, 24).

Despite some initial success, teaching people clever heuristics suffers from two bot-
tlenecks that we attempt to address in this work. The first one is the identification of
simple heuristics that reliably lead to good decisions, a process that can itself be error
prone and time consuming. To overcome this limitation, we employ artificial intelligence
to automatically discover optimal heuristics (25). Given a formal characterization of a
decision maker’s environment and cognitive limitations, this method derives an optimal
heuristic for decision making.

The second bottleneck is efficiently teaching clever heuristics to a large number
of people. To overcome this bottleneck, we introduce a general method that can be
applied to create desktop, web, and mobile applications for practicing decision making
with feedback. The basic idea is to have people practice on relevant real-world tasks
or simulations of those tasks while giving them feedback on how they solve those
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tasks. Previous research has shown that, to be effective at fur-
thering the acquisition of expertise, feedback has to be valid,
reliable, and prompt (13, 16). We introduce a general method for
generating high-quality feedback for helping people learn how to
make better decisions. The central idea is to give people feedback
on how they decide what to do (metacognitive feedback) rather
than on what they decide to do (action feedback) (26). Giving
metacognitive feedback is possible when we can infer the decision
operations that people perform from overt behavior such as se-
quentially looking at different pieces of information that inform
their decision (27). As people make more and more decisions
at their computers and smartphones, there is an increasingly
larger range of decisions for which metacognitive feedback can be
given automatically. This suggests that the idea of giving people
metacognitive feedback could be applied to develop a scalable
approach to improving human decision making.

As a proof of concept, we develop an internet-based cognitive
tutor that helps people learn and practice optimal heuristics for
solving sequential decision problems. Those heuristics are auto-
matically derived by applying our recently developed artificial
intelligence method for strategy discovery to an environment in
which long-term consequences are more important than imme-
diate rewards (25). Encouragingly, we found that practice with
our cognitive tutor was more effective at promoting far-sighted
decision-making than conventional approaches to improving hu-
man decision-making. Concretely, practicing with our intelligent
tutor improved learning relative to practice without feedback and
practice with feedback on the chosen actions rather than on the
decision process itself. Critically, we also found that the benefits
of training with our cognitive tutor transferred to more complex
and superficially different tasks, and these benefits were retained
over time. Finally, we illustrate the generality of our approach
by applying it to an environment with a different structure,
again finding a benefit of practicing with the tutor above practice
alone. Together, these findings suggest that leveraging artificial
intelligence to discover and teach optimal cognitive strategies is a
promising approach to improving human judgment and decision
making.

A Principled Computational Approach to
Improving Human Decision Making

Our approach to cognitive training teaches people optimal deci-
sion strategies by giving them metacognitive feedback throughout
the decision process leading to a single choice. Since recent

findings suggest that people acquire, refine, and learn to select
between their cognitive strategies at least partly through rein-
forcement learning (10, 15, 28, 29), we address the question
of what constitutes an optimal metacognitive framework from a
reinforcement learning perspective. That is, we develop a general
method for computing the metacognitive feedback that results in
the fastest possible learning according to the recently developed
theory of metacognitive reinforcement learning (10, 15, 28, 29).
Our approach is based on four building blocks that are introduced
in turn: 1) making people’s planning strategies observable, 2)
simulating challenging decision problems, 3) discovering opti-
mal strategies for solving those problems, and 4) giving people
feedback on their planning operations and on what the optimal
planning strategy might have done differently.

1) Making People’s Planning Strategies Observable. Giving
people feedback on their decision strategies is challenging when we
cannot observe how they actually made those decisions. Thus, we
employ a recently developed process-tracing paradigm that makes
the decision-making process observable (30): The Mouselab-
MDP paradigm extends the process-tracing methodology of the
Mouselab paradigm (27) from risky choice to sequential decision
problems that require planning, that is, Markov decision processes
(MDPs) (31). The participants’ task is to navigate a spider through
a web (Fig. 1A) by selecting a sequence of moves that leads from
its initial location at the center of the web to one of its corners.
Each location contains a reward, and the participant’s goal is to
earn as much reward as possible. Critically, all of the rewards are
initially concealed. To uncover a reward, the participant has to
click on its location and pay a small fee. In this way, an internal
planning process is externalized as a sequence of information-
gathering clicks. This allows us to separate what people choose to
do (i.e., where they move the spider) from how they decide to do
it (i.e., by clicking to reveal a subset of the available information in
a specific order). In other words, we treat the clicks as a proxy for
the cognitive operations that people perform to reach a decision.

2) A Simple Task for Practicing Far-Sighted Decision
Making. The key property of situations that necessitate planning
is the misalignment between immediate reward and long-term
value. As an illustration of this problem, consider the choice
between beginning work on a manuscript versus watching a
YouTube video. Staring at a blank page might make one feel
anxious in the short run, but one will feel very satisfied when
one submits the paper for publication many months later. By
contrast, the YouTube video will give one immediate joy but

Fig. 1. The Mouselab-MDP paradigm. (A) Participants click to reveal the rewards at future states to construct a plan. (B) Metacognitive feedback penalizes
suboptimal decision-making operations (clicks) with a delay and provides instruction on what operation(s) should have been taken instead.
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one might come to regret the wasted time later. To make good
decisions in situations like this, people have to look beyond the
salient immediate rewards, set a goal for the future, plan how
to achieve it, and execute the plan. What makes this far-sighted
approach worthwhile is that the range of outcomes that can be
obtained by concerted effort over an extended period of time
is much larger than the range of rewards that can be attained
immediately.

To capture this aspect of many real-world situations within the
Mouselab-MDP paradigm, we constructed a three-step sequential
decision-making task where the range of rewards increases from
the first step to the second step and is largest in the third step.
In each trial, rewards are independently drawn from discrete
uniform distributions; the possible values are {−4,−2,+2,+4}
in the first step, {−8,−4,+4,+8} in the second step, and
{−48,−24,+24,+48} in the third step. To simulate the com-
putational cost of deliberation, which is substantially diminished
in this externalized planning problem, we impose a $1 cost for
each click.

