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A B S T R A C T

Human behavior is often assumed to be hierarchically structured, made up of abstract actions that can be
decomposed into concrete actions. However, behavior is typically measured as a sequence of actions, which
makes it difficult to infer its hierarchical structure. In this paper, we explore how people form hierarchically
structured plans, using an experimental paradigm with observable hierarchical representations: participants
create programs that produce sequences of actions in a language with explicit hierarchical structure. This task
lets us test two well-established principles of human behavior: utility maximization (i.e. using fewer actions)
and minimum description length (MDL; i.e. having a shorter program). We find that humans are sensitive to
both metrics, but that both accounts fail to predict a qualitative feature of human-created programs, namely
that people prefer programs with reuse over and above the predictions of MDL. We formalize this preference
for reuse by extending the MDL account into a generative model over programs, modeling hierarchy choice as
the induction of a grammar over actions. Our account can explain the preference for reuse and provides better
predictions of human behavior, going beyond simple accounts of compressibility to highlight a principle that
guides hierarchical planning.
1. Introduction

Human behavior has rich hierarchical structure, in which actions
are grouped into abstract, higher-level actions that are used to accom-
plish tasks (Klir & Simon, 1991; Miller, Galanter, & Pribram, 1960;
Newell & Simon, 1972). However, these internal representations are not
observable, so they are typically inferred from behavioral signatures of
hierarchy (Rosenbaum, Kenny, & Derr, 1983). Consider the problem
of making tomato sauce for dinner. The task can be made successively
more concrete as prepare the tomatoes then prepare one tomato then slice
the tomato. Some of these actions have highly repetitive structure, like
preparing a tomato by repeatedly slicing it. While action hierarchies
arise naturally from practiced behavior, they can still provide a benefit
in novel settings by providing a compact representation for behavior
and by radically decreasing the complexity of search for a solution.

What guides the generation of hierarchical plans and action hier-
archies, particularly in novel settings? While past studies try to infer
this structure from behavioral signatures of hierarchy, it is challenging
to address this question directly because the hierarchical structure
of behavior is not observable. For example, in the sequence-learning
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1 Lightbot (https://lightbot.com) is an educational game developed by Danny Yaroslavski, released as a Flash game in 2008 and a mobile application in 2013.

literature, hierarchies are inferred based on elevated response times
or error rates when switching between abstract actions (Acuna et al.,
2014; Rosenbaum et al., 1983; Verwey, 1996). Similar methods are
applied when investigating hierarchical planning, though additional
behavioral attributes can be measured such as the particular choice of
action sequence or self-reports about behavioral hierarchy (Correa, Ho,
Callaway, Daw, & Griffiths, 2023; Huys et al., 2015; Solway et al., 2014;
Tomov, Yagati, Kumar, Yang, & Gershman, 2020).

In order to make hierarchical plans observable, we use a process-
tracing paradigm where participants are tasked with creating hierarchi-
cally structured plan-like programs in an environment called Lightbot.1
In the task, participants create a program to guide a robot that starts
in a specific location (Fig. 1) and must visit all unlit lights (blue
squares) to activate them. The programs must contain simple actions
(e.g., Walk, Activate Light, Turn Right), but can also have
hierarchical structure by reusing sequences of actions as subroutines.
These programs serve as an explicit representation of a hierarchical
plan, where abstract actions correspond to subroutines. In previous
studies, this experimental paradigm has been used to demonstrate that
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Fig. 1. The interface for Lightbot, a process-tracing experiment for complex, hierarchical plans. Participants create programs by dragging instructions from the lower right to define
a program. The program is executed by the robot from the initial subroutine (‘‘Main’’), and the task is completed when all blue squares in the environment are activated. An
example program that solves the task is shown. The program includes a single subroutine (‘‘Process 1’’) with four actions (Walk, Walk, Walk, Activate Light). Participants
can use up to four subroutines (referred to as processes in the experiment), but for brevity only two are pictured. The Run button executes the program with an animation of the
robot taking each action. The program is executed without animation with the Quick Run button. The program length is displayed as an Instruction Count, and the white buttons
at the top are used to clear all instructions from a subroutine for ease of program editing.
people prefer programs that are short or can be compressed to be
short (Sanborn, Bourgin, Chang, & Griffiths, 2018).

This process-tracing paradigm facilitates the comparison of different
accounts of hierarchy selection. For example, given the preference
for compressibility in this domain (Sanborn et al., 2018), a natural
theory is that hierarchy selection is based on the principle of minimum
description length (MDL; Chater, 1999). MDL and related information-
theoretic frameworks have been previously used to explain hierarchical
representations in sequence learning (Planton et al., 2021) and plan-
ning (Lai, Huang, & Gershman, 2022; Maisto, Donnarumma, & Pezzulo,
2015; Solway et al., 2014). Another natural theory is that of utility
maximization, e.g. solving the problem in the fewest steps. In this
work, we find evidence that people favor both shorter programs and
those with fewer actions. We highlight example programs that these
theories cannot account for, but are consistent with a preference for
reusing subroutines above and beyond the predictions of either ac-
count. We formalize this preference as a prior belief that subroutine
use should be biased towards subroutines that have been used often
in the current task. This prior is central to our computational-level
theory (Marr, 1982) of human planning as grammar induction, an ap-
proach drawn from linguistics where it has been used to model word
learning as joint inference of a grammar over words and sentences
using those words (Goldwater, Griffiths, & Johnson, 2009; Johnson,
Griffiths, & Goldwater, 2006). Inspired by this analogy, we use this
approach to model planning as joint inference of a grammar over
abstract actions and a plan using those actions. Here the preference for
reuse arises from a clustering prior over the abstract (subroutine-level)
actions (Johnson et al., 2006), resembling approaches used to model
clustering and reuse in categorization (Anderson, 1991), reinforcement
learning (Gershman, Blei, & Niv, 2010), and causal learning (Kemp,
Goodman, & Tenenbaum, 2010).

