
RESEARCH ARTICLE

Humans decompose tasks by trading off

utility and computational cost

Carlos G. CorreaID
1*, Mark K. Ho2,3, Frederick Callaway2, Nathaniel D. Daw1,2, Thomas

L. Griffiths2,3

1 Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey, United States of America,

2 Department of Psychology, Princeton University, Princeton, New Jersey, United States of America,

3 Department of Computer Science, Princeton University, Princeton, New Jersey, United States of America

* cgcorrea@princeton.edu

Abstract

Human behavior emerges from planning over elaborate decompositions of tasks into goals,

subgoals, and low-level actions. How are these decompositions created and used? Here, we

propose and evaluate a normative framework for task decomposition based on the simple

idea that people decompose tasks to reduce the overall cost of planning while maintaining

task performance. Analyzing 11,117 distinct graph-structured planning tasks, we find that our

framework justifies several existing heuristics for task decomposition and makes predictions

that can be distinguished from two alternative normative accounts. We report a behavioral

study of task decomposition (N = 806) that uses 30 randomly sampled graphs, a larger and

more diverse set than that of any previous behavioral study on this topic. We find that human

responses are more consistent with our framework for task decomposition than alternative

normative accounts and are most consistent with a heuristic—betweenness centrality—that

is justified by our approach. Taken together, our results suggest the computational cost of

planning is a key principle guiding the intelligent structuring of goal-directed behavior.

Author summary

People routinely solve complex tasks by solving simpler subtasks—that is, they use a task

decomposition. For example, to accomplish the task of cooking dinner, you might start by

choosing a recipe—and in order to choose a recipe, you might start by opening a cook-

book. But how do people identify task decompositions? A longstanding challenge for cog-

nitive science has been to describe, explain, and predict human task decomposition

strategies in terms of more fundamental computational principles. To address this chal-

lenge, we propose a model that formalizes how specific task decomposition strategies

reflect rational trade-offs between the value of a solution and the cost of planning. Our

account allows us to rationalize previously identified heuristic strategies, understand exist-

ing normative proposals within a unified theoretical framework, and explain human

responses in a large-scale experiment.
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Introduction

Human thought and action are hierarchically structured: We rarely tackle everyday problems

in their entirety and instead routinely decompose problems into more manageable subprob-

lems. For example, you might break down the high-level goal of “cook dinner” into a series of

intermediate subgoals such as “choose a recipe,” “get the ingredients from the store,” and “pre-

pare food according to the recipe.” Task decomposition—identifying subproblems and reason-

ing about them—lies at the heart of human general intelligence. It allows people to tractably

solve problems that occur at many different timescales, ranging from everyday tasks such as

cooking a meal to more ambitious projects such as completing a Ph.D.

At least two questions arise in the context of human task decomposition. First, how do peo-

ple use decompositions? Second, how do people decompose tasks to begin with? Existing

research provides answers to these two questions, but does so largely by considering each one

in isolation. For example, we know that, when given hierarchical structure, people readily use

it to bootstrap learning [1, 2] and to organize planning [3, 4]. Separately, studies show how

hierarchical structure emerges from graph-theoretic properties of tasks (e.g., “bottleneck”

states) [5], latent causal structure in the environment [6, 7], or efficient encoding of optimal

behaviors [8]. These accounts provide insights into the function and mechanisms of hierar-

chically structured, action-guiding representations, but, again, they largely consider the use
and the creation of such representations separately.

In this paper we bridge this gap, developing an integrated account of how using a decompo-

sition interacts with the task decomposition process itself. Our proposal is organized around a

deceptively simple idea: Task decompositions are learned to facilitate efficient planning

(Fig 1). Based on this intuition, we develop a normative framework that specifies how an ideal-

ized agent should choose a hierarchical structure for a domain, given the need to balance task

performance with the costs of planning. We quantify planning costs straightforwardly as the

run-time of a planning algorithm, which means that our framework predicts that task decom-

position is the result of interactions between task structure and the algorithm used to plan.

Because we quantitatively examine how cognitive costs are balanced with task performance in

Fig 1. Our framework for task decomposition accounts for the computational cost of planning towards subgoals—task decompositions should

jointly optimize task performance and the computational cost of search. We formalize this in three nested layers of optimization: Action-Level

Planning solves for a plan to accomplish a subgoal, which has a computational cost. Subgoal-Level Planning constructs subgoal sequences that

maximize reward and minimize computational cost. Task Decomposition selects subgoals based on their value in Subgoal-Level Planning. This figure

was adapted from a figure published in [12] (License: CC BY 4.0).

https://doi.org/10.1371/journal.pcbi.1011087.g001
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the style of a resource-rational analysis [9–11], we refer to our framework as resource-rational
task decomposition.

Although much prior research is motivated by the idea that hierarchical task

decomposition has the potential to reduce planning costs [8, 13–19], our framework differs

from some prominent accounts because we directly incorporate planning costs into the criteria

used to choose a task decomposition. By contrast, existing normative accounts typically formu-

late task decomposition as structure inference with the goal of inferring the hierarchical struc-

ture of the environment [6, 7] or sequential behavior [8, 20], which only indirectly connect to

the computations involved in planning or their efficiency. Instead, our formal framework

extends research that performs task decomposition based on algorithm-specific planning

costs—some algorithms previously studied are value iteration [19], random walk search [21],

and random sampling of optimal behavior [8]. Generalizing beyond a fixed algorithm, our

framework explicitly considers how planning efficiency shapes hierarchical representations,

which we use to demonstrate how resource-rational task decompositions change with varied

search algorithms. Additionally, normative accounts often have limited ability to explain

human behavior without the specification of algorithmic details necessary to be efficient or

psychologically plausible. Because our account focuses on efficient use of planning, it is even

more critical to spell out these details. We conduct an initial exploration of these issues by

examining the capacity of existing heuristics to serve as efficient algorithmic approximations

to our normative account.

Using this framework, we conduct a systematic comparison of resource-rational task

decomposition with four alternative formal models previously reported in the literature [7,

8, 16, 22] using 11,117 different graph-structured planning tasks. One key insight from this

analysis is that our framework can justify several previously proposed heuristics for task

decomposition based on graph-theoretic properties (e.g., those that capture the idea of “bot-

tleneck states” [16, 22]). Our framework thus provides a normative justification for these

heuristics within a broader framework of resource-rational decision-making. Critically,

these connections between our framework and heuristics also demonstrate the existence

of efficient approximations to our formal framework. We also show that our framework

produces predictions that are distinguishable from previous normative models of task

decomposition.

To empirically evaluate this framework, we report results from a pre-registered experiment

(N = 806) that uses 30 distinct graph-structured tasks sampled from 1,676 graphs, the subset of

the 11,117 graphs that are compatible with our experimental design. To our knowledge, this

set of graph-structured tasks is larger and more diverse than that of any other experiment pre-

viously reported in the literature on how people decompose tasks. As such, it enables us to

draw more general conclusions about task decomposition than previous studies. Across this

large stimulus set, we find that our framework provides the best explanation for participant

responses among normative accounts, which supports the thesis that people’s hierarchical

decomposition of tasks reflects a rational allocation of limited computational resources in ser-

vice of effective planning and acting.

Results

A formal framework for task decomposition

How should an agent decompose a task? When purely optimizing behavior on a task (e.g., tak-

ing a shortest path in a graph), decomposing a task is only worthwhile in some larger context,

such as making learning or computation more efficient. The computational efficiency of plan-

ning is a critical concern—as one attempts to plan into an increasingly distant future, over a
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larger state space, or under conditions of greater uncertainty, computation quickly becomes

intractable, a challenge termed the curse of dimensionality [23]. In some cases, task decomposi-

tion can ameliorate this curse by splitting a task into more manageable subtasks. The difficulty

comes in choosing among task decompositions since a bad choice can make the task at hand

even more difficult [1]. In this work, we formulate a framework for task decomposition where

planning costs directly factor into people’s choices—quite literally, our framework decomposes

tasks into subtasks based on the run-time and utility of the plan that results from planning

algorithms that solve the subtasks.

To demonstrate the role planning costs play in how people break down tasks, consider the

following scenario: After leaving work for the day, you plan to go to the post office to send a

letter. Since you rarely navigate directly from your workplace to the post office, you’ll have to

do some planning. You could determine some efficient way to get from work to the post office,

but an alternative is to first get somewhere that is easy to navigate to and also along the way.

Maybe the café you sometimes stop by before work—If it’s easier to plan a route from the café

to the post office, then you’ve simplified your problem by breaking it down into subtasks. This

example suggests that the way people break tasks down (e.g., navigating to the café first) is a

trade-off between efficiency (e.g., taking a quick route) and the cost of planning with that task

decomposition (e.g., planning via the café is simpler).

We formalize our framework using three nested levels of planning and learning (Fig 1). At

the lowest level is action-level planning, where concrete actions are chosen that solve a subtask

(e.g., what direction do I walk to get to the café). The next level is subtask-level planning, where

a sequence of subtasks is chosen (e.g., first navigating to the café and then to the post office).

Finally, the highest level is task decomposition, where a set of subtasks that break up the envi-

ronment are selected (e.g., setting the café as a possible subgoal across multiple tasks).

A central feature of our framework is the interdependence of choices made at each level:

The optimal task decomposition depends on the computations occurring in the subtask-level

planner, which depends on the computations that occur in the action-level planner. In particu-

lar, we are interested in how different decompositions can be evaluated as better or worse

based on the cost of computing good action-level plans for a series of subtasks chosen by the

subtask-level planner. In the next few sections, we discuss these different levels and how they

relate to one another.