3) Discovering Optimal Cognitive Strategies. Teaching clever
heuristics is a promising approach to improving decision making
(23, 24). But which heuristics should be taught and how can
we discover such heuristics? The theory of resource rationality
provides a mathematically precise definition of optimal heuristics
(32). In essence, the optimal heuristic for a decision maker to use
in a given environment is the one that achieves the best possible
tradeoff between the expected utility of the resulting decision and
the expected cost of the decision-making process.

To derive the optimal heuristic for the Mouselab-MDP envi-
ronment described above, we apply the recently developed for-
malism of metalevel MDPs (33, 34), which models decision
making itself as a sequential decision problem. The basic idea
is that the decision-making process can be broken down into a
series of computations that update the decision maker’s beliefs
about which course of action will lead to the best outcome. Each
cognitive strategy, or heuristic, corresponds to a rule for selecting
computations based on the outcome of previous computations.

Formally, a metalevel MDP, Mmeta = (B, C,Tmeta, rmeta), has
four components: the set of possible beliefs the decision maker
can have, B; the set of computations they can perform, C; the
transition model that specifies how computations update beliefs,
Tmeta; and the metalevel reward function that specifies the cost of
computation and the expected utility of making a final decision
in a given belief state, rmeta. A cognitive strategy can be formalized
as a metalevel policy, πmeta : B �→ C, that specifies which compu-
tation should be performed in each belief state.

Having formalized decision making as a Markov decision pro-
cess, we can use standard MDP-solving techniques (35) to identify
optimal decision strategies. One important such tool is the state-
action value function (often notated Q). In a metalevel MDP,
this function gives the long-term expected value of performing
a computation c in belief state b. It is defined as Qmeta(b, c) =
E [rmeta(b, c, b

′) + maxc′Qmeta(b
′, c′)], where b′ is the updated

belief that results from executing computation c given the be-
lief b. The optimal decision strategy is the policy that always
executes the most valuable decision operation; i.e., π�

meta(b) =
argmaxcQmeta(b, c). Following previous work, we compute Qmeta
for our environment by backward induction (25). This provides
us with both the optimal metalevel policy and a way to quantify
exactly how bad is a specific deviation from the optimal policy.

This method revealed that the resource-rational heuristic for
the environment described above is to first set a goal by evaluating
potential final destinations. As soon as one uncovers the highest

possible reward (+48), the optimal heuristic immediately selects
the path leading to it, not even uncovering the values that will
be received along the way. If all potential final destinations have
been inspected and one was revealed to be better than all the
others, then the optimal heuristic immediately decides to go there;
otherwise, it works backward until one path is revealed to be better
than the alternatives.

4) An Optimal Feedback Method for Teaching Planning Strate-
gies. If people acquire planning skills through metacognitive
reinforcement learning (10, 15, 29), then it should be possible
to apply methods that have been developed to accelerate model-
free reinforcement learning in robots—such as reward shaping
(36)—to accelerate metacognitive learning in people. Here, we
apply reward shaping to generate optimal feedback signals for
accelerating metacognitive reinforcement learning as follows:

1) Model the cognitive function to be improved (i.e., planning)
and the available cognitive operations (i.e., determining the
outcome of taking a certain action in a certain state) and their
costs as a metalevel MDP, Mmeta.

2) Compute the values of the planning operations people might
perform in different states [i.e., Qmeta(b, c)] by solving the
metalevel MDP, Mmeta.

3) Let people practice planning and infer their decision process
from their clicks.

4) Evaluate each inferred decision operation, c, by

loss(b, c) = max
c′

Qmeta(b, c
′)−Qmeta(b, c). [1]

5) Translate the loss into reinforcement and inform the tutee
what operation(s) should have been selected instead, i.e.,
arg maxc Qmeta(b, c).

We completed steps 1 and 2 in previous work (25). Step
3 is accomplished by using the Mouselab-MDP paradigm to
measure people’s planning operations. Finally, the feedback signal
computed in step 4 is translated into a delay penalty and the
states that would have been optimal to click are highlighted
(Fig. 1B). Feedback is given after each click and also when the
participant first moves the spider. Moving the spider when one
should have clicked or vice versa incurs a penalty as well. See
SI Appendix, Fig. S8 and Materials and Methods for details.

Results

By combining the four building blocks described above, we cre-
ated an intelligent cognitive tutor that employs metacognitive
feedback to teach far-sighted planning. It does so by teaching
them the optimal planning strategy for an environment in which
distal outcomes are more important than proximal ones. We
evaluated the effectiveness of this cognitive tutor in a series of six
experiments, each comprising a training block in which the exper-
imental group worked with the cognitive tutor and a test block in
which all participants solved the same planning problems without
feedback. We found that practice with our intelligent tutor was
more effective than conventional approaches (experiment 1) and
led to transferable improvements in decision making (experiment
2) that are retained over time (experiment 3).

To illustrate the generality of our approach, we created a second
intelligent tutor—this time for an unstructured environment in
which proximal and distal outcomes are equally important. As
before, we found that practice with the new tutor was more
effective than practice alone (experiment 4). In experiment 5,
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we found that the benefits of metacognitive feedback transfer
to problems that are superficially dissimilar from the training
task. Finally, experiment 6 investigated the relative contribu-
tions of the affective and informative components of the tutor’s
metacognitive feedback. We found that both components are
likely to contribute but that the affective component is especially
critical.

Experiment 1: Metacognitive Feedback Is Most Effective.
Experiment 1 evaluated the efficacy of our intelligent tutor’s
metacognitive feedback against the conventional approaches of
giving people feedback on their actions (e.g., “You should have
gone left”) or having them practice without feedback. The training
block and the test block both employed the three-step planning
task shown in Fig. 1A.