In this article, we study how people select hierarchical plans by
directly analyzing the programs they create in our process-tracing
experiment. First, we develop our framework of plan inference using
grammar induction and detail our generative model over hierarchi-
cal plans, showing that our theory is a natural approach to predict
qualitative aspects of behavior missed by simpler accounts. Then, we
analyze behavioral data from an online experiment using our process-
tracing paradigm. We examine qualitative examples and perform model
comparison, finding that participant programs are best predicted by
our grammar induction model. Analyzing other behavioral signatures
unique to our experiment, we also find that people prefer hierarchies
that simplify task solution.
2 
2. Background

Our approach to modeling complex, hierarchical planning draws on
several distinct literatures, which we briefly summarize in this section.
Common approaches for studying hierarchical structure in behavior
have used paradigms like sequence learning or frameworks like hierar-
chical reinforcement learning. While these studies have often focused
on characterizing hierarchy discovery following learning from experi-
ence, several have focused on the hierarchies used when planning, as
we do in this paper. Theories of hierarchy discovery require specifying
a space of possible hierarchies, which we accomplish through Bayesian
program induction.

2.1. Sequence learning

A long-standing question is how sequences are learned by humans
and other animals. An influential finding is that sequence memo-
rization is vastly improved when information is grouped into larger
chunks (Miller, 1956). Methodologically, mental representations of
hierarchical structure are often inferred from behavior on the ba-
sis of elevated response times (Verwey, 1996), errors (Acuna et al.,
2014; Rosenbaum et al., 1983), or decreased speed in motor trajecto-
ries (Ramkumar, Acuna, Berniker, Grafton, Turner, & Kording, 2016).
Recent normative theories of sequence learning explain chunk selection
through the optimization of a speed-accuracy trade-off (Dezfouli &
Balleine, 2012; Wu, Éltetö, Dasgupta, & Schulz, 2023), MDL (Planton
et al., 2021), and idealized search costs (Ramkumar et al., 2016).
There are also theories of action segmentation that model reuse by
using a similar framework (an Adaptor Grammar; Johnson et al., 2006)
as our approach (Buchsbaum, Griffiths, Plunkett, Gopnik, & Baldwin,
2015). Another broad approach to modeling sequence learning is
statistical learning (Perruchet & Pacton, 2006)—for example, modeling
action chunking using a hierarchical non-parametric model of sequence
statistics (Éltetö & Dayan, 2023; Éltetö, Nemeth, Janacsek, & Dayan,
2022).

2.2. Hierarchical reinforcement learning

Hierarchical reinforcement learning adapts the framework of rein-
forcement learning to a setting with hierarchically structured policies.
In one prominent framework, this is formalized by augmenting a task
with abstract actions, called ‘‘options’’, which each consist of a behav-
ioral policy and conditions for initiation and termination (Botvinick,
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Niv, & Barto, 2009; Stolle & Precup, 2002; Sutton, Precup, & Singh,
1999). Much of the research on option discovery has focused on sub-
oal-based options, with approaches including partitioning a task into
ubtasks (McNamee, Wolpert, & Lengyel, 2016; Solway et al., 2014;

Tomov et al., 2020) or identifying ‘‘bottleneck’’ states within the state
space (i.e. states that are commonly passed on the way to the ultimate
goal; Şimşek & Barto, 2009).

Many approaches have been taken to understand how people choose
ehavioral hierarchies, including some based on task partitioning (Solwa

et al., 2014; Tomov et al., 2020), policy compression (Lai et al., 2022;
Maisto et al., 2015; Solway et al., 2014), and minimizing planning
costs (Correa et al., 2023; Huys et al., 2015). The approach we in-
troduce in this paper based on an Adaptor Grammar (Johnson et al.,
2006) is similar to a model used to examine planning behavior in prior
work (Huys et al., 2015). Studies have investigated error-based learning
f hierarchical policies, finding evidence in both neural data (Ribas-
ernandes, Solway, Diuk, McGuire, Barto, Niv, & Botvinick, 2011) and
ehavioral patterns (Eckstein & Collins, 2020).

2.3. Bayesian program induction

Bayesian program induction is an approach to inferring programs
𝜋 consistent with some observed data 𝑑 (Goodman, Tenenbaum, Feld-

an, & Griffiths, 2008; Lake, Salakhutdinov, & Tenenbaum, 2015;
Piantadosi, Tenenbaum, & Goodman, 2012; Rule, Tenenbaum, & Pi-
ntadosi, 2020). Concretely, by specifying a prior probability distribu-
ion over programs 𝑝(𝜋), and the likelihood of the observed data under
hat program 𝑝(𝑑|𝜋), Bayes’ theorem can be used to define the posterior
robability of programs conditioned on the data

𝑝(𝜋|𝑑) ∝ 𝑝(𝑑|𝜋)𝑝(𝜋).

This approach has been fruitfully used to model many aspects of
cognition, including concept learning (Fränken, Theodoropoulos, &
Bramley, 2022; Goodman, Tenenbaum, et al., 2008), number word
earning (Piantadosi et al., 2012), writing characters with motor ac-

tions (Lake et al., 2015), and sequential decision making (Maisto et al.,
2015; Wingate, Goodman, Roy, Kaelbling, & Tenenbaum, 2011). While
the computational demands of inference usually restrict its application
to simple domains, modern machine learning methods like neural
networks have made it possible to scale these methods to more difficult
domains, while still producing interpretable, human-like representa-
tions (Ellis et al., 2021; Poesia & Goodman, 2023). Another crucial
strategy for making inference tractable is library learning (Ellis et al.,
2021; Poesia & Goodman, 2023; Zhao, Lucas, & Bramley, 2023), where
program fragments are reused in order to accelerate inference. Our
grammar induction model builds upon this idea.