Action-level planning. Action-level planning computes the optimal actions that one

should take to reach a subgoal. Here, we focus on deterministic, shortest-path problems. For-

mally, action-level planning occurs over a task ðS;T; s0; zÞ defined by a set of states, S; an ini-

tial state, s0 2 S; a subgoal state, z 2 S; and valid transitions between states, T � S � S, so

that s can transition to s0 when (s, s0) 2 T. The neighbors of s are the states s0 that it can transi-

tion to, N ðsÞ ¼ fs0 j ðs; s0Þ 2 Tg. We refer to the structure of a task ðS;TÞ as the task environ-

ment or the task graph.

Given an initial state, s0, and a subgoal, z, action-level planning seeks to find a sequence of

states that begins at s0 and ends at z, which we denote as a plan π = hs0, s1, . . ., zi. An action-

level plan is computed by a planning algorithm, which is a stochastic function that takes in the

initial state, valid transitions, and subgoal state and takes a certain amount of time to run, t.
Thus, we can think of a planning algorithm Alg as inducing a distribution over plans and

run-times given a start and end state, PAlg (π, t j s, z). In this work, we considered four differ-

ent planning algorithms [24, 25], which we summarize below.

We start with a simple algorithm that hardly seems like one—the random walk (RW) algo-
rithm. The algorithm starts at the initial state s0 and repeatedly transitions to a uniformly sam-

pled neighbor of the current state until it reaches the subgoal state z. Because it does not keep
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track of previously visited states to inform state transitions, this algorithm can revisit states

many times and can result in both path lengths and run-times that are unbounded.

Depth-first search (DFS) augments RW by keeping track of the states along its current

plan—this helps minimize repeated state visits. Because DFS does this, it will sometimes reach

a dead-end where it is unable to extend the current plan, so it backtracks to an earlier state to

consider an alternative choice among the other neighbors. DFS ensures that resulting plans

avoid revisiting states, but still might be suboptimal and repeatedly consider the same states

during the search process.

Iterative Deepening Depth-first Search (IDDFS; [26]) consists of depth-limited DFS run to

increasing depths until the goal is found; while based on DFS, IDDFS returns optimal paths

because it systematically increases the depth limit. IDDFS is conceptually similar to “progres-

sive deepening,” a search strategy proposed by de Groot in seminal studies of chess players [27,

28].

Breadth-first search (BFS) ensures optimal paths by systematically exploring states in order

of increasing distance from the start state s0. The algorithm does so by considering all neigh-

bors of the start state (which are one step away), then all of their unvisited neighbors (which

are two steps away), and so on, successively repeating this process until the goal is encoun-

tered. Through this systematic process, BFS is able to guarantee optimal solutions and ensure

states will only ever be considered once, making the algorithm run-time linear in the number

of states.

While only noted in passing above, each of these algorithms makes subtle trade-offs

between run-times, memory usage, and optimality. Focusing on BFS and IDDFS, the two opti-

mal algorithms, we briefly examine these trade-offs. BFS visits states at most once, but requires

remembering every previously visited state; by contrast, IDDFS will revisit states many times

(i.e. greater run-time compared to BFS) but only has to track the current candidate plan (i.e.

smaller memory use compared to BFS). In effect, IDDFS increases its run-time to avoid the

cost of greater memory use. We briefly return to this point below when examining algorithm

run-times. Having introduced various search algorithms, we now turn to the role algorithms

play in subtask-level planning, where algorithm plans and run-times jointly influence the

choice of hierarchical plan.

Subtask-level planning. Here, we assume a simplified model of hierarchical planning that

involves only a single level above action-level planning, which we call subtask-level planning.

Formally, subtask-level planning occurs over a set of subgoals, Z � S. Given a set of subgoals,

subtask-level planning consists of choosing the best sequence of subgoals that accomplish a

larger aim of reaching a goal state g 2 S. Each subgoal is then provided to the action-level

planner, and the resulting action-level plans are combined into a complete plan to reach the

goal state.

The objective of the subtask-level planner is to identify the sequence of subgoals that brings

the agent to the goal state while maximizing task rewards and minimizing computational

costs. Here, we focus on a domain in which the task is simply to reach the goal state in as few

steps as possible. Formally, the task reward associated with executing a plan is then simply the

negative number of states in that plan: R(π) = −|π|. The computational cost that we consider is

cumulative expected run-time. Thus, we define a subgoal-level reward function when planning

to a single subgoal z from a state s using a planning algorithm that induces a distribution over

plans and run-times PAlg (π, t j s, z) as:

R
Alg
ðs; zÞ ¼

X

p;t

P
Alg
ðp; t j s; zÞ½RðpÞ � t�: ð1Þ
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This formulation is analogous to other resource-rational models that jointly optimize task

rewards and run-time [29, 30] but applied to the problem of task decomposition.

Eq 1 defines the rewards for planning towards a single subgoal, but subtask-planning

requires chaining plans together to form a larger plan that efficiently solves the task. This

sequential optimization problem can be compactly expressed as a set of recursively defined

Bellman equations [23]. Formally, given a task goal g, a set of subgoals Z, and an algorithm

Alg, the optimal subtask-level planning utility for all non-goal states s is then:

Vg
ZðsÞ ¼ max

z2Z[fgg
fR

Alg
ðs; zÞ þ Vg

ZðzÞg ð2Þ

To ensure this recursive equation terminates, the utility of the goal state g is Vg
ZðgÞ ¼ 0. The

fixed point of Eq 2 can be used to identify the optimal subtask-level policy [31]. We permit the

selection of the goal g as a subgoal to ensure that it is possible for the subtask-level planner to

solve the task.

Task decomposition. Having defined action-level planning and subtask-level planning

over subgoals, we can now turn to our original motivating question: How should people

decompose tasks? In this context, this reduces to the problem of selecting the best set of sub-

goals Z to plan over. Importantly, we assume that people rely on a common set of subgoals for

all the different possible tasks that they might have to accomplish in a given environment.

Thus, the value of a task decomposition, Z, is given by the value of the subtask-level plans aver-

aged over the task distribution of an environment, p(s0, g). That is,

VðZÞ ¼
X

s0 ;g

pðs0; gÞV
g
Zðs0Þ: ð3Þ

The optimal set of subgoals Z∗
for planning maximize this value, so Z∗

¼ argmaxZVðZÞ.
To summarize, the value of a task decomposition (Eq 3) depends on how a subtask-level

planner plans over the decomposed task (Eq 2), which is shaped by the resulting plans and

run-time of action-level planning (Eq 1). This model thus captures how several key factors

shape task decomposition: the structure of the environment, the distribution of tasks given by

an environment, and the algorithm used to plan at the action level.

To provide an intuition for our framework, we explore its predictions in a simple task in

Fig 2. The environment is a grid with a single task that requires navigating from the green state

to the orange state. Each column in the figure corresponds to a different search algorithm,

showing how search costs change without subgoals (Top) and with a subgoal (Bottom; subgoal

in blue). While the task seems like it would be extraordinarily trivial to a person—like walking

from one side of a room to another—a critical attribute of these search algorithms is they have

an entirely unstructured representation of the environment, giving them only very local visibil-

ity at a state. A more analogous task for a person might be navigating in a place with low visi-

bility, such as a forest or a city in a blackout. Even in this simple task, some search algorithms

(BFS and IDDFS) can be used more efficiently when the problem is split at its midpoint (Fig

2d). The random walk is a notable counterexample, where using a subgoal results in less effi-

cient search. This result may initially seem puzzling, but occurs because a random walk is likely

to get to the goal without passing through the subgoal. The gap in run-time between IDDFS

and BFS might make IDDFS seem inefficient—however, as noted in the algorithm descriptions

above, IDDFS makes a trade-off of increased run-time in order to decrease memory usage.

While outside the scope of the current manuscript, our formulation can be extended to incor-

porate other resource costs like memory usage in order to study how they influence task

decomposition. This example clearly demonstrates a few characteristics of our framework—

that the choice of hierarchy critically depends on the algorithm used for search, and that
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hierarchy can have a normative benefit (since it reduces computational costs) even in the

absence of learning or generalization.

The formal presentation of our framework considers subgoal choice with intentionally

restricted algorithms: brute-force search methods that exclude problem-specific heuristics to

accelerate planning. However, the examples in this section (navigating to the post office via the

café, navigating in a place with low visibility) likely rely on algorithms that incorporate heuris-

tics, particularly related to spatial navigation. While outside the scope of this manuscript, our

framework can flexibly incorporate any search algorithm that can define an algorithmic cost,

including those that make use of heuristics. For example, in a previous theoretical study, we

applied an early version of our framework to task decomposition in the Tower of Hanoi by

using A* Search [25] with an edit distance heuristic [12]. Our framework also considers a con-

strained set of task decompositions that consist of individual subgoals. In comparison, the

influential options framework [15] defines a more general set of hierarchical task decomposi-

tions, in which, for instance, subtasks can be defined by the subgoal of reaching any one out of

Fig 2. Choosing task decompositions that make planning more efficient. (a-c) State-specific search costs of the algorithms. The depicted task

requires navigating on a grid from the start state (green) to the goal state (orange) with the fewest steps. Each column corresponds to a different

algorithm and demonstrates two scenarios—Top: Search cost without subgoals, Bottom: Search cost when using the path midpoint as a subgoal (blue).

