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Abstract

Most psychological theories attribute people’s failure to
achieve their goals exclusively to insufficient motivation or
lack of skill. Here, we offer a complementary explanation that
emphasizes the inherent complexity of the computational prob-
lems that arise from the structure of people’s goal systems.
Concretely, we hypothesize that people’s capacity to achieve
their goals can be predicted from combinatorial parameters of
the structure of the network connecting their goals to the means
available to pursue them. To test this hypothesis, we expressed
the relationship between goals and means as a bipartite graph
where edges between means and goals indicate which means
can be used to achieve which goals. This allowed us to map
two computational challenges that arise in goal achievement
onto two classic NP-hard problems: Set Cover and Maximum
Coverage. The connection between goal pursuit and NP-hard
problems led us to predict that people should perform bet-
ter with goal systems that are tree-like. Three behavioral ex-
periments confirmed this prediction. Our results imply that
network parameters that are instrumental to algorithm design
could also be useful for understanding when and why people
struggle in their goal pursuits.
Keywords: decision-making; goals; rational analysis; graph
theory; computational complexity

Introduction
The ability to set and achieve high-level goals, such as creat-
ing a CogSci paper, is a critical feature of human intelligence
and a key challenge for artificial intelligence systems (Newell
& Simon, 1972). Critically, everyday problem solving re-
quires people to juggle multiple goals in parallel (Atkinson &
Birch, 1970; Miller, Galanter, & Pribram, 1960). Concretely,
when people are given ten minutes to list their current pursuits
they will report about 15 goals on average and each of those
goals typically entails multiple subgoals at several levels of
abstraction (Little & Gee, 2007).

It is generally agreed that there are many situations in
which people fail to act on their goals (Baumeister, Heather-
ton, & Tice, 1994). The predominant explanations of such
failures are lack of motivation, lack of planning (Gollwitzer,
1999), failure to delay gratification (Mischel, Shoda, & Ro-
driguez, 1989), or the depletion of the capacity for self-
control (Muraven & Slessareva, 2003). Here, we explore an
alternative explanation for people’s failure to achieve their

goals: the inherent complexity of the underlying computa-
tional problem.

The relationship between means and goals can be for-
malized in a bipartite graph whose vertices are divided into
a set of means M = {m1, · · · ,mk} and a set of goals G =
{g1, · · · ,gl}. In this graph, a mean m is connected to a goal g
if and only if selecting m will achieve the goal g. Such net-
works are called goal systems in the psychological literature
(Kruglanski et al., 2002). For instance, the vertices at the top
of the goal system illustrated in Figure 1 might correspond to
your goals to become a prolific scientist (g1), be a wonder-
ful partner (g2), become a great parent (g3), get physically fit
(g4), and enjoy life to the fullest (g5).

Finding the best configuration of means for achieving a set
of goals can involve considerable computational challenges.
It has been suggested that findings from theoretical computer
science can shed light on how people cope with hard com-
putational problems (Van Rooij, 2008). For example, Van
Rooij (2008) advocated applying the theory of fixed param-
eter tractability to study how people cope with hard compu-
tational problems. Yet, while previous research on problem
solving has investigated which strategies people use to solve
NP-hard problems (MacGregor & Ormerod, 1996; MacGre-
gor, Ormerod, & Chronicle, 2000), this literature has focused
on the Traveling Salesman problem and other problems that
are structurally distinct from those that arise in goal pursuit.1

Here, we will fill this gap by analyzing goal achievement
through the lens of computational complexity theory.

In theoretical computer science, it is well known that the
performance of many combinatorial optimization algorithms
critically depends on certain graph-theoretic properties of the
networks they are applied to (Kleinberg & Tardos, 2006). For
instance, a well-documented phenomenon in algorithm de-
sign, artificial intelligence, and operational research is that
NP-hard optimization problems often become easier on trees
and tree-like graphs. Indeed, when restricted to trees, many

1One exception is the work of Carruthers, Masson, and Stege
(2012) which found that the planarity of graphs has no effect on
human performance in the Vertex Cover problem.