To quantify participants’ task performance, we define “relative
test score” as the average score each participant achieved in the test
block, normalized by chance and optimal performance such that
0 points is chance and 100 points is optimal (Eq. 2). People’s per-
formance was strongly bimodal (SI Appendix, Fig. S1A), violating
the distributional assumptions of parametric hypothesis tests; we
therefore employed the nonparametric Kruskal–Wallis ANOVA
and permutation tests (37) to analyze our participants’ scores. All
analyses are conducted at the participant level.

Fig. 2A shows the average relative test score achieved by par-
ticipants in each group. A Kruskal–Wallis ANOVA confirmed
that the type of feedback provided in the training trials had
a significant effect on participant performance (H = 9.71,P =
0.008). Participants who received no feedback achieved an average
relative test score of 77.0 points (95% CI [66.2, 86.8]). This means
they achieved 77% of the possible increase in score that one could
gain by planning rather than choosing a path randomly. Critically,
participants receiving metacognitive feedback performed signifi-
cantly better, coming close to optimal performance (94.4 points;
95% CI [89.1, 98.5], permutation test d = 0.59,Z = 2.84,P =
0.005). By contrast, giving participants conventional feedback
on their actions appeared to be ineffective. That is, participants
receiving action feedback did not perform better than partici-
pants in the no-feedback condition (73.5 points; 95% CI [61.8,
83.9], d =−0.09,Z =−0.45,P = 0.653) and performed sig-
nificantly worse than participants who received metacognitive
feedback (d = 0.68,Z = 3.22,P = 0.001).

To identify the mechanism by which metacognitive feedback
improved performance, we conducted a causal mediation analysis
(38). We found that the effect of metacognitive feedback on per-
formance was fully mediated by an increase in people’s propensity
to start by inspecting a potential final outcome (average causal me-
diation effects 21.9 points, 95% CI [12.0, 33.3],P < 0.001; aver-
age direct effects −4.2 points, 95% CI [−13.3, 4.9], P = 0.346).
Metacognitive feedback—but not action feedback—significantly
increased participants’ propensity to plan backward [t(148) =
4.27, P < 0.001 for metacognitive feedback; t(148) =−0.21,
P = 0.831 for action feedback]. Specifically, participants who
received metacognitive feedback planned backward on 97.7%
of test trials compared to 66.1% in the no-feedback group and
64.5% in the action-feedback group. Backward planning, in
turn, increased participants’ average performance by 67.0 points
[t(149) = 15.02, P < 0.001]. As shown in Fig. 2B, people grad-
ually learned to plan backward in all three conditions but the
metacognitive feedback significantly boosted this learning process.
Overall, our findings suggest that metacognitive feedback was
effective because it taught participants a simple, clever heuristic
that allowed them to make better decisions without having to
think harder.

A

B

Fig. 2. Metacognitive feedback accelerates learning and improves perfor-
mance. (A) Average score in the test block for each condition. (B) Proportion
of participants who started by inspecting a potential final outcome split by
condition. Here and in all future plots, the error bars and shaded areas convey
95% confidence intervals produced by 1,000 bootstrap samples. Scores are
bootstrapped over participant means. Asterisks indicate significance of the
permutation test reported in the main text as follows: **P < 0.01.

Experiment 2: Transfer. Experiment 2 examined whether the
benefits of the strategy training evaluated in experiment 1 transfer
to a more complex task. The training block was the same as in
experiment 1 but the test block used the more complex flight-
planning task illustrated in Fig. 3A. In this transfer task, partic-
ipants have to plan five steps ahead rather than just three, the
rewards are drawn from a Gaussian distribution rather than from
a discrete uniform distribution, collecting information is three
times as costly, and the cover story is different. As in the training
task, more distal rewards had higher variance and therefore a
backward planning strategy was still adaptive.

As shown in Fig. 3B, we found significant transfer effects from
the relatively simple three-step training task to the more complex
five-step transfer task (Kruskal–Wallis: H = 13.02,P = 0.001).
Specifically, participants who had practiced with metacognitive
feedback achieved an average relative test score of 74.6 points
(95% CI [67.2, 81.4]) on the transfer task, significantly better
than participants who had practiced with action feedback (57.0
points; 95% CI [49.0, 64.7], d = 0.48,Z = 3.14,P = 0.002) or
no feedback (57.5 points; 95% CI [48.8, 66.0], d = 0.44,Z =
2.91,P = 0.004). This transfer effect was fully mediated by peo-
ple learning to plan backward (SI Appendix, SI Results).
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A

B

C

Fig. 3. The benefits of metacognitive feedback transfer to more difficult
problems and are retained for at least 24 h. (A) The near-transfer task is a five-
step sequential decision problem where the rewards are normally distributed
with a variance that increases exponentially from the first step to the last step.
(B) Average performance on the transfer task given immediately after training.
(C) The same, but with a 24-h delay between training and test. **P < 0.01,
***P < 0.001.

Experiment 3: Retention. Experiment 3 modified experiment 2
by adding a 24-h delay between the training task and the transfer
task. We found that the transfer effect observed in experiment 2

was retained over time (H = 28.66,P < 0.001; Fig. 3C ). Partic-
ipants who had practiced with metacognitive feedback achieved
a relative test score of 81.2 points (95% CI [74.9, 86.7]) on
the delayed transfer task, significantly better than participants
who had practiced with action feedback (49.0 points; 95% CI
[39.6, 58.3], d = 0.88,Z = 5.08,P < 0.001) or no feedback
(57.6 points; 95% CI [48.1, 66.3], d = 0.69,Z = 4.04,P <
0.001). This benefit was fully mediated by an increase in backward
planning (SI Appendix, SI Results).