2.4. Minimum description length

Minimum description length (MDL) is an information-theoretic ap-
roach that focuses on minimizing the description length of mental

representations and is formally related to Bayesian inference (Chater,
1999). In the setting of sequence learning, an MDL representation is one
that provides a minimal, hierarchical compression of the sequence. This
approach has been applied broadly in studying sequence learning. For
example, Planton et al. (2021) propose that compressed, hierarchical
representations of sequences support learning. Maisto et al. (2015)
ncorporate a prior over hierarchical policies related to the description
ength of plans under those hierarchies. Lai et al. (2022) extend a
heory of policy compression to account for the information-theoretic
avings from ignoring perceptual information while executing an action
hunk. Solway et al. (2014) note their theory identifies hierarchies that
inimize the description length of optimal behavior, even though it is

primarily formulated as a Bayesian account.
 t

3 
3. Theories of program creation in Lightbot

Having introduced these literatures, we now turn to our approach.
e draw on ideas from sequence learning and hierarchical reinforce-
ent learning to study the hierarchical structure underlying action

equences, and propose a modeling framework based on principles from
rogram induction and MDL.

Our approach to studying complex, hierarchical plans has two key
omponents. First, we use a process-tracing experimental paradigm in
rder to make explicit the internal hierarchical representations partici-
ants use for planning. Instead of asking participants to simply solve
he problem, we ask participants to create a program that will be
nterpreted by an agent in the experiment. Critically, this program may
e hierarchically structured through the use of subroutines. Second, we
odel these plans with a framework based on models of grammar learn-

ng from computational linguistics (Goldwater et al., 2009; Johnson
t al., 2006). In this section, we introduce the experiment and motivate

our choice of modeling framework.
Our process-tracing paradigm is based on the popular Lightbot

game. The experiment interface and an example program are shown in
Fig. 1. In this task, research participants control a robot in a gridworld-
like environment by supplying a program for it to execute, with the
goal of having the robot light all the blue squares. The program
is composed by dragging and dropping instructions in the interface
shown in Fig. 1. Participants create programs that include five prim-
itive actions (Walk, Jump, Turn Left, Turn Right, Activate
Light) as well as calls to subroutines that can be defined and reused.
Subroutines are defined in the same way (by dragging and dropping
instructions), so they also consist of actions and subroutine calls, which
makes it possible to submit programs that correspond to hierarchically
structured plans. For simplicity, the number of subroutines is fixed
to four, which means no action must be taken to create an empty
subroutine. When participants submit a program for execution, the
obot starts from the initial subroutine and runs instructions in order,
o that primitive actions immediately take effect and subroutine calls
xecute the respective subroutine. Thus, executing a program results in
 deterministic sequence of actions, which we refer to as the execution
race. A video of program creation and execution is included in the
upplementary materials. We formally define the task, programs, and
heir execution in the next section (see Section 4).

In the example in Fig. 1, the robot is shown in the start state. The
example program in Fig. 1 results in an S-shaped execution trace and
accomplishes the goal of activating the lights, as shown in the top
row of Fig. 2. Notably, the program has a subroutine that contains the
instructions Walk, Walk, Walk, Activate Light. If the program
were written without a subroutine, the program length would be 18,
equivalent to the execution trace length. However, by using this subrou-
tine, the program is much shorter, using only 13 instructions. In order
to make program structure clearer in this article, we display programs
as trees, as in the second column of Fig. 2, described further in the
igure caption.

We formalize the process of planning as Bayesian program induction
over hierarchical plans, so the posterior probability of a plan depends
n the likelihood that it solves a task as well as the belief assigned
o it a priori. By framing planning as an inference problem, we can
xamine different assumptions about program structure in the form of
rior distributions and see how they influence the posterior distribution
f programs that solve the task. This is a notable departure from non-
ierarchical planning, which typically finds a sequence of actions that
olve a task. By inferring a hierarchy, this also departs from accounts
f hierarchical planning that use fixed hierarchies. A key component
f the posterior is the likelihood that we assign to a program. Because
articipants are required to create programs that complete a task, we
efine this likelihood to require that execution of a program reaches
he goal (i.e. having all lights activated).
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Fig. 2. Two example programs that solve the task are shown in Fig. 1. The top row contains the same program as Fig. 1, demonstrating the execution trace, or sequence of
resulting actions, in blue. Table rows correspond to distinct programs. Table columns show a program execution trace, a tree representation of the program, the step count (number
of actions) resulting from program execution, and the program length. The tree representation of a program shows how the sequence of actions relates to the program structure.
Actions are executed in sequence, from left to right. Subroutines are shown with green lines that connect the subroutine call to its constituent instructions. The first use of a
subroutine has solid lines, while subsequent uses have dashed lines. In the experiment, participants only see an animation of the robot, not the execution trace in blue. Legend:
S: Activate Light, W: Walk, J: Jump, R: Turn Right, L: Turn Left. .
A prior over programs is the other key component needed to define
a posterior. Our modeling approach compares different priors over
programs, which we introduce here. The simplest prior ignores program
structure, preferring those that result in shorter execution traces. This
model corresponds to a softmax choice rule (Luce, 1959) over plans
based on the number of resulting actions, similar to standard modeling
approaches in reinforcement learning. An alternative prior might prefer
shorter programs, a reasonable approach given that program length
directly corresponds to the number of motor actions participants take
when writing programs. We quantify program length as the number of
instructions used in the written description of the program, as opposed
to the number of actions the program yields in the execution trace. We
treat program length as description length, and consider this an MDL
prior.