Figure 1: Example of goal system: means appear at the bot-
tom marked by m1 . . .m4. Goals appear on top marked by
g1 . . .g5. A goal can be attained if at least one mean con-
nected to it is chosen. The set {m1,m3} is a minimal set of
means covering all goals

NP-hard problems can be solved by efficient polynomial-time
algorithms, such as divide-and-conquer methods and greedy
algorithms. Here, we show that human performance on two
goal management tasks is also well predicted by graph the-
oretic measures of the tree-likeness of the underlying goal
system. Our results offer a fresh computational perspective
on why people fail to achieve their goals. Our experimental
results align well with theoretical knowledge from computer
science and highlight that findings from computational com-
plexity are relevant to cognitive psychology.

The plan for the paper is as follows. We start by formal-
izing two common challenges of goal achievement in terms
of two classic NP-hard problems: Set Cover and Maximum
Coverage. Next we derive our theoretical prediction by argu-
ing that people’s performance on these problems should in-
crease with graph theoretic metrics of how tree-like the goal
system is. We then test this prediction in three behavioral ex-
periments and conclude with a summary of our findings and
directions for future work.

Formal analysis and predictions
Here we formalize, as well-defined NP-hard problems, two
computational challenges that arise in means selection prob-
lems where one seeks to choose a set of means that are instru-
mental to the ends one is trying to achieve.

The first problem we consider is trying to achieve as many
goals as possible with a fixed budget that limits the number of
activities that one can perform. We formalize this challenge
in terms of the Maximum Coverage problem (MC). In it, we
are given a bipartite graph H = (C,D,F) where C,D are the
sides of the bipartition, and F is the set of edges connecting
vertices in C to vertices in D. We are also given a nonnegative
integer k ≤ |C|. We seek to find a set C′ ⊆ C, of cardinality
at most k, maximizing the number of vertices in D covered
by vertices in C′ (a vertex b ∈ D is covered by a vertex a ∈C
if (a,b) ∈ F). As a goal system, the set C corresponds to
means, the set D corresponds to goals, and F represents to
interconnections between goal and means. Observe that we
assume that once a goal is covered by a single mean then it
will be achieved. This assumption is made in order to sim-
plify the experimental task, allowing for a simple and clean

description.
The second problem that we study is trying to achieve a

given set of goals as efficiently as possible by selecting the
minimal number of means that will accomplish all goals. We
formalize this challenge in terms of the Set Cover problem
(SC). In the Set Cover problem, we are given a bipartite graph
G = (A,B,E), where A,B are the sides of the bipartition and
E is the set of edges connecting vertices in A to vertices in B.
As a goal system, the set A corresponds to means, the set B
corresponds to goals, and the set E corresponds to intercon-
nections between goals and means. In the SC problem, our
goal is to cover all vertices in B by a set A′ ⊆ A of minimal
cardinality. Both MC and SC are NP-hard not only to solve
exactly but also to approximate (Feige, 1998).

These two computational problems (MC and SC) capture
essential aspects of means selection problems that have been
studied in the psychological literature.

For example, it is generally agreed that people try to se-
lect means in order to maximize the number of attained goals
(Kruglanski et al., 2002; Zhang, Fishbach, & Kruglanski,
2007). Furthermore, representing goals as graphs and assum-
ing interconnectedness between goals appear either explicitly
or implicitly in several papers (Kruglanski et al., 2002; Tha-
gard & Millgram, 1995).

We shall use the following two performance measures in
quantifying how well people do in MC and SC. Our first mea-
sure simply quantifies the ability to find the optimal solution.
This is a binary measure that equals 1 if the person finds the
optimal solution and 0 otherwise. Given an algorithm A for
MC or SC, the second measure, referred to as the solution
quality, ranges between 0 (worst) and 1 (best). For the MC
task, the solution quality is the number of goals achieved by A
divided by maximum number of goals that could be achieved
with k means. For the SC task, the solution quality is the
minimum number of means that achieves all goals divided by
the number of means selected by A. Solution quality (which
is also referred to as the approximation ratio of A) is widely
used in quantifying the quality of approximation algorithms
for NP-hard problems (Vazirani, 2013).

The hardness of MC and SC gives a first indication for
why people might find it difficult to juggle multiple goals
at the same time. Yet, not every instance of these problems
is equally difficult. Next, we introduce graph-theoretic mea-
sures that might be useful for distinguishing harder instances
from easier ones.

Features and predictions
A tree is a connected graph without cycles. Many NP-hard
problems on graphs with small treewidth (Robertson & Sey-
mour, 1986, see below), allow exact or approximate algo-
rithms which are significantly better than what is known to
be achievable on worst-case instances.