Experiment 4: Metacognitive Feedback Is Also Effective in an
Unstructured Environment. The environments used in experi-
ments 1 to 3 shared a simple structure that affords an intuitive
strategy. To show that the effectiveness of our approach does not
depend on this simplicity, we applied our method to an envi-
ronment without any obvious structure. Importantly, we derived
optimal feedback using exactly the same method, demonstrating
the generality of our approach. In this new environment the
rewards at all three levels are drawn from the same discrete uniform
distribution with the possible values −10, −5, +5, and +10. The
optimal strategy for this environment prioritizes collecting more
information about the paths that appear most promising, prefers
inspecting nodes that are informative about multiple paths, and
uses a complex adaptive stopping rule (25).

As illustrated in Fig. 4, metacognitive feedback was also ef-
fective in the unstructured environment (H = 9.10,P = 0.011).
Participants who trained with the cognitive tutor achieved a rela-
tive test score of 77.2 points (95% CI [70.4, 83.8]), significantly
better than participants who had practiced with action feedback
(63.0 points; 95% CI [52.4, 73.5], d = 0.42,Z = 2.16,P =
0.030) or without feedback (59.0 points; 95% CI [50.0, 67.7],
d = 0.61,Z = 3.04,P = 0.002). This improvement was accom-
panied by an increased probability of using a sophisticated plan-
ning strategy that is similar to the optimal one, from 0.6% in
the control condition without feedback to 16.8% in the exper-
imental condition with metacognitive feedback (U = 1,136.5,
P < 0.001). This strategy searches for a branch that starts with a
positive outcome and then skips ahead to check the final outcomes
along that branch, repeating this procedure until a path with pos-
itive initial and final outcomes is found. A more detailed analysis
of how the tutor’s feedback affected people’s planning strategies in
the unstructured environment is presented in SI Appendix.

Fig. 4. Metacognitive feedback improved people’s performance in an en-
vironment where the rewards are independently and identically distributed
across all locations. *P < 0.05, **P < 0.01.

PNAS 2022 Vol. 119 No. 12 e2117432119 https://doi.org/10.1073/pnas.2117432119 5 of 11

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 3
8.

39
.1

70
.1

02
 o

n 
Ju

ly
 2

7,
 2

02
2 

fr
om

 I
P 

ad
dr

es
s 

38
.3

9.
17

0.
10

2.

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2117432119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2117432119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2117432119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2117432119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2117432119/-/DCSupplemental
https://doi.org/10.1073/pnas.2117432119


Experiment 5: Transfer to New Situations. The goal of exper-
iment 5 was to determine which benefits of training with a
cognitive tutor transfer not only to larger environments within the
same domain but also to other domains. To answer this question,
we examined whether the benefits of practicing planning in the
rather artificial Web of Cash task transfer to the more naturalistic
task of planning an inexpensive road trip by using a search engine
to look up hotel prices, namely the Road Trip paradigm illustrated
in Fig. 5A (39). Critically, the road trip was required to end at a
city with an airport, and the prices of hotels in these cities were
highly variable; this makes the backward-planning strategy taught
by our cognitive tutor highly adaptive for planning road trips in
the transfer task.

In three conditions, participants practiced in the Web of Cash
environment with metacognitive feedback, action feedback, or
no feedback. To mimic a potential real-world application of our
cognitive tutor, the training was followed by a series of questions
that encouraged participants to reflect on what they learned and
in which other situations it might be applicable. To investigate
the extent to which the Web of Cash task itself produces trans-
ferable benefits, we added an additional control condition in
which participants watched a video about if–then plans (40). In
all four conditions, participants performed the Road Trip task
immediately after completing the training phase. Because we
expected the cross-domain transfer effects to be relatively small,
we preregistered one-tailed tests for all our critical directional
hypotheses.*

Performance on the transfer task differed significantly be-
tween the training conditions (H = 8.87,P = 0.031; Fig. 5B).
Specifically, participants who trained in the Web of Cash task
with metacognitive feedback performed significantly better on
the transfer task (52.17 points; 95% CI [46.58, 57.67]) than
participants who practiced without feedback (43.91 points; 95%
CI [38.08, 49.78], d = 0.18,Z = 2.00,P = 0.023) and those
who watched a video about If–Then plans (42.38 points; 95%
CI [37.40, 47.43], d = 0.23,Z = 2.56,P = 0.005). They also
performed slightly better than those who practiced with action
feedback (48.81 points; 95% CI [43.26, 54.37]) but this dif-
ference was not statistically significant (d = 0.08,Z = 0.84,P =
0.202).

The difference in overall performance was accompanied by a
difference in the propensity to use backward planning strategies
(H = 37.00,P < 0.001; Fig. 5C ). As before, almost all partici-
pants receiving metacognitive feedback learned to use the adaptive
backward planning strategy, compared to around half of the
participants in the other training conditions. In all conditions, the
rate of backward planning dropped dramatically on the first trans-
fer trial. Nevertheless, participants in the metacognitive feedback
condition checked the price of an airport hotel first on 46.3% of
the transfer trials, significantly more often than the participants
in each other condition (action feedback 39.4%, d = 0.17,Z =
1.81,P = 0.035; no feedback 39.4%, d = 0.17,Z = 1.82,P =
0.035; video 23.5%, d = 0.61,Z = 6.45,P < 0.001). This in-
crease in backward planning fully mediated the effect of training
on test performance (average causal mediation effects 12.9 points,
95% CI [7.6, 18.1], P < 0.001; average direct effects −3.8
points, 95% CI [−8.0, 0.4], P = 0.082).

Experiment 6: Mechanisms of Metacognitive Feedback. The
intelligent tutor’s metacognitive feedback has two components: a
delay penalty and a message describing what the optimal heuristic
would have done. The delay penalty serves as a negative reward

*https://aspredicted.org/as5ib.pdf.