Both of these priors are sensible approaches to modeling plan
inference in Lightbot, but are inconsistent with our experimental results
(reported in detail below). For example, in Fig. 2 the top row features
a commonly-written program that contains a single subroutine (Walk,
Walk, Walk, Activate Light). This subroutine is used three times
and mirrors the repeated environmental structure. The program in
the bottom row, written less frequently, uses a subroutine only twice.
Despite experimental participants preferring the top program over the
bottom one, it would not be preferred by either of the priors outlined
above.

We introduce a theory to explain this by having previous use of
a subroutine in the current task inform future use—in other words,
subroutine choice is biased to reuse subroutines. So, the top program
in Fig. 2 is more intuitive because it has greater repeated use of the
subroutine. Our theory of grammar induction is a prior over Lightbot
programs, including subroutines, where each use of a subroutine in-
creases the probability that it will be used again. By contrast, the MDL
prior assigns the same probability to programs of equal length, equally
preferring flat sequences of actions and highly nested programs. By
accounting for this bias towards reuse, our prior can explain qualitative
patterns in the use of subroutines in human behavioral data, as we
explore further below.
4 
4. Modeling framework

4.1. Task formalism

We formalize Lightbot as an undiscounted, deterministic Markov
Decision Process (MDP), specified by a state set , initial state 𝑠0 ∈ ,
action set , transition function 𝑇 ∶  × → , and reward function
𝑅 ∶  ×  → R. A Lightbot task is defined by a 2-dimensional grid of
squares, which each has an associated integer height and type (light
square or not). The state set  has elements that track the environment
state (each light is either active or unactive) and the agent state (a
location and orientation). The action set  consists of the five primitive
actions (Walk, Jump, Turn Left, Turn Right, Activate Light).
The goal states  ⊂  are those where all light squares are activated.

The transition function 𝑇 is straightforward: Turn Left and Turn
Right change the agent orientation, by rotating either counterclock-
wise or clockwise, respectively; Activate Light activates a light if
present at the agent location. A valid use of Walk and Jump both move
the agent forward, changing the location based on the orientation.
A valid use of Walk requires the current and next location to have
matching heights, while a valid use of Jump requires the next location
to either have a height greater by one unit or smaller by any amount.
The agent does not move for invalid uses of either action.

The goal in Lightbot is to activate all light squares, so upon reaching
a goal state, 𝑔 ∈ , from a non-goal state, 𝑠 ∉ , the agent is rewarded,
𝑅(𝑠, 𝑔) = 1. Otherwise, the agent receives no reward, 𝑅(𝑠, 𝑠′) = 0. The
goal states 𝑔 ∈  are absorbing, so for all actions 𝑎, 𝑇 (𝑔 , 𝑎) = 𝑔.

4.2. Program formalism

We now introduce notation for the programs that participants sub-
mit in our process-tracing paradigm. We define a program 𝜋 as a tuple of
subroutines (𝜌0, 𝜌1,…), where each subroutine 𝜌𝑖 consists of a sequence
of instructions (𝜌𝑖0, 𝜌𝑖1,…) and has length |𝜌𝑖|. Each instruction 𝜌𝑖𝑗 is
either an action in the MDP, so that 𝜌𝑖𝑗 ∈ , or a subroutine call
𝜌𝑖𝑗 ∈ {𝜌1, 𝜌2,…}. The program length is the length of all subroutines,
|𝜋| =

∑

|𝜌𝑖|.
𝑖
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To execute a program, we start at an initial state 𝑠0 ∈  and begin
executing the initial subroutine 𝜌0. Executing a subroutine 𝜌𝑖 in turn
requires sequentially executing its constituent instructions 𝜌𝑖𝑗 . When
the current instruction is an action, so 𝜌𝑖𝑗 ∈ , the action is taken,
resulting in a state transition, so 𝑠𝑡+1 = 𝑇 (𝑠𝑡, 𝑎𝑡 = 𝜌𝑖𝑗 ) and 𝑡 = 𝑡 + 1,
and a corresponding reward, 𝑅(𝑠𝑡, 𝑠𝑡+1). Otherwise, the instruction 𝜌𝑖𝑗 is
a subroutine call, which does not directly result in a state transition
but goes on to execute the referenced subroutine. When execution
of the referenced subroutine is completed, execution returns to the
original subroutine that made the call and continues on to the next
instruction. To match the experimental interface, recursive calls are
permitted however 𝜌0 is excluded from the list of valid subroutine calls.

he execution of a program can be visualized as a tree (Fig. 2), where
leaf nodes correspond to executed actions, in order from left to right,
nd internal nodes correspond to subroutine calls.

Programs are executed until they reach a goal state, which results
n an execution trace 𝜏(𝜋) = (𝑎0, 𝑎1,… , 𝑎𝑇−1) and state trajectory
(𝑠0, 𝑠1,… , 𝑠𝑇 ), where the final state is a goal, 𝑠𝑇 ∈ . This constraint
ensures that programs that reach a goal always halt, even if the pro-
gram is recursive. The value of a program is 𝑉 (𝜋) = ∑

𝑡 𝑅(𝑠𝑡, 𝑠𝑡+1). Since
there is no reward until the goal is reached, 𝑉 (𝜋) = 1 when a program
reaches the goal and 𝑉 (𝜋) = 0 otherwise. An algorithm for program
evaluation is included in the appendix (see Algorithm 1).