We define the search cost as the number of iterations required for the search algorithm to find a solution. Larger states were considered more often

during the search algorithm, resulting in greater search costs. (d) Plot of search cost for Iterative-Deepening Depth-First Search (IDDFS), Breadth-First

Search (BFS), and a Random Walk (RW) in the task depicted in (a-c), with and without subgoals. Use of subgoals results in decreased search cost for

BFS and IDDFS, but not for RW.

https://doi.org/10.1371/journal.pcbi.1011087.g002
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a set of states and subtask completion can be non-deterministic. However, finding such sub-

tasks remains a challenging problem in machine learning, so by focusing on the simpler prob-

lem of selecting a single subgoal we are able to make a significant amount of progress in

understanding a key component of how humans plan. While not yet fully explored, our for-

malism can be extended to encompass broader types of hierarchy (and also varied search algo-

rithms). For instance, another theoretical study adapted our framework to support more

varied kinds of hierarchical structure by incorporating abstract spatial subgoals in a block con-

struction task [32].

Comparing accounts of task decomposition

A number of existing theories have been proposed for how people decompose tasks. These

accounts can be divided into two broad categories: heuristics for decomposition based on

graph-theoretic properties of tasks and normative accounts based on the functional role of a

decomposition. Our account is normative, so comparison with alternative normative accounts

highlights the unique functional consequences of our framework. By comparing our frame-

work to heuristics, we can characterize their predictions relative to normative theories as well

as rationalize their use as heuristics for task decomposition. All models are listed and briefly

described in Table 1.

To begin with, one way to compare accounts is to relate them formally. We do so by relating

resource-rational task decomposition with a random walk (RRTD-RW) to QCut [16, 33] and

Degree Centrality in S1 Appendix. We prove a relationship between RRTD-RW and QCut

that connects the two methods through spectral analysis and examine how the relationship

between RRTD-RW and Degree Centrality varies based on spectral graph properties.

Another method we can use to compare theories is to compute their subgoal predictions on

a fixed set of environments and compare them—qualitatively or quantitatively. This approach

has been used in existing studies, but nearly always through qualitative comparison using a

small number of hand-picked environments. For example, several published models perform

qualitative comparisons to the graphs studied in Solway et al. (2014) [8]. These environments

contain states that most models agree should be subgoals [7, 12, 21, 34]—these states are

Table 1. Descriptions of Normative Algorithms and Heuristics.

Normative Algorithm Description

RRTD-IDDFS Resource-Rational Task Decomposition (RRTD) using Iterative-Deepening Depth-First

Search (IDDFS) as a search algorithm

RRTD-BFS RRTD using Breadth-First Search (BFS) as a search algorithm

RRTD-RW RRTD using a Random Walk (RW) as a search algorithm

Solway et al. (2014) [8] Identifies partitions of the task into subtasks that minimize the description length of

optimal solutions, given that subtask solutions are reused across tasks.

Tomov et al. (2020) [7] Performs inference over partitions of the task graph into regions based on a prior over

hierarchical graphs. Incorporates a preference for tasks to start and end in the same

region, and for states in the same region to have similar rewards.

Heuristic Description

QCut [16, 33] Partitions the task graph through spectral decomposition of the graph.

Degree Centrality Chooses subgoals based on Degree Centrality, which isthe number of transitions into or

out of a state s. For tasks where all state transitions are reversible, Degree Centrality is the

number of neighbors jN ðsÞj.
Betweenness Centrality

[22]

Chooses subgoals based on Betweenness Centrality, which is how often a state s appears

on shortest paths, averaged over all possible start and goal states. Takes into account cases

with multiple shortest paths.

https://doi.org/10.1371/journal.pcbi.1011087.t001
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typically one or few that connect otherwise disconnected parts of the environment, making

them “bottleneck states.” Environments with these kinds of bottleneck states robustly elicit

hierarchically-structured behavior in experiments, but make it difficult to distinguish among

theoretical accounts because they are in strong agreement (see top row of Fig 3).

To perform a large-scale and unbiased comparison of these algorithms, we chose from a

structurally rich set of environments: the set of all possible 11,117 simple, undirected, eight-

node, connected graphs. We compare subgoal choice for several heuristic theories, several var-

iants of our framework, and variants of the normative accounts proposed by Solway et al.

(2014) [8] and Tomov et al. (2020) [7] in Fig 4 (the theories are described in Table 1). Each cell

of Fig 4 is the correlation between the subgoal predictions of a pair of theories, averaged across

all environments. For simplicity, we assume the task distribution is a uniform distribution

over pairs of distinct start and goal states. For the RRTD-based models, the model prediction

for a state is the corresponding value of task decomposition when the state is the only possible

subgoal.

We find a few notable clusters of theories—one demonstrates that RRTD-IDDFS is well-

correlated with subgoal sampling based on Betweenness Centrality—this suggests the potential

of a formal connection between the two algorithms, though the authors are not aware of an

existing proof connecting them. A second prominent cluster shows RRTD-RW and Degree

Fig 3. Comparing predictions of the (a) RRTD-IDDFS, (b) Betweenness Centrality, (c) Solway et al. (2014) [8], and (d) Tomov et al. (2020) [7]

models. State color and size is proportional to model prediction when using the state as a subgoal. (Top) The 10-node, regular graph from Solway et al.

(2014) [8]. (Middle, Bottom) Two eight-node graphs selected from the 11,117 included in our analysis.

https://doi.org/10.1371/journal.pcbi.1011087.g003

PLOS COMPUTATIONAL BIOLOGY Humans decompose tasks by trading off utility and computational cost

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011087 June 1, 2023 9 / 31

https://doi.org/10.1371/journal.pcbi.1011087.g003
https://doi.org/10.1371/journal.pcbi.1011087


Centrality are highly correlated and that both are moderately correlated with QCut, consistent

with our formal analysis. This relationship between RRTD-RW and Degree Centrality is quali-

tatively consistent with a published result that relates Degree Centrality to the task decomposi-

tion that minimizes a search cost related to RW [21]. The remaining algorithms—RRTD-BFS,

Solway et al. (2014) [8], and Tomov et al. (2020) [7]—are singleton clusters, suggesting qualita-

tive differences from the other algorithms.

To better understand these large-scale quantitative patterns, we qualitatively examine some

of the normative algorithms and one heuristic. We focus on the subgoal predictions for three

graphs, shown in Fig 3. In the top row is a 10-node, regular graph that has been previously

studied [7, 8]. In the middle row is a similar graph with critical differences: the graph is asym-

metric about the graph bottleneck, and the bottleneck of the graph now corresponds to a single

state instead of two connected states. In the bottom row is a graph notably distinct from graphs

Fig 4. Correlation matrix comparing model predictions. For each graph, correlations between two models are computed on the per-state subgoal

values, then averaged across the 11,117 simple, connected, undirected, eight-node graphs. We discard correlations when either of the two models

predicts a uniform distribution over subgoals because the correlation is not defined in those instances. References: Solway et al. (2014) [8], Tomov et al.

(2020) [7].

https://doi.org/10.1371/journal.pcbi.1011087.g004
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typically studied because it lacks an obvious hierarchical structure. All algorithms make similar

predictions for the graph in the top row—an example of the difficulty in using typically studied

graphs to distinguish among algorithms. Now, we look at the algorithms in more detail.

We first examine RRTD-IDDFS (Fig fig:graph-examples-smalla) and Betweenness Central-

ity (Fig 3b), noting their strong agreement—this is consistent with the large-scale correlation

analysis in the previous section. These two algorithms prefer the same subgoals in both graphs.

At middle, they prefer the bottleneck state. At bottom, they prefer states that are close to many

states—in particular, the two most-preferred states can reach any other state in at most two

steps.

Now, we turn to the other normative accounts: Solway et al. (2014) [8] (Fig 3c) and Tomov

et al. (2020) [7] (Fig 3d). Both rely on partition-based representations of hierarchical structure

where states are partitioned into different groups. Mapping from partitions onto subgoal

choices requires a step of translation. In particular, when considering a path that crosses from

one group into another there are two natural subgoals that correspond to the boundary

between the groups: either the last state in the first group or the first state in the second group.

In the context of a task distribution, there are many possible ways to map partitions onto sub-

goal choices, without clear consensus between the two partition-based accounts that we con-

sider. While these analysis choices have little impact on symmetric graphs (e.g., top row of Fig

3), they are important for asymmetric graphs like the one in the middle row, which has a bot-

tleneck state instead of a bottleneck edge. For simplicity, our implementation of Solway et al.

(2014) [8] uses the optimal hierarchy, placing uniform weight over all states at the boundaries

between groups of the partition, as can be seen in Fig 3c.

The algorithm from Tomov et al. (2020) [7] introduces other subtleties. It poses task

decomposition as inference of hierarchical structure, with two main criteria: 1) that there are

neither too few nor too many groups (accomplished via a Chinese Restaurant Process) and 2)

that connections within groups are dense while connections between groups are sparse. The

latter leads to issues when connection counts do not reflect hierarchical structure, as shown in

Fig 3d. At middle, the algorithm prefers partitions that minimize the number of cross-group

connections, even when the bottleneck state is not on the boundary between groups. At bot-

tom, the lack of hierarchical structure that can be detected by edge counts leads the algorithm

to make diffuse predictions among many possible subgoals.