A

B

C

Fig. 5. Far transfer. (A) The task environment shares the core property that
rewards are more variable in distant states, but bears little resemblance to
the training task. (B) Transfer performance in each condition. (C) Proportion
of participants planning backward on each trial. The dashed line indicates the
switch to the transfer task.

that should drive the basic reinforcement learning mechanisms
identified by recent models of metacognitive learning (10, 15, 28,
29). The message is a form of supervised learning signal that could
be used by social learning mechanisms, such as imitation learning
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Fig. 6. Test performance with different subsets of the two components of
metacognitive feedback (delay penalties and information about the optimal
heuristic).

or reasoning about the tutor’s pedagogical goals (41, 42). To
discern the contribution of these two components, we compared
the effects of metacognitive feedback with versus without delay
penalties and with versus without information about the optimal
heuristic (SI Appendix, Fig. S10).

As shown in Fig. 6, participants varied significantly in their
performance based on which subset of optimal feedback ele-
ments they received (H = 9.11,P = 0.028). Consistent with our
previous results, metacognitive feedback with both delay penal-
ties and information about the optimal heuristic (87.5 points;
95% CI [80.6, 93.3]) significantly improved performance in the
test block compared to practice without feedback (75.8 points;
95% CI [67.6, 83.2], d = 0.32,Z = 2.26,P = 0.024). But nei-
ther delay penalties alone (77.7 points; 95% CI [69.6, 85.4],
d = 0.05,Z = 0.33,P = 0.743) nor information about the op-
timal heuristic alone (71.8 points; 95% CI [62.9, 80.2], d =
−0.09,Z =−0.67,P = 0.505) had a significant effect relative
to no feedback. These results suggest that both components of our
tutor’s metacognitive feedback are critical.

Discussion

Decision-making skills are fundamental to the success of people,
organizations, and society as a whole. To be able to make good
decisions, we need clever decision strategies that direct our limited
attention to the most important factors. Unfortunately, in many
real-world environments the quality of the feedback people receive
about their decisions is not good enough for them to discover such
strategies on their own (13, 14, 16).

We developed an intelligent system that automatically discovers
optimal decision strategies and teaches them to people by giving
them metacognitive feedback while they are deciding what to do.
The general approach starts from modeling the kinds of decision
problems people face in the real world along with the constraints
under which those decisions have to be made. The resulting formal
model makes it possible to leverage artificial intelligence to derive
an optimal decision strategy. To teach people this strategy, we
then create a simulated decision environment in which people
can safely and rapidly practice making those choices while an
intelligent tutor provides immediate, precise, and accurate feed-
back on how they are making their decision. As described above,

this feedback is designed to promote metacognitive reinforcement
learning (10, 15, 28, 29).

We found that our intelligent tutor’s metacognitive feedback
enabled people to rapidly discover effective decision strategies.
Our training method outperformed two conventional approaches
to cognitive training and improving human decision making
(i.e., practice and performance feedback) and achieved promising
transfer effects that were retained over time. Our cognitive tutor
for decision making in situations where distant outcomes are more
important than proximal outcomes enabled people to overcome
their over-reliance on immediate rewards and to instead focus on
the values of potential goals they could reach in multiple steps.

Our approach to designing intelligent cognitive tutors was
successful in both a structured environment that affords a sim-
ple intuitive strategy (experiments 1 to 3) and an unstructured
environment with a more complex optimal strategy (experiment
4). The results of experiment 5 suggested that people can transfer
the strategies they learned from our cognitive tutor to more
naturalistic tasks in different domains. Together, the findings from
experiments 1 to 5 suggest that our intelligent tutor can help
people learn how to plan better and make more far-sighted deci-
sions. The findings of experiment 6 suggested that both the delay
penalty and information provided by the tutor are important to its
success, with the delay penalty playing an especially critical role. In
an additional follow-up experiment (experiment 7; SI Appendix)
we showed that people continue to use the strategy taught by
the cognitive tutor even when it is not especially effective (nor
particularly ineffective) in the new environment. This finding
further supports the interpretation that the improvements in
people’s decision making observed in experiments 1 to 5 were
due to people learning a concrete planning strategy from the
tutor’s feedback rather than due to people gaining insights into the
structure of the environment. A further experiment (experiment
8; SI Appendix) suggested that although it is necessary that the
training task is complex enough to capture the essential structure
of the real-world environment, there are diminishing returns for
increasing the complexity of the training task further.

The main contribution of this article is to lay the scientific and
computational foundations for a principled approach to improv-
ing human decision making. The basic idea of this approach is to
give people optimal metacognitive feedback on how they make
decisions in the real world. To make this possible, we have laid
down a theoretical foundation comprising a mathematical theory
of optimal decision strategies, a conceptual theory of how people
learn how to decide, and an automatic method for computing
optimal metacognitive feedback. We have empirically validated
this theoretical framework in a series of training experiments
showing that giving metacognitive feedback is more effective at
improving human decision making than giving performance feed-
back or letting people gain practical experience without feedback.
These experiments support the efficacy of our general method for
computing optimal metacognitive feedback.

The results of experiment 7 suggested that people find it chal-
lenging to discern situations in which the strategy taught by our
intelligent cognitive tutor is beneficial from situations in which
it is not. This highlights developing pedagogical interventions for
helping people learn which kinds of situations the taught strategy
is suitable for and how to recognize them as an important direction
for future work. We believe that this is an important problem that
should be solved before intelligent cognitive tutors of the kind
introduced in this article are deployed to the real world.

The benefits of cognitive training are often limited to tasks
that are very similar to the exercises that people practiced on
(43, 44). This is known as the transfer problem. Indeed, in
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experiment 5, we found that the benefits of training with the tutor
were substantially diminished in the far-transfer task. Moreover,
the effect size estimate we obtained in experiment 5 is likely an
upper bound on any transfer we can expect to see in the real
world because the fact that both tasks were part of the same
online experiment made it easier for participants to infer that
the two tasks are related than it would have been in a real-world
application.