4.3. Inference

We formulate the choice of programs as the result of Bayesian
rogram induction, adapted to this sequential decision setting by re-
asting planning as inference (Levine, 2018; Toussaint & Storkey, 2006;

Wingate et al., 2011). Concretely, we define a posterior distribution
over programs that combines a prior distribution over programs 𝑝(𝜋)
with a likelihood that indicates whether a program solves the task.

4.3.1. Inferring programs
We first introduce a binary random variable 𝛺 so that 𝛺 = 1 means

a program solves the task. We condition on programs that solve the task
in order to define a posterior distribution over programs, 𝑝(𝜋 ∣ 𝛺 = 1).
Applying Bayes’ theorem, we can define this posterior in terms of a
likelihood that reflects whether a program solves the task, 𝑝(𝛺 = 1 ∣ 𝜋),
and a prior over programs, 𝑝(𝜋),

𝑝(𝜋 ∣ 𝛺 = 1) = 𝑝(𝛺 = 1 ∣ 𝜋)𝑝(𝜋)
𝑍

where 𝑍 is a normalizing constant 𝑍 =
∑

𝜋′ 𝑝(𝛺 = 1 ∣ 𝜋′)𝑝(𝜋′), with 𝜋′

ranging over all possible programs.
We define the likelihood to identify programs that solve the task,

or equivalently, reach the goal. Since the value of a program is an
indicator of reaching the goal, we can simply define our likelihood as

𝑝(𝛺 = 1 ∣ 𝜋) = 𝑉 (𝜋) =
{

1 if 𝜋 reaches the goal
0 otherwise

.

A key benefit of this inference-based formulation is that it can
integrate prior beliefs about the structure of programs alongside the
requirement that a program solves the task.

4.3.2. Approximate inference
Computing the normalizing constant 𝑍 requires the intractable task

of enumerating all programs. As a tractable alternative, we approxi-
ate the normalization constant 𝑍 using a large corpus of programs,

ntended to span a large space of compact programs with short traces.
o generate these programs, we first search for a corpus of the shortest
xecution traces (𝑎0, 𝑎1,…) that solve a given task. Then, we generate
rograms for each trace by taking each combination of non-trivial
ubroutines and rewriting the trace, assuming subroutines are used as

much as possible. We describe trace search and program generation in
more detail in the appendix.
5 
Given a collection of programs 𝛱 , we can compute an approxima-
ion to the normalization constant 𝑍𝛱 by summing over the programs

in 𝛱 , formally

𝑍𝛱 =
∑

𝜋′∈𝛱
𝑝(𝛺 = 1 ∣ 𝜋′)𝑝(𝜋′).

This lets us define an approximate posterior

𝑝(𝜋 ∣ 𝛺 = 1) ≊ 𝑍−1
𝛱 𝑝(𝛺 = 1 ∣ 𝜋)𝑝(𝜋). (1)

We note that 𝑍𝛱 is a lower bound to 𝑍, 𝑍𝛱 < 𝑍, since 𝑍 is a sum
f positive terms and 𝑍𝛱 is a sum of a subset of those terms.

Our approximation scheme is motivated by the difficulty of gener-
ating a large number of programs that solve the task. In particular, the
umber of traces grows exponentially with trace length. For example,
he number of traces of length 18 (like the trace in the top row of Fig. 2)

is ∏18 5 = 518 ≈ 3.8 × 1012, or nearly 4 trillion. This large space of
ossible traces is what led us to our scheme to first identify traces that
each the goal, then to subsequently construct programs consistent with
hose traces.

Importantly, we are not claiming that people perform this approx-
mation scheme when solving the task. Our model is a computational-
evel account (Marr, 1982) of program writing, intended to examine

which factors guide how people select programs. By identifying the
actors that influence program writing, we hope to facilitate future
tudies that could explore which algorithms people use to solve this
hallenging inference problem.

4.4. Baseline models

Having outlined our framework for Bayesian program induction, we
ormalize some simple priors over programs. As a baseline, we consider
 model that minimizes trace length. This prior ignores program struc-
ure and penalizes the resulting trace length. Since this is equivalent to
aving a cost for every step, we refer to it as the step cost prior:

𝑝(𝜋) ∝ exp {−|𝜏(𝜋)|} .

Some prominent accounts of task decomposition have incorporated
description length into their objectives to influence choice over sub-
goals. In one account, minimizing description length guides the choice
among task decompositions, used to compress fixed, optimal poli-
cies (Solway et al., 2014). In another account, the description length
f plans guides subgoal choice in the form of a prior over subgoals in

an inference-based hierarchical planner (Maisto et al., 2015).
Based on this work, we additionally consider a prior that minimizes

the description length of a program, which we refer to as the MDL
prior. We formalize the description length (DL) as the program length,
so DL(𝜋) = |𝜋|. The description length is simple and idealized, assuming
that all instructions have the same description length. We use this to
define a prior, so that shorter lengths are preferred:

𝑝(𝜋) ∝ exp {−|𝜋|} .

As noted above, the simple approaches introduced in this section
truggle to explain intuitive solutions to Lightbot problems, as in Fig. 2.

The critical missing piece is that these approaches are insensitive to
differences in hierarchical structure observed when holding program
length or trace length constant. We fill this explanatory gap with the
model we introduce next.
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4.5. Grammar induction

In this section, we recast hierarchical planning as grammar induc-
ion. Here, we propose a generative model in which new subroutines

augment a grammar over actions. The key idea behind our model is
that past use of subroutines should inform the probability assigned
to future use of subroutines. We formalize this idea using Adaptor
Grammars (Johnson et al., 2006).