The idea that tree-like graphs might be easier for people
to deal with guided our search for features that quantify how
similar a given network is to a tree. Four such features are
presented below.



• Treewidth. Treewidth (tw) is a combinatorial parameter
that is associated with a graph.2 Low treewidth implies
that the nodes and edges of the network can be arranged in
a way that resembles a tree (e.g., Kloks, 1994; Robertson
& Seymour, 1986). For a precise definition of treewidth
see Kloks (1994).

• Combinatorial expansion. Given a graph G = (V,E) and a
nonempty subset S ⊆V , let ∂(S) be the set of edges cross-
ing the cut (S,V \S) and let N(S) be the set of all vertices in
V \S having a neighbor in S. The vertex-expansion of G is
defined as minS⊆V,0<|S|≤|V |/2

|N(S)|
|S| . The edge-expansion of

G is minS⊆V,0<|S|≤|V |/2
|∂(S)|
|S| . Trees of bounded degree have

expansion O(1/|V |), hence large expansion suggests that
the graph is dissimilar to a tree. We computed both vertex
and edge expansion by solving an integer linear programs
(ILPs) using IBM’s CPLEX.

• Spectral expansion. The adjacency matrices of the graphs
we consider are symmetric, hence have n real eigenvalues
λ1 ≥ λ2 ≥ ... ≥ λn. The classical (discrete) Cheeger’s in-
equality (e.g., Alon and Milman, 1985) implies that the
larger d−λ2 is, the larger the edge expansion of the graph.3

MC and SC instances with low treewidth w are known
to have exact algorithms that run in time O(2wn) (Alber &
Niedermeier, 2002), hence instances with low treewidth are
likely to be easier to deal with algorithmically. Current al-
gorithms that compute tree-decompositions are quite com-
plicated, therefore it seems unlikely that people would use
them to solve SC and MC problems. Nevertheless, treewidth
might affect the performance of people’s heuristics: the sim-
ilarity between low treewidth graphs and trees might make
the kinds of algorithms that people might use, such as greedy
and divide-and-conquer methods, much more effective. Con-
versely, as worst-case instances of MC and SC are hard
even to approximate, and as hard instances often have large
treewidth and expansion (Clementi & Trevisan, 1999), it is
likely that it will be hard not only to solve exactly, but also to
find approximate solutions for instances of large treewidth.
Similar reasoning applies to our expansion measures. We
therefore hypothesize that treewidth, vertex-expansion, edge-
expansion, and the spectral gap of G are negatively correlated
with the quality of people’s solution to SC and MC problems
and frequency with which they find an optimal solution.

Additional predictors
A feedback vertex set (FVS) is a subset of vertices whose
removal from a given graph results in a forest. The size
of a minimal feedback vertex set is an alternative measure
to the similarity of a graph to a tree. Hence we used this

2Here we will only consider undirected graphs.
3We included the spectral gap as it admits an efficient polynomial

algorithm as opposed to the other three predictors which are NP-
hard. As such, it may prove as a practical predictor of performance.

feature as well. We calculated FVS using the implementa-
tion based on (Iwata, 2016; Wahlström, 2014) available at
https://github.com/wata-orz/fvs.

Previous empirical hardness models have found additional
features of graphs to be useful: the diameter, average eccen-
tricity, and average path length (Leyton-Brown, Nudelman, &
Shoham, 2009). We thus included these features. The diam-
eter of a graph is the longest distance between two vertices
in the graph (where the distance, dist(u,v), is the number of
edges in a shortest path connecting u and v; all graphs con-
sidered are connected). The eccentricity ε(v) of a vertex v in
an undirected graph G = (V,E) is the maximal distance of a
vertex in V \ v from v. The average eccentricity (AvgEcc) is
1
n ∑v∈V ε(v) (n is the number of vertices). The average path
length (AvgPath) is 2

n(n−1) ∑dist(u,v) where summation is
taken over all pairs of distinct vertices.