To sidestep the far-transfer problem, future work could try
to leverage automatically generated metacognitive feedback to
train people on tasks that are similar or identical to those real-
world tasks on which their performance shall be improved. In-
deed, follow-up studies are beginning to demonstrate that our
general method can be applied to real-world decisions that people
make at their computers or smartphones. One concrete real-
world application is training people to stay focused on the task
they have chosen to work on. This can be done by creating an
app that gives people feedback on how well the websites and
programs they view on their computer match their intentions
(45); that is, when people get distracted from a self-chosen task,
they receive negative feedback and when they refocus on the task,
they receive positive feedback. Another future application is to
develop intelligent tutors that help people unlearn cognitive biases
that lead to unfair discrimination. Since people’s cognitive biases
are a direct consequence of the heuristics they use, teaching them
to use heuristics that are adaptive for the specific decisions they
face in their everyday life is a promising approach to helping
people overcome systematic errors. Given that transfer is generally
difficult to achieve, this should be pursued by augmenting specific
real-life decision environments with metacognitive feedback. For
instance, a program in which admission officers or recruiters eval-
uate applicants could be equipped with metacognitive feedback on
which pieces of information they inspect first (e.g., gender versus
qualifications) and which information they ignore. This real-world
problem is an instance of multialternative, multiattribute decision
making that can be formalized as a metalevel MDP (10, 46).

The metalevel MDP models of decision making in the real
world will often be significantly larger than those we solved
here. Therefore, computing the optimal metacognitive feedback
for such real-world applications will require a machine-learning
method that is more scalable than the backward induction al-
gorithm we used here. In recent work, we have developed such
methods and successfully applied them to larger metalevel MDPs
(34, 46, 47).

Modeling real-world decision problems can be difficult because
the structure of real-world problems is only partly known. To
address this problem, our strategy discovery methods can be
combined with Bayesian inference on the structure of the deci-
sion problem in a way that makes them more robust to model
misspecification (48).

One limitation of our proof of concept is that participants
might perform additional unobserved planning operations for
which they receive no feedback. This does not take away from
the value of the feedback that our tutor gives on the planning
operations that we do observe, but it does suggest that the ef-
fectiveness of our cognitive tutors can be improved even further.
One simple extension that would allow our cognitive tutor to
give feedback on an even larger proportion of people’s planning
operations would be to reveal each piece of information only
briefly. As a result people might then click on the same piece of
information multiple times when it is used by multiple planning
operations. Future work can also use eye tracking to obtain an even
more accurate measure of people’s planning operations. Another
limitation is that we approximated the cost of planning by the fees

that participants paid to collect information. Future work should
obtain more realistic measures of the cost of planning by measur-
ing the mental effort and time that it takes people to process the
acquired information. Measuring and modeling people’s planning
operations and their cognitive costs more accurately may lead to
cognitive tutors that are even more effective. Another important
direction for future work is the development of tasks that make
planning operations measurable without reducing their associated
computational costs.

How much a person benefits from receiving metacognitive
feedback can be limited by how the person represents the decision
problem. This is a concern because the way in which people
represent a task determines which features they attend to, to learn
which actions will be rewarded (49). Therefore, the benefit that
learners can derive from metacognitive feedback is limited by
their mental representation of the problem they are trying to
solve. However, this does not mean that a person who does not
already represent the problem in the best possible way cannot
learn an optimal strategy. To the contrary, people can flexibly
improve their representations (50). In particular, they can learn
representations that enable them to predict which actions will be
rewarded (51–53). This likely also applies to planning operations.
We therefore expect that metacognitive feedback can also help
people learn more adaptive problem representations that make it
easier for them to discover effective decision strategies. Testing
this prediction is an interesting direction for future research.
While reinforcement informs representation learning, there are
also many other representation learning mechanisms, such as
categorization, that shape how people represent decision problems
(49). Therefore, future work should investigate how our intelligent
tutors can be extended to more effectively help people (learn to)
represent decision problems in ways that make it easy for them
to discover and apply resource-rational heuristics. One simple
approach could be to highlight the aspects of the problem’s
structure that the optimal strategy relies on.

To scale up our approach to improving human decision making
to more complex real-world scenarios, it will be important to
ensure that people can understand why the feedback makes sense
and what the tutor is trying to teach them. To achieve this
level of interpretability, we are currently developing automatic
methods for generating human-interpretable descriptions of the
optimal decision strategies taught by our intelligent tutors (54).
Furthermore, the tutor’s metacognitive feedback can be enhanced
with text that explains why it would have been better to per-
form an alternative operation. Such explanations can be given
automatically by comparing the common features of optimal
operations (e.g., “inspects a final outcome”) to the corresponding
features of the chosen operation (e.g., “inspects an immediate
outcome”). We believe that augmenting our intelligent tutors with
interpretable descriptions of the strategies that are being taught
and explanations of why an alternative operation would have been
better will enable people to learn from the tutor’s feedback even
when the problem is more complex than the simple tasks we used
to provide a proof of concept.

The findings presented in this article provide a proof of concept
for a general method for improving people’s decision-making abil-
ities. Our computational framework for discovering and teaching
resource-rational cognitive strategies could lead to a principled
approach to improving the human mind. Future work will apply
our approach to increasingly more realistic scenarios, such as
planning how to reach a project milestone and deciding which
company to invest in, and address the transfer problem and other
challenges associated with improving decision making in the real
world.
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Materials and Methods

Our data, the analysis code, and a demonstration of the experimental paradigm
are available at https://github.com/fredcallaway/ai-for-improving-human-
planning. The experiments reported in this article were approved by the
institutional review board of the University of California, Berkeley, under
Institutional Review Board (IRB) Protocol 2015-05-755 (“Cognitive Research
Using Amazon Mechanical Turk”); the institutional review board of Princeton
University under Protocol 10859 (“Computational Cognitive Science”); and
the Independent Ethics Committee of the University of Tübingen under
IRB Protocol 667/2018BO2 (“Online-Experimente über das Erlernen von
Entscheidungsstrategien”). All participants of all experiments gave informed
consent in advance.