To start, we define a prior over a single subroutine 𝜌𝑖 that is a
equence of low-level actions, so that 𝜌𝑖𝑗 ∈  for all 𝑗—that is, the
ubroutine does not contain other subroutines. We let the length of the

sequence range dynamically in standard fashion, by having a constant
robability that construction of the sequence terminates, 𝑝𝑒𝑛𝑑 , and
ampling actions from a uniform distribution, 𝑝(𝜌𝑖𝑗 = 𝑎) = 1

||

. The
verall probability of an action sequence is thus

𝑝(𝜌𝑖) = 𝑝𝑒𝑛𝑑𝑝(𝜌𝑖0 = 𝑎)
∏

𝑗=1
(1 − 𝑝𝑒𝑛𝑑 )𝑝(𝜌𝑖𝑗 = 𝑎). (2)

This constant probability of sequence termination means that action
sequence lengths are geometrically-distributed with parameter 𝑝𝑒𝑛𝑑 .

We augment this prior to generate subroutine calls in addition to
ctions by (1) sampling a subroutine call with probability 𝑝𝑐 𝑎𝑙 𝑙 or an
ction with probability 1 − 𝑝𝑐 𝑎𝑙 𝑙 and then (2) either generating a new
ubroutine for the call or reusing one that was previously defined.
ermitting the reuse of subroutines means that the resulting grammar
s no longer context-free, since the probability of a subroutine varies
ased on previous subroutine calls. To formalize this kind of long-
ange dependency, we instead use an Adaptor Grammar (Huys et al.,

2015; Johnson et al., 2006), which augments a standard context-free
grammar by allowing the grammar’s productions to be dependent on
the history of previous productions. This provides a formal basis for
a generative model of reuse, where previous productions can become
more probable in the future. We use a Dirichlet Process (DP; Aldous,
1985) to adapt subroutine generation for our grammar over Lightbot
rograms. We briefly highlight some key aspects of this account of
ubroutine use: new subroutines are generated, subroutines can be
eused, and neither the number of subroutines nor the subroutines
hemselves are predefined.

The DP is a probability distribution over clusters of data that incor-
porates a new element by either assigning it to (1) a new cluster or (2)
n existing cluster, biased towards larger clusters. We likewise sample
ubroutine calls, as either (1) a new subroutine or (2) an existing
ubroutine, biased towards often-used subroutines. Formally, having
lready drawn 𝑛 subroutine calls to 𝑚 distinct subroutines with a total
f 𝑛𝑘 calls to subroutine 𝑘, we define a distribution over the next

subroutine call 𝑧𝑛+1, given the history of drawn subroutine calls 𝑧1∶𝑛

𝑝(𝑧𝑛+1 ∣ 𝑧1∶𝑛) =
⎧

⎪

⎨

⎪

⎩

𝛼
𝑛+𝛼 if 𝑧𝑛+1 = 𝑚 + 1
𝑛𝑘
𝑛+𝛼 if 1 ≤ 𝑧𝑛+1 = 𝑘 ≤ 𝑚

(3)

The first case deals with a new subroutine call, which requires that a
ew subroutine be generated. In the second case, an existing subroutine
s selected proportionally to how often its been used in the past, 𝑛𝑘.

When an existing subroutine is selected, it is reused and generation of
that subroutine is avoided. The DP has a single parameter, 𝛼 ≥ 0, which
is usually referred to as the concentration parameter since it controls
the relative probability of creating a subroutine. As 𝛼 → 0 reuse of
n existing subroutine becomes more likely and as 𝛼 → ∞ creation
f a new subroutine becomes more likely. Since the most probable
ubroutines are those used most often in the past, the DP results in so-
alled rich-get-richer dynamics, where frequently used subroutines are
ost likely in the future. The rich-get-richer dynamics of the DP are a

ey prediction that differentiates our grammar induction account from
he alternative priors—as noted above, this preference for reuse can
ccount for the example in Fig. 2.
 t
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Having introduced the DP, we can define 𝑝(𝜌𝑖𝑗 = 𝑎) to handle both
ow-level actions and subroutines as

𝑝(𝜌𝑖𝑗 = 𝑎) =
{

(1 − 𝑝𝑐 𝑎𝑙 𝑙) 1
||

if 𝑎 ∈ 

𝑝𝑐 𝑎𝑙 𝑙𝑝(𝑧𝑛+1 = 𝑎|𝑧1∶𝑛) if 𝑎 ∈ {𝜌1, 𝜌2,…}.
(4)

where we elide the dependence on past subroutine calls to simplify no-
tation. Along with the above Eq. (2), we can define the prior probability
f a Lightbot program as

𝑝(𝜋 = {𝜌1, 𝜌2,…}) =
∏

𝑖
𝑝(𝜌𝑖) (5)

Putting these pieces together, the grammar induction prior gen-
erates sequences of instructions, terminating with probability 𝑝𝑒𝑛𝑑
(Eq. (2)). Instructions are either subroutine calls with probability 𝑝𝑐 𝑎𝑙 𝑙
or actions with probability 1 − 𝑝𝑐 𝑎𝑙 𝑙 (Eq. (4)). Subroutine calls are
drawn from the Adaptor Grammar based on a DP, with new subroutines
generated as an instruction sequence and existing subroutines reused
n proportion to the number of past calls (Eq. (3)). An algorithm for

sampling is included in the appendix (see Algorithm 2).
In the MDL account, using a subroutine more times can make a

program shorter, so a preference for shorter programs can indirectly
lead to a preference for subroutine reuse. The grammar induction

odel has an analogous preference because, in general, it assigns
igher probability to programs with fewer instructions or subroutines.
owever, a distinctive prediction of the grammar induction model is

he explicit preference to use subroutines based on how often they
ave been used in the past, which is above and beyond that of the
mplicit preference that comes from avoiding generation. While the
DL account only indirectly encourages hierarchical structure, the

rammar induction model also does so in a more explicit way by
ssigning higher probability to hierarchies with greater reuse.