To close this section, we briefly discuss how our resource-rational account might be plausi-

bly implemented. We outline two broad approaches: people might directly search for task

decompositions that maximize Eq 3, or they might attempt to approximate the objective

through tractable heuristics. First, finding the optimal task decomposition in a brute-force

manner is more computationally expensive than simply solving the task. One alternative is to

learn the value of task decompositions, relying on the shared structure between tasks and sub-

goals to ensure learning efficiency—for example, in the domain of strategy selection, one study

uses shared structure to ensure efficient estimation which is incorporated by decision-theoretic

methods to deal with the uncertainty in these estimates [35]. The second approach might

approximately optimize the objective by using a more tractable heuristic—the results in this

section suggest two examples, where Betweenness Centrality can approximate RRTD-IDDFS

and Degree Centrality can approximate RRTD-RW. While Degree Centrality is straightfor-

ward to compute, Betweenness Centrality is still computationally costly because it requires

finding optimal paths for all tasks. Importantly, Betweenness Centrality has a probabilistic for-

mulation, so it can be estimated with analytic error bounds [36]. In this formulation, states

that are more central appear more often in paths sampled from an appropriate distribution

(i.e. sample a task, then sample an optimal path uniformly at random). This suggests a trivial

memory-based strategy that tracks the occupancy of states visited along paths—when the
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paths are appropriately sampled, the expected occupancy should be related to Betweenness

Centrality. Another approach is to approximate Betweenness Centrality, like in one planning-

specific method that analyzes small regions of the environment separately, then pools this

information to choose subgoals [22].

The large-scale comparison of subgoal predictions in Fig 4 demonstrates connections

between existing heuristics and our framework for subgoal choice based on search efficiency.

These connections suggest a rationale for the efficacy of these heuristics, which may stand in as

tractable approximations of our resource-rational framework. Our qualitative comparison in

Fig 3 highlights some of the differing predictions among the accounts. But how do these differ-

ent accounts relate to how people decompose tasks? We turn to this question in the next

section.

An empirical test of the framework

To measure people’s task decompositions, we ask research participants to report their subgoal

use after experience navigating in an environment. A previously published experiment by Sol-

way et al. (2014) [8] tested task decomposition using three graph navigation tasks. We devel-

oped a similar paradigm but used a set of 30 environments sampled randomly from 1,676

graphs, a subset of the 11,117 used in our large-scale model comparison above. The criteria for

this subset were selected to ensure compatibility with the experiment and are detailed in the

methods. This set of environments is larger and more diverse than those used in previous stud-

ies [8, 37] which allows us to draw broader and more generalizable inferences about the task

decomposition process.

Inspired by prior studies [8], we conducted an experiment with two phases: participants

were first familiarized with an environment by performing a series of navigation trials (Fig 5a),

then answered a series of questions about their subgoal choices (Fig 5c and 5d).

Participants gained exposure to the environment by performing 30 navigation trials requir-

ing navigation to a goal state from some initial state. These long trials were randomly selected

while ensuring the initial and goal states were not directly connected (Fig 5a). Participants

moved from the current state to a neighboring state using numeric keys. The trial ended when

the goal state was reached. In simulations and pilot studies, states with high visit rates coin-

cided with the predictions of RRTD-IDDFS and Betweenness Centrality. This made it difficult

to dissociate model predictions from an alternative memory-based strategy where frequently

visited states are selected as subgoals. As noted in the previous section, this memory-based

strategy is related to sampling-based estimation of Betweenness Centrality. To address this

confound, we modified the experimental task distribution so that long trials were interleaved

with filler trials requiring navigation to a state directly connected to the start state. These filler

trials were adaptively selected to increase visits to states besides the most frequently visited

one; in pilot studies and simulations, this was sufficient to dissociate visit rate and model

predictions.

A critical methodological difficulty is visually representing the environment in a way that

enables rapid learning but does not introduce confounds. To prevent participants from relying

on heuristics such as the Euclidean distance between states, states were assigned random loca-

tions in a circular layout. The absence of useful heuristics ensures the problems participants

face are more comparable to that solved by brute-force search algorithms, which also lack a

heuristic. To encourage model-based reasoning instead of visual search, connections between

states were only shown for the current state. So that participants could still easily learn the con-

nections, participants were periodically shown the graph with all connections between trials

(Fig 5b).
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To query participant subgoal choice, we used both direct and indirect probes to compre-

hensively and reliably measure subgoal choice, including novel as well as previously studied

prompts [8]. In the context of 10 navigation trials, we first prompted participants “Plan how to

get from A to B. Choose a location you would visit along the way,” the implicit subgoal probe
(Fig 5c). Then, in the context of the same trials after shuffling, we asked participants “When

navigating from A to B, what location would you set as a subgoal? (If none, click on the goal),”

the explicit subgoal probe. In order to ensure familiarity with the concept of a subgoal, partici-

pants were introduced to the concept of a “subgoal” in the context of a cross-country road trip

during the experiment tutorial. In a final post-task assessment, we asked participants “If you

did the task again, which location would you choose to use for instant teleportation?”, the tele-
portation question (Fig 5d). We asked this question outside the context of any particular navi-

gation trial.

Fig 5. Screenshots from the experimental interface. The depicted graph is the same as the top left graph of Fig 10. (a) An example navigation trial.
The current state has a green background and the goal state has a yellow background. Only the edges connected to the current state are shown. (b) The

interface used to show all graph edges between navigation trials. There is no indication of past or future trials on this screen. State icons are only shown

when the cursor is placed on them. (c) An example implicit subgoal probe. (d) The final post-task assessment with the teleportation question. All icons

were designed by OpenMoji and are reproduced here with permission.

https://doi.org/10.1371/journal.pcbi.1011087.g005
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Experiment results

We recruited English-speaking participants in the United States on the Prolific recruiting plat-

form, prescreening to exclude participants of previous experimental pilots and those with

approval ratings below 95%. Of the 952 participants that completed the experiment, 806 (85%)

satisfied the pre-registered exclusion criteria requiring efficient performance on the navigation

trials. If a participant took 75% more actions than the optimal path (averaged across the last

half of long trials), their data was excluded. The number of participants per graph varied after

exclusion criteria were applied, without significant differences per graph (before exclusion:

range 27–34, after exclusion: range 21–30, two-factor χ2 test comparing included to excluded,

p = .985). Participants took an average of 17.17 minutes (SD = 8.02) to complete the

experiment.

Even though the experimental interface obfuscated task structure by showing the task states

in a random circular layout, participants became more effective from the first to the second

half of training: long trials were solved more quickly (from 10.30s (SD = 29.74) to 7.60s

(SD = 11.19)), with more efficient solutions (from 36% to 20% more actions than the optimal

path; completely optimal solutions increased from 70% to 79%; solutions that included a

repeated state decreased from 14% to 9%), and with decreased use of the map (on-screen dura-

tion decreased from 9.01s (SD = 20.97) to 2.98s (SD = 12.66); number of hovered states

decreased from 5.43 (SD = 8.70) to 1.38 SD = 3.99; duration of state hovering decreased from

2.52s (SD = 7.23) to 0.60s (SD = 9.04)). In order to rule out confounding effects due to differ-

ences in the complexity and structure of tasks that participants solved, we related participant

behavior on the probes to measures associated with each graph and found no significant rela-

tionships in S1 Appendix.

Our findings are organized into two sections: First, an analysis of the subgoal probes, dem-

onstrating their internal consistency and relationship to behavior. Then, model-based predic-

tion of subgoal probe choice, as well as a subset of choice behavior.

Subgoal probes are internally consistent and predict behavior. A crucial methodologi-

cal concern is the validity of the probes for subgoal choice—in existing studies, various types of

probes have been used, but not compared systematically. Choice on the explicit and implicit

subgoal probes had high within-probe consistency across participants while choice on the tele-

portation question had low within-probe consistency across participants, based on the average

correlation between per-participant choice rates and per-graph choice rates (Explicit Probe

r = 0.71, Implicit Probe r = 0.63, Teleportation Question r = 0.37). We also evaluated consis-

tency between probes by comparing the per-graph, per-state choice rates. The Explicit and

Implicit Probes were well-correlated (r = 0.98, p< .001), though the relationship between the

Teleportation Question and the remaining probes was weaker (Teleportation Question and

Explicit Probe: r = 0.58, p< .001, Teleportation Question and Implicit Probe: r = 0.58, p<
.001). While the Teleportation Question exhibits relatively low self-consistency and cross-

probe consistency, it is difficult to compare to the consistency of the other probes since both

the Explicit and Implicit probes were sampled for 10 different tasks per participant, while the

Teleportation Question was only sampled once per participant.

Beyond simply assessing consistency, it is also crucial to link the probes to participant

behavior during navigation, ensuring there is a link between decision-making and our indirect

assessment via probes. On the Explicit Probe trials, participants were given the option of

choosing the goal instead of a subgoal. On average, participants who chose a subgoal more fre-

quently took shorter paths in the navigation trials (r = −0.29, p< .001; Fig 6), which suggests

that use of subgoals promotes efficiency.
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We also briefly examine the relationship between subgoal choice count on Explicit Probe

trials and response times during navigation. We were unable to find evidence of a correlation

between the subgoal choice count of a participant and their average log-transformed naviga-

tion trial duration (r = 0.01, p = .858). In order to understand how subgoal use influences

response times, future studies should examine trial-level measures in appropriate experimental

designs, an issue we remark on in the discussion.