To quantify participants’ task performance in a way that is interpretable and
comparable across all of our experiments, we measured their score relative to the
expected scores of an (approximately) optimal strategy and guessing randomly.
Given the raw score s achieved on a given trial the relative score is given by

relative-score(s) = 100 · s − s̄rand

s̄opt − s̄rand
, [2]

where s̄opt is an (approximate) upper bound on possible average score and s̄rand

is the expected score achieved by randomly selecting paths without doing any
planning. We set the upper bound to the performance of the optimal policy when
this was possible to compute. For the large near-transfer environment (which
is too large to solve exactly) and for the far-transfer environments (where the
rewards are not independently identically distributed), we instead approximated
this upper bound by the performance of a goal-setting strategy, which approxi-
mates the strategy taught by the tutor. This strategy checks terminal states until
finding one with reward above a threshold and then selects a path to that state or,
if no such state is found, the terminal state with maximal reward. The threshold
was optimized to maximize the strategy’s performance.

All permutation tests were performed using the R package “coin,” using the
default asymptotic approximation method (37). The causal mediation analysis
was performed using the R package “mediation” (38). The mediator “backward
planning” was operationalized by whether or not the participants’ first click fell on
one of the nodes they would reach after their third and final move. Both analyses
were performed at the participant level; we therefore averaged the values of
the mediator (backward planning) and the dependent variable (“relative score”)
across the 20 trials of the test block. Confidence intervals were computed (also at
the participant level) by Monte Carlo permutation with 10,000 samples.

Experiment 1. We recruited 151 participants on Amazon Mechanical Turk
(average age, 34.5 y; range, 18 to 72 y; 72 females). For all experiments, balanced
condition assignment and repeat-participant exclusion were performed using
psiTurk (55). Each participant was assigned to receive metacognitive feedback (50
participants), action feedback (50 participants), or no feedback (51 participants)
during the training block. The experiment comprised instructions, a training
block, a test block, and an exit survey. The training block comprised 10 trials, and
the test block comprised 20 trials. The exit survey asked participants about what
they had learned, their age, and their gender identity.

Each trial presented participants with an instance of the three-step planning
problem described above (Fig. 1A). The key structure of this problem is that
the range of possible rewards is smallest in the first step, larger in the second
step, and largest in the third step. To operationalize the cost of planning, we
charged participants one virtual dollar per click. To simplify the implementation of
metacognitive feedback, we required that all clicks be made before the first move
(note that it is never optimal to click after moving because the state transitions
are deterministic). To eliminate the time cost of engaging in planning compared
to speeding through the experiment, participants who spent less than 7 s on
planning (e.g., only 3 s) had to wait for the remaining time after executing their
moves (e.g., for 4 s). In the test block, participants started with an endowment
of 50 virtual dollars and earned a bonus of $0.01 for every $5 they made in the
game.

In both feedback conditions, the feedback consisted of a delay penalty (neg-
ative reinforcement) as well as a message indicating what the best thing to do
was. In the metacognitive feedback condition, feedback was given after each
planning operation, including both clicks and the decision to stop planning and

move the spider. The delay penalty was 2 + a · loss(b, c) seconds (Eq. 1) if the
participant made an error or 0 seconds if the participant’s planning operation
was optimal. We chose the value of the scaling factor a so that the delay for acting
without planning was 42 s (SI Appendix, SI Methods). If the optimal operation
was to click but the participant did not make an optimal click, the optimal nodes to
click were highlighted and a message was displayed: “You should have inspected
one of the highlighted nodes.” If the optimal operation was to move but the
participant clicked, the message read “You shouldn’t have inspected any more
nodes.” In the action feedback condition, the tutor gave feedback on participants’
first moves but not on the their planning operations (clicks). The delay penalty
was determined using the same equation, but replacing the metalevel Q function
with the “task-level” Q function; that is, the loss function compares the total
reward one would receive from taking the optimal path following that initial
action to the maximal total reward one could obtain by starting with the best
possible move. If the participant chose the wrong direction, the message read
“You should have moved left/up/right” depending on which direction would have
been optimal given full information.

Experiment 2. The methods of experiment 2 were the same as in experiment
1 unless stated otherwise. We recruited 297 participants on Prolific (average
age, 32.2 y; range, 18 to 71 y; 158 females). We excluded 25 participants who
reported possible participation in a previous version of the experiment (e.g., on
Mechanical Turk or with a different Prolific account).

Each participant was assigned to receive metacognitive feedback (99 partici-
pants), action feedback (100 participants), or no feedback (98 participants).

The transfer task illustrated in Fig. 3A was a five-step sequential decision
problem. It was framed as routing an airplane across a network of airports. The
rewards of nodes at step i ∈ {1, 2, 3, 4}were drawn from normal distributions
with mean zero and SDσi = 2i−1, and for the rewards at the last step (i = 5) the
SD was σ5 = 25. This reward structure was chosen to ensure that the backward-
planning heuristic identified as optimal for the smaller training environment was
near optimal for the transfer environment as well. Unlike in the training task, the
cost of planning was $3 per click.

Experiment 3. This experiment employed the training block and the transfer
task from the transfer experiment (experiment 2) with an added a 24-h delay
between the training block and the transfer task.

We recruited a total of 297 participants on Prolific (average age, 31.9 y;
range, 18 to 76 y; 119 females). We excluded 18 participants who reported
possible participation in a previous version of the experiment. Each participant
was assigned to the experimental condition that trained with the intelligent
tutor (101 participants), the control condition that practiced with action feedback
(99 participants), or the control condition that practiced without feedback (97
participants).