Adaptor grammars have been used to study linguistic phenomena
like word segmentation (Goldwater et al., 2009) and inference of dis-
ourse structure (Luong, Frank, & Johnson, 2013), and have also been
xtended to study forms of generalization that require greater abstrac-

tion, like past tense and derivational morphemes in English (O’Donnell,
2015) and in non-linguistic topics like causal concept bootstrapping
Zhao et al., 2023). Adaptor grammars have also been used to model

action sequences, by predicting action segmentation (Buchsbaum et al.,
2015) and planning behavior (Huys et al., 2015). Adaptor grammars
are also formally related to approaches used in probabilistic program-
ming languages to express non-parametric distributions (Goodman,
Mansinghka, Roy, Bonawitz, & Tenenbaum, 2008).

5. Experiment

5.1. Methods

5.1.1. Procedure
Participants were given an extensive tutorial to ensure they learned

how to control Lightbot using the five primitive actions, as well as to
ensure they understood how to create and use programs. The tutorial
described the functionality of each action, included demonstrations,
and the opportunity to solve practice problems to ensure understand-
ing. Screenshots of the entirety of the tutorial are included in the
appendix.

In the remainder of the experiment, participants wrote programs to
solve 10 Lightbot tasks and were incentivized to write short programs
to encourage subroutine use. Participants received instructions about
the incentive and were shown multiple examples of subroutine use.
The program editing interface had a counter showing program length
(Fig. 1). Importantly, our instructions focus on describing how the pro-
ram length influences the received bonus, showing examples of how
ubroutines can result in both shorter and longer programs than the tra-
ectory. Participants who wrote the shortest program for a task received
he full bonus of $0.40 and those who wrote a longer program received
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Fig. 3. The tasks participants completed in the experiment.
a proportionally smaller bonus, calculated after the experiment to
ensure the average per-task bonus across participants was $0.20. Since
participants solved 10 tasks, the total bonus ranged from $0.00 to
$4.00, with an average bonus of $2.00. Since the task incentivizes
short programs (by encouraging participants to minimize their program
length), this could bias participants towards behavior more consistent
with the MDL prior. However, because the instructions do not explic-
itly encourage subroutine reuse, we assume minimal experimentally
induced bias towards the grammar induction prior (specifically, its
preference for reuse).

After being instructed about the incentives, participants went on to
write programs to solve each of 10 tasks (Fig. 3), with the program
editing interface shown in Fig. 1. When starting a new task, the
program editing interface was cleared of the program created for the
previous task (i.e. subroutines from past tasks were not available for
use). During each task, participants were given the option to skip the
problem and forfeit a bonus for the current problem after 3.5 min
elapsed. We recorded the programs submitted by participants, in ad-
dition to other measures related to task difficulty, like the number of
program evaluations and time elapsed. In a closing survey, participants
were asked about their programming experience and whether they had
previously played games similar to the experiment.

5.1.2. Participants
The experiment was run on the Prolific platform, requiring that

participants were English-speakers, were located in the United States
of America, had not participated in pilot studies for Lightbot, had
an approval rate of 95%+, and had at least 25 past submissions on
the platform. Participants consented to the experimental procedures
beforehand, as approved by the Institutional Review Board of Princeton
University. A total of 193 participants (age 𝑀 = 38.39 𝑆 𝐷 = 12.10,
range: 19–86, 72 female, 3 with demographic data missing) completed
the entire study, in an average of 59.55 min (𝑆 𝐷 = 25.63, range: 17.20–
125.56). 171 participants (89%) were included because they satisfied
the inclusion criteria, having no more than 3 college courses related to
computer programming. As noted, participants could skip tasks after
3.5 min. 148 participants (87%) skipped no tasks, 16 participants (9%)
skipped 1 tasks, 3 participants (2%) skipped 2 tasks, and 4 participants
(2%) skipped 3+ tasks. In the below analysis, we analyze all fully
7 
completed tasks, even from participants who may have skipped other
tasks.

As noted above, participants were asked about their programming
experience. In response to ‘‘How much experience do you have with
computer programming?’’ 65% of participants responded with ‘‘None’’,
24% responded with ‘‘Between 1 and 3 college courses (or equivalent)’’,
and 11% responded with ‘‘More than 3 college courses (or equivalent)’’.
In response to ‘‘Have you played Lightbot or another similar program-
ming game before?’’ 98% of participants responded with ‘‘No’’ and
2% responded with ‘‘Yes’’. In the appendix, we found that program-
ming experience had little relationship to task performance, focusing
on response times, number of program evaluations, and how often
participants wrote the most common program.

An important question about our process-tracing paradigm is how
it influences participant behavior. We quantify one aspect of this in
the appendix, where we find that number of created subroutines and
number of program evaluations are positively correlated.

5.1.3. Parameter fitting
Given a behavioral dataset of Lightbot programs 𝜋 across all tasks

and the number of times they were produced by research participants
𝑛𝜋 , we want to optimize for parameters 𝜃 in the model based on the
posterior probability they assign to our observed behavior

(𝜃) =
∏

𝜋
𝑝(𝜋 ∣ 𝛺 = 1, 𝜃)𝑛𝜋 .