To further link the probes to behavior, we examine instances where participants performed

the same task (matched by start and goal state) in the navigation trials and the probe trials.

This allows us to ask whether participants took paths that passed through the states they later

identified as subgoals. To simplify the interpretation of the analysis, we focus on navigation tri-

als where the participant’s path was optimal and there were multiple optimal paths between

the start and goal. Evaluated over these pairs of matched navigation and probe trials, we found

that participants’ choices on probe trials were consistent with their choices among optimal

paths (Explicit Probe: 75.4%, Implicit Probe: 70.6%) more often than would be expected by

random choice among optimal paths (Explicit Probe: 70.5%, p< .001; Implicit Probe: 65.2%,

p< .001; Monte Carlo test). Probe trial choice is also a significant predictor of choice among

optimal paths when analyzed using multinomial regression (Explicit Probe: χ2(1) = 54.7,

p< .001, Implicit Probe: χ2(1) = 62.5, p< .001).

Fig 6. Participants that choose a subgoal instead of the goal more often in Explicit Probe trials have shorter average path length, relative to the

optimal path length (r = −0.29, p< .001).

https://doi.org/10.1371/journal.pcbi.1011087.g006
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In sum, these results suggest the subgoal probes are well-correlated, though to a lesser

degree for the Teleportation Question. They also suggest a strong connection between the

probes and planning behavior.

Comparing subgoal choice to theories. Having established that participants learned the

task, as well as the validity of their probe responses, we now turn to our central claim, namely

that subgoal choice is driven by the computational costs of hierarchical planning. Letting par-

ticipants’ responses to the subgoal probes stand as reasonable proxies of subgoal choice, we

relate the predictions of normative accounts and heuristics to participant probe choice across

the three probes.

We start by qualitatively examining participant subgoal choice in Fig 7, extending the quali-

tative analysis given above with two additional graphs, more model predictions (Fig 7b–7g),

and behavioral data averaged across tasks, probes, and participants (Fig 7a). Participant data

for all graphs is in Fig A1 in S1 Appendix. We first note that Betweenness Centrality and

RRTD-IDDFS are consistent in the graphs (Fig 7b and 7c), and are both relatively consistent

with participant probe choice—as described above, states that are close to many other states

are preferred. For brevity, we skip over RRTD-BFS and RRTD-RW in this description.

The predictions of Solway et al. (2014) [8] are less consistent with participant probe choices

(Fig 7f)—as previously described, the predictions are unintuitive because of the difficulty in

mapping between partitions and subgoals, particularly when graph bottlenecks correspond to

states instead of edges. The predictions of Tomov et al. (2020) [7] are also less consistent with

participant probe choices (Fig 7g)—as previously described, the predictions do not correspond

Fig 7. Visualization of behavior and model predictions on four eight-node graphs selected from the 30 graphs used for the experiment. (a) State

color and size is proportional to subgoal choice, summed across participants and probe types. Each participant responded to a total of 21 subgoal probes

and the number of participants per graph, from the top graph to the bottom graph, was 28, 26, 25, and 26. Visualized models are (b) RRTD-IDDFS, (c)

RRTD-BFS, (d) RRTD-RW, (e) Betweenness Centrality, (f) Solway et al. (2014) [8], and (g) Tomov et al. (2020) [7]. For model predictions, state color

and size is proportional to model prediction when using the state as a subgoal.

https://doi.org/10.1371/journal.pcbi.1011087.g007
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with intuitive subgoals because the model relies on between-group edges being sparser than

within-group edges.

We now quantitatively compare model predictions of participant subgoal choice.

For each model and probe type, we predict participant choices using hierarchical multino-

mial regression, where standardized model predictions are included as a factor with a fixed

and per-participant random effect. Since the regression analyses have the same effect structure

and the underlying theories being compared have no free parameters, we compare the relative

ability of factors to predict probe choice through their log likelihood (LL) in Fig 8. We also

report the results of likelihood-ratio tests to the null hypothesis of a uniformly random choice

model in Table 2. As in the analysis above, we assume the task distribution is uniformly-dis-

tributed over all pairs of distinct states. Among normative theories, we found the

RRTD-IDDFS model best explained behavior as judged by LL. For the Explicit and Implicit

Probes, the next best models in sequence were RRTD-BFS, then both Solway et al. (2014) [8]

and Tomov et al. (2020) [7] with similar performance, and finally RRTD-RW. For the Telepor-

tation Question, the best models after RRTD-IDDFS were Solway et al. (2014) [8], Tomov

et al. (2020) [7], RRTD-BFS, and finally RRTD-RW. This suggests that, among the normative

theories, those based on search costs are most explanatory of subgoal choices.

We additionally compare model predictions to participant state occupancy during naviga-

tion trials in order to assess whether people are relying on simple, memory-based strategies

to respond to the probes, as described above. We find that participant behavior is better

explained by all normative theories for the Explicit and Implicit Probes (with the exception of

RRTD-RW), but only RRTD-IDDFS and Solway et al. (2014) [8] for the Teleportation

Question.

Among the heuristic theories, we found Betweenness Centrality best explained behavior as

judged by LL. For all probes, Degree Centrality was next best, followed by QCut. As above, we

compared model predictions to participant state occupancy and found that participant behav-

ior is better explained by Betweenness Centrality for the Explicit and Implicit Probes, and both

Betweenness and Degree Centrality for the Teleportation Question.

These results are consistent with the empirical connection between RRTD-IDDFS and

Betweenness Centrality found in the large-scale simulation above. Betweenness Centrality fur-

ther improves on the behavioral fit of RRTD-IDDFS, suggesting that our participants may be

using a metric like Betweenness Centrality to approximate resource-rational task decomposi-

tion. In contrast, we found that state occupancy was a worse fit to participant behavior than

either RRTD-IDDFS or Betweenness Centrality, suggesting that the introduction of filler trials

was sufficient to rule out a trivial strategy based on state occupancy. We return to these points

in the discussion.

Since the experiment was designed so that only local connections were visible during navi-

gation trials but conducted via an online platform, in the closing survey we asked participants

if they used a reference to the task structure besides the interface (“Did you draw or take a pic-

ture of the map? If you did, how often did you look at it?”). Participant responses were as fol-

lows: 603 participants selected “Did not draw/take picture,” 65 selected “Rarely looked,” 90

selected “Sometimes looked,” and 48 selected “Often looked.” In order to ensure the above

results were not impacted, we ran the same analysis in the subset of participants (N = 603) that

selected “Did not draw/take picture” and found qualitatively similar results (Fig A2 and

Table A1 in S1 Appendix).

In another analysis in S1 Appendix, we tested whether icon identity influenced these results

by incorporating the icon used for state presentation into the null choice model. We found

minimal influence—like the above results, the addition of subgoal predictions was statistically

significant for each model and comparisons based on log likelihood were qualitatively similar.
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In a final analysis, we predict participant navigation in the instances where their path was

one of several optimal paths. We analyze participant choice as a simple two-stage process: a

subgoal is sampled with log probability proportional to model predictions (weighted by a

parameter β1), then an optimal path is sampled with log probability proportional to a free

parameter β2 if it contains the subgoal and 0 otherwise. For each theory of subgoal choice, we

Fig 8. Comparison of statistical analysis using mixed-effects multinomial regression to predict subgoal choice

behavior for each subgoal probe. Log likelihood (LL) is relative to the minimum model LL for each probe. Larger

values indicate better predictivity. References: Solway et al. (2014) [8], Tomov et al. (2020) [7].

https://doi.org/10.1371/journal.pcbi.1011087.g008
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optimized this two-stage choice model to maximize the likelihood assigned to observed

choices. Because there were a relatively small number of trials per participant, we did not fit

random effects for participants. The model results are shown in Fig 9. These results are again

consistent with those previously observed—among normative theories RRTD-IDDFS is best,

among heuristic theories Betweenness Centrality is best, and Betweenness Centrality is overall

the most explanatory. In a supplementary analysis, we also found evidence that participant

responses during optimal navigation were slower at both self-reported subgoals and those pre-

dicted by models, as detailed in S1 Appendix.

Table 2. Estimated coefficients with standard errors from hierarchical multinomial regression predicting subgoal choice. Likelihood-ratio test statistics compare

regression models to the null hypothesis of sampling subgoals uniformly at random.