Behavioral experiments
To test how our predictors relate to human performance in
MC and SC, we conducted three crowdsourced behavioral
experiments. We used a between-subjects design where each
participant was assigned randomly to one of twenty graphs
with treewidths varying from 4 to 13. In the first experiment,
participants were asked to solve the SC problem, and in the
second experiment participants were asked to solve the MC
problem. In each case, the problem was graphically repre-
sented as a bipartite graph with 48 vertices. The 24 vertices
at the bottom represent the available means (activities A-Z)
and 24 vertices at the top represent the goals. Each edge from
a means vertex to a goal vertex implies that completing that
activity is sufficient to achieve the goal. In the SC task, par-
ticipants were asked to select a minimal number of activities
to achieve all of the goals. In the MC task, participants were
asked to choose five activities that achieve as many goals as
possible. The third and final experiment asked participants to
solve a SC problem where goals are given semantic content
and real values, and a different visual display is used to elimi-
nate possible visualization effects. In each experiment we re-
stricted our analyses to goal systems in which every goal and
mean vertex had exactly 4 neighbors (i.e., each graph was
4-regular). This restriction meant that each graph required
the same amount of memory to enable processing, ensuring
that any difference between conditions cannot be explained
by working memory limitations.

Experiment 1: Human performance on Set Cover
Methods We recruited 655 participants on Amazon Me-
chanical Turk. Participants were paid $1.25 and could earn
a performance-dependent bonus of up to $2. Each participant
was randomly assigned to one of 20 conditions that differed
only in the graph structure of the SC problem participants
were asked to solve. After consenting to participate, partici-
pants read a cover story about a person trying to choose which
set of activities (e.g., volunteer to improve the company’s
website and work out at the gym) they should perform in or-
der to achieve all their goals (e.g., earn more money, improve



Figure 2: Interface and instructions for Experiment 1.

relationship with boss, get fit, etc.) with as few activities as
possible because their time is limited. The story highlighted
that some activities achieve multiple goals at the same time.
Next, participants completed a simple practice trial involving
only two means and two goals. Once they had solved this task
successfully, participants proceeded to the Set-Cover prob-
lem they had been assigned to. When participants moused
over an activity, this interface highlighted the goals it would
achieve and the corresponding edges of the graph in green.
Goals that had already been achieved and activities that had
already been selected were highlighted by checkmarks, and
the number of selected activities was shown at the bottom of
the screen. Participants were asked to help a person achieve
their 24 goals with as few activities as possible, and they were
motivated by the prospect of earning a financial bonus of $2
for achieving all goals as efficiently as possible. After submit-
ting their solution, participants completed an exit question-
naire asking them for basic demographic information (age,
gender, and primary language), and four 9-point Likert scales
(anchors: “not at all”, “somewhat”, and “extremely”) measur-
ing the perceived difficulty of the task, motivation to achieve
all goals, motivation to find the optimal solution, and their
motivation to finish the task as quickly as possible. We ex-
cluded 30 participants (4.6%) because their responses did not
achieve all goals suggesting that they did not follow the in-
structions.

Results We found that treewidth alone explained 44.90%
of the variance in the frequency with which people found the
optimal solution across the 20 graphs (F(1,18) = 14.20, p =
0.0012): as we increased the treewidth of the graph the per-
centage of participants who discovered the optimal solution
decreased significantly (ρ = −0.59, p = 0.0058) from more
than 90% on the graph with treewidth 5 to only about 30%
on the graph with treewidth 14. We found that the aver-

age solution quality was negatively correlated with treewidth
(ρ = −0.44, p = 0.0525) suggesting that our participants
achieved fewer goals for goal systems with higher treewidth.
Treewidth explained 17.59% of the variance in the median re-
sponse time across problems (F(1,18) = 3.86, p = 0.0650):
the median amount of time people took to solve the problems
tended to increase with treewidth (ρ = 0.3426) but this effect
was not statistically significant (p= 0.1393), and when we re-
stricted this analysis to correct solutions the correlation was
ρ = 0.3825 (p = 0.1297). Perceived difficulty also tended to
increase with treewidth (ρ = 0.37) but this correlation was
not statistically significant (p = 0.1062). Our participants
were highly motivated to find the optimal solution (average
rating 7.91± 0.06 out of 9). Thus it appears unlikely that
their motivation was a bottleneck to their performance. Fur-
thermore, motivation appeared to be unaffected by treewidth
(ρ =−0.23, p = 0.34). Thus the observed differences in per-
formance appear to result from the inherent difficulties of the
means selection problems posed by different goal systems.