The 24-h delay was accomplished by splitting the experiment into two stages,
the second of which could only be begun 24 h after beginning the first stage.
The first stage comprised instructions and a training block. The second stage
comprised instructions reminding participants how the game works, the transfer
block where participants were posed 20 five-step planning problems (Fig. 3A),
and the closing survey used in experiments 1 and 2. About 83.5% of the
participants of stage 1 returned to stage 2 (i.e., 248 of 297). The proportion
of participants who dropped out after the first stage did not differ substantially
between the three conditions (metacognitive feedback,15.8%; action feedback,
16.2%; no feedback, 17.5%).

Experiment 4. We recruited 179 participants on Prolific (average age, 32.4
y; range, 18 to 74 y; 87 females). We excluded 16 participants who reported
possible participation in a previous version of the experiment. Sixty participants
were assigned to the experimental condition with metacognitive feedback, 58
were assigned to the control condition with action feedback, and 61 participants
were assigned to the control condition without feedback.

The task environment differed from the one used in experiment 1 in that
the rewards at all three levels were drawn from a discrete uniform distribution
over the possible rewards −10, −5, +5, and +10. In the test block the task
environment was the same as in the training block and all three experimental
groups solved 20 planning problems without any feedback. The penalty delays
were calculated such that the metacognitive feedback for acting without planning
was the same as in the cognitive tutor used in experiments 1 to 3.
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Experiment 5. We recruited 1,380 participants on Prolific (average age, 25.23
y; range, 18.0 to 57.0 y; 459 females). We excluded 112 participants who
reported possible participation in a previous version of the experiment.

The experiment comprised general instructions, a training block, questions
designed to promote transfer (transfer prompts), and a test block in which
participants were evaluated on a new transfer task. The four conditions of the
experiment differed only in the training block. In this training block, three
groups practiced planning in 10 trials of the Web of Cash game with optimal
metacognitive feedback (233 participants), action feedback (235 participants),
or no feedback (242 participants). An additional control group (253 participants)
watched a video about If–Then plans (40) instead of practicing in the Web of Cash
environment.

The transfer prompts told participants that the Web of Cash game is a
metaphor for life and asked them to articulate the lesson they had learned, think
about a situation in which it might be applicable, and describe how it could
be applied to efficiently plan a road trip (see SI Appendix, SI Methods for more
detail).

In the test block, all participants completed eight trials of a modified version
of the Road Trip paradigm introduced in ref. 39 (Fig. 5A). In this task, participants
play the role of a travel agent tasked to plan an inexpensive road trip from
the client’s current location to any city with an airport. To make an informed
recommendation, they can look up the price of each city’s most affordable hotel by
typing the city’s name into a search engine. The participant has to be economical
with time because the travel agent is working from a very expensive internet cafe,
which charges them $0.25/s, and the search engine takes 4 s to find the cheapest
rate in the queried city. In each round the travel agent starts with a budget of $800
for the trip and the agent’s internet research and the participant earned a bonus
of $0.01 for every $2 left from that budget. Unbeknownst to the participants, the
hotels in cities with airports have a much wider range of possible prices ($100,
$320, $350, or $380) than the hotels in other cities ($130, $135, $140, or $145).
Furthermore, exactly one of the airport hotels always had the lowest price of $100,
making it possible to always find an inexpensive route.

The transfer task differed from the training task on several important dimen-
sions. First, the transfer task is much more naturalistic than the training task: It
mimics the real-life challenge of planning a road trip, it captures that researching
prices is effortful and time consuming, and it captures that each destination can
be reached via multiple routes. Second, while the training task asks people to
maximize profits, the transfer task asks them to minimize costs. Third, unlike the
training task, the transfer task had to be performed under time pressure. Last but
not least, the transfer task has a very different user interface than the training task
(cf. Fig. 5A vs. Fig. 1A). In particular, participants obtained information by typing
text into a search box (vs. clicking) and they selected their route by clicking on the
roads between cities (vs. arrow keys).

Experiment 6. Experiment 6 disentangled the effects of reinforcement versus
information about the optimal heuristic using a 2 × 2 factorial design with

the factors delay penalties (present vs. absent) and information about what the
optimal heuristic would have done (present vs. absent). We recruited 417 partic-
ipants on Amazon Mechanical Turk (average age, 36.0 y; range, 18 to 87 y; 204
females). Participants were assigned to receive no feedback (104 participants),
only information (104 participants), only delay penalties (104 participants), or
the full feedback with both information and delay penalties (105 participants).

Following the instructions, participants completed 10 training trials and 15
test trials. Finally, each participant completed the exit survey described above.
During the training trials each of the four conditions received a different type
of feedback. Depending on the experimental condition, the feedback included
a delay penalty, information about what the optimal heuristic would have done,
both, or neither one. During the test trials, none of the groups received feedback.
Both training and test trials used the three-step planning task from experiment 1.

In contrast to previous experiments, all clicks in all conditions were followed
by an unconditional delay of 1 s before revealing the reward at the clicked state.
This unconditional delay afforded enough time to show the information feedback
when applicable, without introducing any behavior-dependent delays or unin-
tended differences between conditions. Participants in the conditions with delay
penalties received an additional delay penalty whose duration was proportional
to how much worse their planning operation was than the optimal one. During
the delay penalty, participants were shown the message “Delay penalty for poor
planning: x seconds” (where x is the duration of the delay). When the participant’s
planning operation was optimal, the message read “Good job!” and there was no
additional delay. In the conditions with information, after a suboptimal planning
operation, a visual illustration of what the optimal heuristic would have done
differently (SI Appendix, Fig. S10) was displayed during the entire delay period,
which was at least 1 s and longer in the condition with delay penalties. Finally,
to roughly match the amount of time spent in the experiment, in conditions with
delay penalties, all training trials were followed by an 11-s delay during which we
told participants that the next trial was being prepared. In conditions with delay
penalties, this posttrial delay was 1 s. The difference of 10 s was chosen to offset
the average total delay penalty per trial in experiment 1.

Data Availability. Anonymized datasets have been deposited in GitHub
(https://github.com/fredcallaway/ai-for-improving-human-planning).
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