Normative Algorithm Explicit Probe Implicit Probe Teleportation Question

RRTD-IDDFS β = 1.78 β = 1.63 β = 0.73

SE = 0.04 SE = 0.04 SE = 0.06

χ2(2) = 5183.1 χ2(2) = 3941.2 χ2(1) = 155.7

p< .001 p< .001 p< .001

RRTD-BFS β = 4.98 β = 4.94 β = 1.45

SE = 0.10 SE = 0.11 SE = 0.20

χ2(2) = 4412.8 χ2(2) = 3402.8 χ2(1) = 55.1

p< .001 p< .001 p< .001

RRTD-RW β = 0.37 β = 0.92 β = 0.29

SE = 0.02 SE = 0.03 SE = 0.05

χ2(2) = 686.7 χ2(2) = 1822.1 χ2(1) = 39.9

p< .001 p< .001 p< .001

Solway et al. (2014) [8] β = 0.75 β = 0.69 β = 0.37

SE = 0.02 SE = 0.02 SE = 0.03

χ2(2) = 3929.7 χ2(2) = 3072.7 χ2(1) = 114.3

p< .001 p< .001 p< .001

Tomov et al. (2020) [7] β = 1.09 β = 0.97 β = 0.41

SE = 0.03 SE = 0.02 SE = 0.04

χ2(2) = 3678.7 χ2(2) = 3056.4 χ2(1) = 102.4

p< .001 p< .001 p< .001

Heuristic Explicit Probe Implicit Probe Teleportation Question

QCut β = −0.14 β = −0.19 β = 0.04

SE = 0.01 SE = 0.01 SE = 0.04

χ2(2) = 1504.3 χ2(2) = 1236.3 χ2(1) = 1.4

p< .001 p< .001 p = .238

Degree Cent. (log) β = 0.73 β = 0.64 β = 0.45

SE = 0.02 SE = 0.02 SE = 0.04

χ2(2) = 2534.3 χ2(2) = 1923.3 χ2(1) = 116.0

p< .001 p< .001 p< .001

Betweenness Cent. (log) β = 0.86 β = 0.82 β = 0.58

SE = 0.02 SE = 0.02 SE = 0.03

χ2(2) = 5598.2 χ2(2) = 4666.1 χ2(1) = 307.3

p< .001 p< .001 p< .001

State Occupancy (log) β = 1.00 β = 0.89 β = 0.39

SE = 0.03 SE = 0.03 SE = 0.04

χ2(2) = 3222.8 χ2(2) = 2673.3 χ2(1) = 103.3

p< .001 p< .001 p< .001

https://doi.org/10.1371/journal.pcbi.1011087.t002
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Discussion

In this work, we have proposed a resource-rational framework for task decomposition where

tasks are broken down into subtasks based on planning costs. Our first contribution is a novel

formal account of this idea based on a resource-rational analysis [38]. Specifically, our proposal

involves three levels of nested optimization: Task decomposition identifies a set of subgoals for

a given task, subtask-level planning chooses sequences of subgoals to reach a goal, and action-
level planning chooses sequences of concrete actions to reach a subgoal. Optimal task decom-

position thus depends on both the structure of the environment and the computational

resource usage specific to the planning algorithm. We quantitatively compared the predictions

of our framework to four heuristic and normative theories proposed in the literature across

11,117 graph-structured tasks. These analyses show that our framework provides different pre-

dictions from other normative accounts and aligns with heuristics. We argue that this provides

a rationalization of these heuristics for task decomposition in terms of resource-rational plan-

ning that accounts for computational costs.

To test our framework, we ran a pre-registered, large-scale study using 30 graph-structured

environments and 806 participants. This study includes a more diverse set of tasks than that of

any previously reported study in the literature, allowing us to draw more general conclusions

about how people form task decompositions. The results of this study reveal that, among nor-

mative models, people’s responses most closely align with the predictions of our model. This

provides support for our theory that people are engaged in a process of resource-rational task

decomposition. Among heuristics for task decomposition, one heuristic is a better fit to behav-

ior than our framework. Because the heuristic makes similar predictions as our framework,

this might indicate that people use the heuristic as a tractable approximation to our

framework.

Our account, while normative, is not particularly interpretable. Identifying the qualitative

patterns that guide human subgoal choice and relating them to the patterns resulting from our

framework’s sensitivity to search costs will be necessary for an interpretable account of human

subgoal choice. Critically necessary are experimental paradigms that provide rich, but mini-

mally confounded behavior—our experiments extend those in the literature, but our results

Fig 9. Comparison of two-stage choice models to predict participant choice behavior among optimal paths. Log likelihood (LL) is relative to the

minimum model LL. Larger values indicate better predictivity. References: Solway et al. (2014) [8], Tomov et al. (2020) [7].

https://doi.org/10.1371/journal.pcbi.1011087.g009
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depend heavily on the self-reported subgoals of research participants. While we have already

demonstrated relationships between self-reported subgoals and behavior, making more exten-

sive comparisons to behavior is important for future research. For example, although we

found a systematic relationship between participants’ responses to the subgoal probes and

their previous navigation decisions, these two measurements were taken minutes apart. We

chose to separate these two measurements so as to avoid possible measurement effects in

which explicitly asking about subgoals may lead people to navigate through the state they iden-

tified. However, this likely weakens the observed relationship between the probe responses

and the navigation decisions. An additional difference during navigation trials is that partici-

pants are still learning the task structure and are shown connections from the current state. By

contrast, during the probe trials, participants are unable to see any connections and must rely

solely on what they have learned. These subtle differences may reduce the relationship between

these two trial types. They are also different from the formal framework which assumes perfect

knowledge about task structure—because this could influence task decomposition, we note a

relevant extension below. The effect of this difference could be studied by introducing a sepa-

rate experimental phase where participants are trained on the task structure directly, outside

the context of navigation—the first experiment in Solway et al. (2014) [8] contains a similar

phase, but had limited navigation trials. Developing experimental techniques to measure sub-

goal choices in the process of navigation without biasing the planning process is an important

direction for future work.

We highlight three limitations of the navigation trials studied in this experiment. The first

is that participants are encouraged to plan hierarchically (“It might be helpful to set subgoals”

in Fig 5a). While this seems likely to have minimal impact on which subgoals participants

choose, the main focus of this manuscript, it may impact whether participants plan hierar-

chically in the first place. Future studies intending to assess how people choose to plan hierar-

chically should consider avoiding prompts like this.

Second, though we report analyses of participant response times, these analyses were not

pre-registered and our experiment was not designed to assess response times. These findings

should be reevaluated in experimental designs appropriate to assess response times. For exam-

ple, we found that participants were slower to respond at their subgoals, suggesting they were

planning at those states. However, our normative framework makes no prediction about when
planning occurs. The framework only defines a resource-rational value for subgoals that can

be used to simplify planning whether it happens before action or after reaching a subgoal.

Future experiments could investigate this further through manipulations to influence when

planning is employed, like a timed phase for up-front planning or an incentive for fast plan

execution.

A third limitation is that the navigation trials provide limited insight into the algorithms

people are using to plan. While participants only see local connections during navigation, anal-

ogous to the local visibility search algorithms have, there are a number of reasons why their

navigation behavior would be difficult to relate to the choice of search algorithm. The main

issue is that planning steps are generally covert, and do not correspond in any simple way with

steps of overt behavior given by the plan that is ultimately produced. Such covert planning is

better suited, in future work, to being studied through process-tracing experiments [30, 39],

think-aloud protocols, or by investigating neural signatures related to planning and learning

[40]. It is possible that some aspects of planning are externalized in the current experiment, via

exploration on navigation trials, but this is at best incomplete. For instance, participant behav-

ior improves over the course of navigation trials, suggesting they are performing mental search

instead of search via navigation. Also, the experiment restricts single-step movement to neigh-

boring states, whereas by contrast, algorithms like BFS might plan over states in an order
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where subsequent states are not neighbors. Identifying the search algorithm participants use is

critical for future studies since our framework predicts that task decomposition is driven by

the search algorithm used.

As mentioned in the text, our framework and experiment explicitly focus on the con-

strained setting of bruteforce search. However, other theoretical studies have extended this

framework to incorporate heuristic search [12, 32] and abstract subgoals [32]. Future research

should continue to explore extensions of this framework to more robustly test the predictions

of resource-rational task decomposition. For example, our framework could be used to make

predictions about subgoal choice in spatial navigation tasks by incorporating spatial distance

heuristics and using heuristic search algorithms like A* search or Iterative-Deepening A*
search [25]. Another direction could explore other resource costs like memory use, motivated

by the relatively low memory use of IDDFS discussed above. At present, our framework

assumes planning for tasks occurs independently, avoiding the reuse of previous solutions to

subtasks. Despite this absence, our framework still predicts a normative benefit for problem

decomposition. However, research has found that people learn hierarchically, exhibiting neu-

ral signatures consistent with those predicted by hierarchical reinforcement learning theory

[41]. Further research could relax the independence between task solutions by explicitly reus-

ing solutions (as in [8]) or turning to formulations based on reinforcement learning [42], par-

ticularly those designed for a distribution of goal-directed tasks with shared structure as

studied in this manuscript [43]. A particularly interesting direction could incorporate model

learning (as in the Dyna architecture [44]) across tasks in order to explain the influence of task

learning on task decomposition. Further extension of this framework could build on resource-

rational models developed in other domains, like Markov Decision Processes [19] and feed-

back control [45], and draw inspiration from approaches used to learn action hierarchies in

high-dimensional tasks [42, 43].

Our framework is intended to be an idealized treatment of the problem of task decomposi-

tion, but an essential next step for this line of research is to understand how people tractably

approximate the expensive computations needed to determine search costs, which we discuss

above. Our results already make some progress in this direction. Specifically, we found that

participant responses were best explained by the Betweenness Centrality model. This model’s

predictions are highly correlated with the normative RRTD-IDDFS model but require far less

computation to produce. This suggests that people may be using Betweenness Centrality as a

heuristic to approximate the task decomposition that minimizes planning cost. However,

Betweenness Centrality is also expensive to compute since it requires finding optimal paths

between all pairs of states–something our participants are not likely doing. Since we were able

to rule out one trivial estimation strategy (state occupancy) through the inclusion of filler trials,

the issue of tractable estimation is an open question for future research to explore by proposing

other estimation strategies and experimental manipulations to dissociate their predictions.

Identifying even more efficient approximations to resource-rational task decomposition will

be essential for a process-level account of human behavior, as well as for advancing a theory of

subgoal discovery for problems with larger state spaces.