Of the additional predictors evaluated, we found that graph
diameter, average shortest path, and average graph eccentric-
ity all were significantly positively correlated with the fre-
quency of optimal solutions identified by our participants
(graph diameter: ρ = 0.5691, p = 0.0088, avg. shortest path:
ρ = 0.6516, p = 0.0019, avg. eccentricty: ρ = 0.6265, p =
0.0031). In addition, the spectral expansion (measured as
d−λ2) and the size of the graph vertex and edge expansions
showed significant negative correlations with the frequency
of optimal solutions (vertex expansion: ρ = −0.5836, p =
0.0069, edge expansion: ρ = −0.4552, p = 0.0437, spectral
expansion: ρ = −0.6280, p = 0.0030). We also found that
the average shortest path, average graph eccentricity, spectral
expansion, and the size of the graph vertex expansions were
significantly correlated with the average participant solution
qualities (avg. shortest path: ρ= 0.4505, p= 0.0462, avg. ec-
centricity: ρ = 0.4316, p = 0.0574, spectral expansion: ρ =
−0.4496, p = 0.0467, vertex expansion: ρ = −0.4636, p =
0.0395). Finally, only the cardinality of the graph edge ex-
pansions exhibited a significant correlation with the median
response times on the SC task (ρ = 0.4538, p = 0.0445).

Experiment 2: Human performance on Maximum
Coverage
Methods Experiment 2 was identical to Experiment 1 ex-
cept for the task: participants were now instructed to achieve
as many goals as possible subject to the constraint that the
person’s limited time does not permit them to complete more
than five activities. The 20 graphs and financial incentives
were the same as in Experiment 1. The interface of Exper-
iment 1 was modified to prevent participants from selecting
more than five activities at a time. When a participant at-
tempted to add a sixth activity they were told they would first
have to remove one or more of the activities they had already
selected. The cover story and survey were modified slightly
to match the change in the task. We recruited 545 participants
on Amazon Mechanical Turk. Participants were paid $1.25



and could earn a bonus of up to $2. The consent form speci-
fied that participants must not have participated in the previ-
ous version of this experiment. We excluded 23 participants
(4.2%) because they had selected fewer than five means.

Results The frequency with which people found the op-
timal solution decreased significantly with treewidth (ρ =
−0.4828, p = 0.0311). We found that treewidth alone
explained 20.41% of the variance in the frequency with
which people found the optimal solution across the 20
graphs (F(1,18) = 4.62, p = 0.0455). We found that
treewidth explained 25.25% of the variance in solution qual-
ity (F(1,18) = 6.08, p = 0.0240) which significantly deterio-
rated as treewidth increased (ρ =−0.4972, p = 0.0257). The
median amount of time people took to solve the problems did
not increase significantly with treewidth (ρ = 0.25, p = 0.28)
and treewidth explained only 0.6% of our participants’ me-
dian response times (F(1,18) = 0.10, p = 0.76). When we
restricted the analysis to the time taken by optimal solu-
tions, the relationship was still not statistically significant
(ρ = 0.2994, p = 0.1998; F(1,18) = 0.10, p = 0.76). Fi-
nally, treewidth explained only 8.8% of the variance in the
perceived problem difficulty across the 20 graphs (F(1,18) =
1.74, p = 0.20), and the correlation between treewidth and
perceived difficulty was not statistically significant (ρ =
0.26, p = 0.26). Our participants were highly motivated to
find the optimal solution (average rating 8.11± 0.06 out of
9). Thus it appears unlikely that their motivation was a bottle-
neck to their performance. Furthermore, motivation appeared
to be unaffected by treewidth (ρ=−0.03, p= 0.91). Thus the
observed differences in performance appear to result from the
inherent difficulties of the means selection problems posed by
different goal systems.

In addition, we found that both the size of the graph
edge expansion and the graph spectral expansion (measured
again as d−λ2) were significantly negatively correlated with
the frequency of optimal solutions (edge expansion: ρ =
−0.4802, p = 0.0321, spectral expansion: ρ =−0.4782, p =
0.0330), while the average shortest path and average graph
eccentricity showed a significant positive relationship (avg
shortest path: ρ = 0.4912, p = 0.0279, avg. eccentricity:
ρ = 0.4391, p = 0.0528). In contrast, only the size of the
graph vertex and edge expansions showed a significant cor-
relation with the average solution quality (vertex expansion:
ρ=−0.4431, p= 0.0504, edge expansion: ρ=−0.4832, p=
0.0309), suggesting that in general graph treewidth and com-
binatorial expansions may be more robust predictors of hu-
man performance on the MC problem. None of the metrics
surveyed were significantly correlated with median partici-
pant response times.