The human capacity for hierarchically structured thought has proven difficult to formally

characterize, despite its intuitive nature and long history of study [13, 28]. In this study we pro-

pose a resource-rational framework that motivates and explains the use of hierarchical struc-

ture in decision-making: People are modeled as having subgoals that reduce the

computational overhead of action-level planning. Our framework departs from and comple-

ments other normative proposals in the literature. Most published accounts pose task decom-

position as an inference problem: People are modeled as inferring a generative model of the

environment [6, 7] or as compressing optimal behavior [8, 20]. We quantitatively relate our
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framework to existing proposals in a simulation study; In addition, we conduct a large-scale

behavioral experiment and find that our framework is effective at predicting human subgoal

choice. The work presented here is consistent with other recent efforts within cognitive science

to understand how people engage in computationally efficient decision-making [9–11, 38]. It

is also complementary to recent work in artificial intelligence that explores the interaction

between planning and task representations [19, 42]. Our hope is that future work on human

planning and problem-solving will continue to investigate the relationships between computa-

tion, representation, and resource-rational decision-making.

Methods

Ethics statement

The following experimental procedures were approved by the institutional review board of

Princeton University. In the experiment, participants were shown an electronic consent form

providing a written description of the experiment and gave informed consent by clicking a

button in lieu of a signature.

Experiment design

To probe for participant subgoal choice, we employed an experiment inspired by those previ-

ously published in Solway et al. [8]. In our experiment, participants first navigated on a web-

like representation of a graph to learn the graph’s structure (“navigation trials”; Fig 5), then

answered a series of task-specific and task-independent questions about subgoal choices

(“probe trials”). We then quantitatively analyzed their responses to these questions about sub-

goal choice. In the Design section, we motivate the choice of various experimental details.

Then, in the Procedure section we detail the experimental procedure. The experiment pre-reg-

istration is available at https://osf.io/hegf2. Our pre-registered analysis was a comparison of

how well RRTD-IDDFS and Solway et al. (2014) [8] could predict participant probe choice

using hierarchical multinomial regression, a subset of the comparisons in Fig 8 and Table 2.

Design. The navigation trials were intended to provide participants with an opportunity

to learn the structure of the graph. Drawing from results in pilot experiments, we ensured par-

ticipants could only see the graph edges connected to their current state (Fig 5a). Periodically,

the graph with all edges was shown to participants (Fig 5b). Importantly, this was done without

signaling any information about future tasks. From pilot experiments, these visual choices

(minimizing displayed edges during tasks, but showing all edges periodically between tasks)

ensured that participants quickly learned the graph structure instead of relying on the visual

representation of the graph.

From pilot experiments, we observed that states with high visit rates coincided with the pre-

dictions of RRTD-IDDFS and Betweenness Centrality. To address this confound, the experi-

ment had two types of navigation trials: long and filler. Long trials were optimally solved with

more than one action (i.e. the start and goal state were not directly connected) and were

intended to give participants exposure to the graph structure. Filler trials were optimally solved

with one action (i.e. the start and goal state were directly connected) and were adaptively cho-

sen to ensure a balanced visit rate that avoided overlapping predictions with our model. This

adaptive procedure selected from all possible filler tasks by 1) excluding tasks where the start

or goal state was most-visited, and then by 2) sampling uniformly from the remaining tasks

with the greatest sum of visits to the start and goal states. When all tasks had a most-visited

state as a start or goal, the first step was skipped; this circumstance was uncommon and depen-

dent on both participant behavior and the structure of the graph. In effect, this procedure

increased the number of most-visited states by increasing visits to states that were nearly (but
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not) most-visited. In simulations and pilot experiments, this procedure was sufficient to disso-

ciate the visit rate and our model predictions.

Our probes for subgoal choice included two inspired by prior studies [8]—the implicit

probe and teleportation question—and included a novel variant that explicitly asked about

subgoal use—the explicit probe. We included these three probes to ensure a reliable and com-

prehensive measure of subgoal choice. The implicit probe was shown to participants before the

explicit probe to avoid biasing participant responses.

Typical visual layouts of graphs often have a relationship to pairwise state distances, which

means that a variety of visual heuristics are effective strategies when problem-solving. To avoid

these confounding heuristics, we visually represented the graph states in a pseudo-random cir-

cular layout (Fig 5). The same circular layout was shown for all trial types, including the peri-

odic display of all graph edges.

Procedure. Each participant was assigned a single graph for the entire experiment, with a

fixed circular layout and fixed mapping from nodes to icons. We first introduced them to the

experimental interface with an interactive tutorial, showing the visual cues used to mark the

current node and goal node and how to navigate along graph edges using the numeric keys of

the keyboard. We then introduced the concept of a “subgoal” through the example of a cross-

country road trip with a “subgoal” located at the midpoint of the road trip. Participants were

asked to describe what they thought “subgoal” meant.

Navigation trials followed this introductory material. Participants completed a few short

practice trials, then completed 60 trials alternating between long and filler trial types: 30 long

trials were drawn uniformly from those optimally solved with more than one action, and 30

filler trials were adaptively selected from those optimally solved with one action (described in

detail above). In navigation trials, participants started from a node and had to navigate to a

goal node. They were also prompted to consider the use of subgoals with the message “It might

be helpful to set subgoals.” At any point during a navigation trial, participants could only see

the edges connected to their current node (Fig 5a). Every four trials (thus, 15 times total) par-

ticipants were shown all the edges of the graph (Fig 5b). Since a photograph of the graph

shown this way could simplify navigation trials, the icons at each node were only shown when

the participant hovered over them.

Following navigation trials, we probed for subgoal choice. For all probes, the graph was

shown in the same circular layout, but the edges were hidden. Between every two trials, the

graph was shown with all edges as mentioned above. In the context of 10 different tasks, we

queried for subgoal choice using the implicit probe: “Plan how to get from A to B. Choose a

location you would visit along the way.” For this probe, we excluded both the start and goal

nodes from the available options. Then, in the context of the same 10 tasks after shuffling, we

queried for subgoal choice using the explicit probe: “When navigating from A to B, what loca-

tion would you set as a subgoal? (If none, click on the goal).” For this probe, we only excluded

the start node from the available options. Before each of the task-specific probes, participants

also completed a few practice trials. Finally, we asked a single instance of the teleportation

question: “If you did the task again, which location would you choose to use for instant tele-

portation?” For this probe, all nodes were available options.

Finally, participants responded to a multiple-choice survey question: “Did you draw or take

a picture of the map? If you did, how often did you look at it?”

Stimuli. The graphs we studied were sampled from among the 11,117 simple, connected,

undirected, eight-node graphs with sufficient probe trials for the study design. For a given

graph, probe trials were sampled uniformly from tasks that require at least 3 actions to opti-

mally solve, a threshold selected based on model predictions that these tasks often require the

use of hierarchy. After ensuring each graph had 10 distinct tasks that require 3+ actions to

PLOS COMPUTATIONAL BIOLOGY Humans decompose tasks by trading off utility and computational cost

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011087 June 1, 2023 24 / 31

https://doi.org/10.1371/journal.pcbi.1011087


optimally solve, this limited the number of possible graphs to 1,676. The 30 graphs we studied

were sampled uniformly at random from these 1,676 graphs (Fig 10). The order of graph

nodes in the circular layout, the icon assigned to each node, and the sequence of navigation

and probe trials were all sampled pseudo-randomly. We counter-balanced the assignment of

participants to graph, circular layout, and trial orderings.

Fig 10. The 30 undirected, eight-node graphs that were used in the experiment.

https://doi.org/10.1371/journal.pcbi.1011087.g010
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All icons designed by OpenMoji, the open-source emoji and icon project. License:

CC BY-SA 4.0.

Analyses

Model predictions. We define a model’s predictions over subgoals as proportional to a

utility or log probability. We do so because model predictions are primarily used to predict

probe choice using multinomial regression. This leads to a natural interpretation of the

coefficients from multinomial regression. For a utility, multinomial regression is equivalent to

a softmax choice model, so the coefficient can be equivalently interpreted as an inverse tem-

perature. For a log probability, the coefficient w can predict a range of strategies, including

random choice for w = 0, probability matching for w = 1, and maximizing based on probability

as w!1.

We define the task distribution, when applicable to a model, as a uniform distribution over

all tasks with distinct start and goal states. The reported analyses have qualitatively similar

results when the task distribution matches the experiment’s long trials, which only includes

tasks (s0, g) where the start s0 and goal g are not neighbors, so (s0, g) =2 T.

Hierarchical multinomial regression of choice. We model participant choice among

subgoals using hierarchical multinomial regression with the mlogit package in the R pro-

gramming language. Regression models are fit with 100 draws from the default Halton

sequence (parameters halton = NA, R = 100).

For each model, we predict participant choices for each type of probe trial using multino-

mial regression with model predictions as regressors. Regressors were standardized to be

mean-centered with a standard deviation of 1. Since each participant has multiple task-specific

probe choices for the explicit and implicit probes, we include random effects for regressors

when modeling those probe types. While not explicitly noted above, since the teleportation

question was only asked once per participant, prediction of subgoal choice for it was fit with-

out random effects (i.e. non-hierarchical multinomial regression).

For task-specific probes, the set of possible choices available to the model are configured to

match those available to participants, as described in the Procedure section. Additionally, the

explicit probe instructs participants to select the goal if they did not use subgoals. For RRTD-

based models, we model this with the predicted value for the use of no subgoals. This is equiva-

lent to the sum of the reward and negated planning cost of navigating directly to the goal.