Experiment 3: A more realistic Set-Cover task
While Experiments 1 and 2 capture some of the computa-
tional challenges of goal achievement, the tasks were rela-
tively abstract. Experiment 3 addresses this limitation by as-

signing semantic labels to the 24 goals. These labels were
common new-years resolutions such as “get in shape” and
“earn more money”. Similar semantic goals were used in pre-
vious research in goal-system theory (Zhang et al., 2007). We
also used a different interface to avoid possible visualization
effects that arise from graph drawings in the first two experi-
ments.

Methods We recruited 600 participants on Amazon Me-
chanical Turk. Participants were paid $0.38 for about 5min
of work plus a performance-dependent bonus of $0.50 if they
found an optimal solution. Each participant was randomly
assigned to one of the twenty graph structures used in Exper-
iments 1 and 2. For each graph, the order in which the means
were listed and the order in which the goals were listed was
randomized between participants. The participants’ task was
to achieve all goals with as few means as possible. The graph-
ical interface of the task was changed to reduce visual clutter.
Instead of drawing edges between mean and goals, the goals
achieved by each mean were listed next to it (see Figure 3).
The cover story was similar to the one used in Experiment
1 but the training trial used the new task interface shown in
Figure 3. The consent form required that participants had
not participated in any of our previous goal management ex-
periments. All participants were included in the subsequent
analyses.

Results On a scale from 1 to 9 participants rated their mo-
tivation to find a solution that achieves all goals with the
minimal number of means as 7.38, their motivation to fin-
ish the task as quickly as possible and move on as 4.35, and
the difficulty of the task as 5.67. We found that treewidth,
the magnitude of the graph spectral expansion, cardinalities
of the graph edge and vertex expansions, average eccentric-
ity, average shortest path, and graph diameter were all sig-
nificantly correlated with the frequency with which human
participants identified the optimal solution (treewidth: ρ =
−0.756, p = 0.0001; avg. eccentricity: ρ = 0.583, p = 0.007;
avg. shortest path: ρ= 0.651, p= 0.002; graph diameter: ρ=
0.525, p= 0.017; spectral expansion: ρ :−0.708, p= 0.0005;
edge expansion: ρ = −0.7, p = 0.0006; vertex expansion:
ρ = −0.7303, p = 0.0003). Similarly, treewidth, the mag-
nitude of the graph spectral expansion, cardinalities of the
graph edge and vertex expansions, average eccentricity, and
average shortest path were all significantly correlated with
the average solution quality of human responses (treewidth:
ρ = −0.60, p = 0.005; avg. eccentricity: ρ = 0.4872, p =
0.0293; avg. shortest path: ρ = 0.5243, p = 0.0176; spectral
expansion: ρ = −0.5308, p = 0.0160; edge expansion: ρ =
−0.5670, p = 0.0091; vertex expansion: ρ = −0.6047, p =
0.0047). None of the features were significantly correlated
with median participant response times.



Figure 3: Graphical Interface of Experiment 3.

Conclusions
We demonstrated that people’s performance in Maximum
Coverage and Set Cover can be reliably predicted from graph
theoretic measures for the tree-likeness of the goal system,
such as treewidth and expansion. Our data support the con-
clusion that tree-like goal systems are easier for people to
handle. More generally, our results imply that parameters
that are used in theoretical computer science to differentiate
between hard and easy instances can be leveraged to predict
human performance in NP-hard tasks.

One limitation of our experiments is that their complete,
explicit representation of goals, means, and the connections
between them is a simplifying idealization. In real life, people
are often unaware of some of their goals and means, as well
as some of the connections between goals and means. For
example, maintaining goal systems of moderate size in work-
ing memory when solving means selection problems is likely
to be nontrivial. Hence real-life representations of goals are
likely to make means selection problems as those discussed
here even more challenging to solve. Although such memory
problems are not directly related to how treelike the goal sys-
tem is, they are nevertheless consistent with our hypothesis
that the cognitive difficulty of means selection is an impor-
tant limiting factor for people’s ability to achieve their goals.

In conclusion, our results suggest that even highly moti-
vated people will likely fall short of achieving all their goals
when they have to consider many goals and means in paral-
lel. Our analyses provide a novel approach to predicting how
likely people are to succeed in these settings, with implica-
tions for the design of goal systems that make it easier for
people to meet their objectives.
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