Two-stage model of choice among optimal paths. Free parameters β1 and β2 were

constrained to be greater than or equal to zero. Optimization started from initial parameters

β1 = 1, β2 = 1. The random choice model selects subgoals uniformly at random which corre-

sponds to a special case of the two-stage choice model with fixed parameter β1 = 0.

Resource-rational task decomposition

The model predictions for a state s are the value of a task decomposition (Eq 3) where the state

is a single subgoal, VðZÞ ¼ VðfsgÞ.
Random walk. The search algorithm returns a plan π = hs0, s1, . . ., zi and run-time

t = |π| with probability P
RW
ðp; t j s; zÞ ¼

Q
i>0

1

N ðsiÞ
. Since we defined the reward for a plan as

R(π) = −|π|, the expected reward over all plans is

R
RW
ðs; zÞ ¼

X

p;t

P
RW
ðp; t j s; zÞ½RðpÞ � t�

¼ � 2
X

p;t

P
RW
ðp; t j s; zÞjpj:

PLOS COMPUTATIONAL BIOLOGY Humans decompose tasks by trading off utility and computational cost

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011087 June 1, 2023 26 / 31

https://openmoji.org
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.1371/journal.pcbi.1011087


Since a constant multiplier does not affect model predictions, we drop the constant and let RRW
(s, z) = −∑π,t PRW (π, t j s, z)|π|.

The negative expected reward −RRW (s, z) is the expected number of steps until the first visit

to z when starting at s, also called the hitting time H(s, z). H(s, z) can be efficiently computed

by a recursive equation

Hðs; zÞ ¼ 1þ
X

s02N ðsÞ

1

jN ðsÞj
Hðs0; zÞ

when s 6¼ z, and with H(s, s) = 0 otherwise. We thus define RRW (s, z) = −H(s, z).

Since the use of subgoals will either maintain or increase the number of steps required

to reach a goal for a random walk, we make note of implementation differences to accommo-

date this for RRTD-RW. Formally stated, H(s, s0) + H(s0, s00)�H(s, s00), with H(s, s0) + H(s0,
s00) = H(s, s00) only when all state sequences from s to s00 must contain s0. So, states s0 with H(s,
s0) + H(s0, s00)>H(s, s00) will only increase the expected number of steps and would not be in

the policy over subgoals defined by Eq 2. To avoid this issue, we require the subgoal policy for

RRTD-RW to contain at least one subgoal. By the same argument, a second subgoal can not

decrease the expected number of steps, so we can simplify Eq 2 for RRTD-RW to

Vg
ZðsÞ ¼ max

z2Z
f� ½Hðs; zÞ þHðz; gÞ�g ð4Þ

or when the subgoals are a singleton set Z ¼ fzg simply Vg
ZðsÞ ¼ � ½Hðs; zÞ þHðz; gÞ�.

Depth-first search. The algorithm is recursively defined to take a current state s and plan-

so-far π. At each call of the algorithm, it iterates over neighbors of the current state

s0 2 N ðsÞ—if the state s0 is not in the current plan π then there is a recursive call to the algo-

rithm with state s0 and an updated plan π0 that ends with s0. When there are no unvisited neigh-

bors s0 to consider, the algorithm backtracks to a previous state and plans until it finds one

with unvisited neighbors. When the algorithm reaches the subgoal z, it terminates, returning

the plan and a run-time based on the number of calls to the algorithm. To avoid bias due to

neighbor order, in each call of the algorithm neighbors are randomly shuffled.

Breadth-first search. The algorithm has a queue of states to visit and tracks all states that

have been visited. At each iteration, it visits the next state s from the queue and adds all not-

yet-visited neighbors s0 2 N ðsÞ to the queue. When it visits the subgoal z, it returns the path to

z and a run-time based on the number of iterations that were required. As in DFS, we shuffle

the neighbors of the current state at each iteration to avoid bias due to neighbor order.

Iterative deepening depth-first search. A depth-limited DFS augments a standard DFS

by terminating when the current “depth” (i.e. the length of the current plan) exceeds a limit, in

addition to terminating when the goal is reached. IDDFS iterates by running depth-limited

DFS with incrementally larger depths, starting from a depth limit of 1. The algorithm returns

when a depth-limited DFS finds a plan to the goal, counting the run-time as the number of

recursive DFS calls across all uses of depth-limited DFS. As in other algorithms, neighbors are

shuffled to avoid bias due to order.

Alternative models

Degree centrality, betweenness centrality. Both centrality measures were computed in

the Python programming language using the networkx library with all parameters left at

their defaults except for endpoints = True for Betweenness Centrality. As computed by

networkx, both centrality measures are a fraction—for a given state s, Degree Centrality is

proportional to the fraction of states that s is connected to and Betweenness Centrality is the
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fraction of optimal paths that s is part of. Thus, for both measures, we define the model predic-

tions as the logarithm of these fractions for the reasons noted above.

QCut. This section requires more extensive use of graph theory, so we first explicitly con-

nect the task formalism used in the remainder of the text to graphs before describing QCut.

An undirected graph consists of nodes V and edges fi; jg 2 E between nodes i and j, and we let

n ¼ jVj and m ¼ jEj. The adjacency matrix of a graph Aij = 1 if fi; jg 2 E and 0 otherwise. The

degree of a node i is di = ∑j Aij = ∑i Aij and the degree matrix D = diag(d). To connect the nota-

tion used in the rest of the paper, we contextually assume the following relationship between

undirected graphs and task environments: For environments with reversible actions (formally,

(s, s0) 2 T, (s0, s) 2 T), we let states correspond directly to graph nodes and transitions in the

environment (s, s0) 2 T correspond to graph edges fs; s0g 2 E.

QCut divides the states of a graph into two groups based on the Normalized Cut criterion,

which admits an approximate solution based on a spectral decomposition of the graph [16, 33,

46]. The approximate solution to the Normalized Cut criterion is based on the symmetric

graph Laplacian Lsym ¼ D� 1
2 D � Að ÞD� 1

2 ¼ I � D� 1
2AD� 1

2.

Following prior work [16, 46], we divide graph nodes into two groups based on the eigenvec-

tor v with the second-smallest eigenvalue of Lsym. This eigenvector is also the best, non-trivial

one-dimensional embedding of the graph states that minimizes the distance between connected

states (See Eq. 10 in [46]). Our implementation partitions states based on whether they are

above or below a threshold in this one-dimensional embedding v—a typical threshold is zero or

the median. Since states s with corresponding eigenvector entry vs closest to the eigenvector

mean are considered most central, we define the model prediction for a state s as � v2
s .

Solway et al. (2014). Solway et al. (2014) [8] propose that people choose hierarchies that

most efficiently encode problem-solving behavior. The efficiency of an encoding is quantified

through the information-theoretic concept of minimum description length; when applied to

encode problem-solving behavior through hierarchical structure, this involves choosing a task

decomposition so that solutions have short description length and are composed of subtasks

whose solutions can be reused in many tasks. This account takes optimal paths as the behavior

to encode and selects hierarchies based on graph partitions.

We now note our implementation details that depart from those of Solway et al. (2014)

[8]. To predict behavioral choices, we use the optimal behavioral hierarchy to specify a binary

regressor that takes a value of 1 for boundary states (states with at least one neighbor in a

different region) and 0 otherwise—we discuss this choice in the main text. Since multiple

state sequences can be optimal, random noise is added to graph edges for the purpose of tie-

breaking—in our implementation, the description length of behavior is averaged across 10

samplings of these edge weights in order to reduce the effects of noise. In the original publica-

tion, optimization over partitions based on model evidence was performed using a genetic

algorithm—in our implementation, we enumerate all graph partitions and select those with

the highest model evidence. For a given graph, the original article considers all possible parti-

tions—for our analyses over eight-node graphs, we found it necessary to exclude trivial parti-

tions. So, when possible for a graph, we only considered partitions with at least two regions

and required that each region contained at least one state that was not a boundary state. The

description length of behavior (the “model evidence”) was computed using R code supplied

by Dr. Alec Solway.

Tomov et al. (2020). Tomov et al. (2020) [7] propose an account of task decomposition as

inference over hierarchical structure. Their generative model of hierarchical structure assumes

partitions are drawn from a Chinese Restaurant Process and additionally assumes that edges

between states are more likely when the states are in the same region. Their model also
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incorporates terms related to the task distribution and reward function that we expect to have

minimal impact on our results because we do not vary the task distribution and the reward

function for our task is a constant.

To incorporate this model, we used the analysis in the “Simulation Two: Bottleneck States”

section in the publication [7]. The analysis models participants (N = 40) as sampling from a

generative model over hierarchical graphs, then randomly sampling subgoals (three per partic-

ipant) from the states connected to a “bridge” edge, which connects distinct regions in the

hierarchical graph. Notably, pairs of regions are connected by a single “bridge” edge—this is

subtly different from standard graph partitions, where different regions can be connected by

any number of edges. All parameters were left as reported in the publication [7], with the

exception of choice stochasticity � which we made entirely deterministic by setting � = 1.0. To

implement the published analyses, we used the publicly available code at https://github.com/

tomov/chunking. We define the model prediction as the logarithm of the number of times a

subgoal was sampled by this procedure—to avoid issues where a subgoal isn’t sampled due to

noise, we add 1 to the subgoal counts before taking the logarithm.
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