For models with nuisance parameters 𝜓 , we marginalize them out

(𝜃) = ∫𝜓

∏

𝜋
𝑝(𝜋 ∣ 𝛺 = 1, 𝜃 , 𝜓)𝑛𝜋 𝑝(𝜓)𝑑 𝜓 .

In both these equations, parameters are explicitly passed to the poste-
rior for clarity, but were left implicit in Section 4.3. We estimate pa-
rameters by maximizing the probability assigned to observed behavior,
so our objective for the parameters is
arg max

𝜃
log{(𝜃)}

Because of the intractability of computing the posterior, 𝑝(𝜋 ∣ 𝛺 = 1),
we instead compute the approximation in Eq. (1).
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Table 1
The steps taken in preprocessing participant programs. Shown in order, with descriptions and the number of programs modified by that
preprocessing step.

Description Number
modified

Percent
modified

Step 1 Ensure subroutines are used as often as
possible

221/1668 13.25%

Step 2 Remove instructions that never have an
effecta or are never executed

241/1668 14.45%

Step 3 Remove subroutines that are never
called

0/1668 0.00%

Step 4 Inline subroutines only called once 461/1668 27.64%
Step 5 Inline subroutines that only have a

single instruction
34/1668 2.04%

Step 6 Order turns and lights to match
constraints on program search (see
Appendix)

67/1668 4.02%

Step 7 Ensure subroutines have a canonical
ordering determined by their execution
order

338/1668 20.26%

Modified by any step 868/1668 52.04%

a We remove instructions that are actions 𝜌𝑖𝑗 ∈  if for all 𝑡 where 𝑎𝑡 = 𝜌𝑖𝑗 the action results in a transition to the same state, so
𝑠𝑡 = 𝑠𝑡+1 = 𝑇 (𝑠𝑡 , 𝑎𝑡).
8

i

p
t

To predict participant programs, we use six models. One baseline
ccount is a null model of random choice, where the prior is uninforma-
ive, 𝑝(𝜋) ∝ 1, so uniform probability is assigned to programs. We also
est the step cost, MDL, and grammar induction priors introduced above.
inally, given the efficacy of the step cost prior in explaining behavior,
e combine it with the other two priors for the grammar induction +

tep cost and MDL + step cost models. These combined models define a
ew composite prior that is the product of the two original priors.

Parameters are displayed with fitted values in Table 2, but are
briefly summarized here. A relative weight for the prior is fit, which
is used to scale the log prior, log 𝑝(𝜋), and are named as follows:

StepCost, 𝛽MDL, 𝛽GrammarInduction. For the combined models that in-
clude the step cost prior, we also fit a weight of 𝛽𝑆 𝑡𝑒𝑝𝐶 𝑜𝑠𝑡. The gram-

ar induction model additionally fits the concentration parameter
f the DP, 𝛼, and the probability of a subroutine, 𝑝𝑐 𝑎𝑙 𝑙. In addi-
ion, the grammar induction model has the nuisance parameter 𝜓 =
𝑝𝑒𝑛𝑑}, which we approximately marginalize for the values 𝑝𝑒𝑛𝑑 ∈
0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}, reflecting a uniform prior.

Parameter fitting was performed once from an initialization using
a default value, and 50 times with sampled values. The parameters
with best fit from these 51 parameter fitting executions are used to
make predictions below. Probabilities (e.g., 𝑝𝑐 𝑎𝑙 𝑙) were constrained to
be in (0, 1) and either fit from an initial default value of 1

2 or a value
sampled uniformly from (0, 1). All other parameters were constrained
to be positive and either fit from an initial default value of 1 or a value
sampled from an 𝐸 𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(2) distribution.

5.1.4. Preprocessing of participant programs
In order to facilitate analysis, participant programs are preprocessed

n order to ensure they are present in our corpus of generated pro-
rams as often as possible. Preprocessing steps and the number of
odified programs are reported in Table 1. To generate programs for

ur approximate posterior, we focus on structurally different programs,
hile avoiding consideration of variation that could arise from certain
rocess-level details (like whether a subroutine was used in every pos-
ible location). This informs how we preprocess participant programs,
n order to ensure that participant-generated programs can be matched
o model-predicted programs as often as possible. For example, model-
enerated programs always make maximal use of subroutines, so we
reprocess participant programs to similarly make maximal use of ex-
sting subroutines. While we recognize that these features can provide
ignatures of the process that participants use to solve the task, we

eave further analyses to future studies. Before preprocessing, only

8 
41% of participant programs were generated by our methods. After
preprocessing, this increased to 78%. Focusing on programs written by
at least 2 participants, preprocessing helped increase this coverage from
2% to 94%.

5.1.5. Data availability
Code for the experiment is available at https://github.com/cgc/coc

osci-lightbot/tree/v0.4. The data and analysis code are available at ht
tps://github.com/cgc/lightbot-grammar-induction.

5.2. Results

5.2.1. Participant programs are inconsistent with alternative accounts
In this section, we qualitatively analyze some example participant

programs in Figs. 4–6, comparing common programs to other programs
that were uncommon. The programs in these figures are examples
that rule out a straightforward account of human choice based on
solely optimizing step cost or program length. In particular, these
examples can be viewed as evidence of errors, since participants are
generating programs that are in conflict with objectives they might
have (i.e. minimizing program length or step cost). We illustrate how
our model aligns with these patterns of choice behavior, but defer
statistical comparisons to the next section where parameters are fit and
models are compared. We primarily focus on whether the priors assign
higher probability to participant behavior, but avoid consideration of
the magnitudes of probability since our models in the next section fit
a parameter that scales the log prior.

We first examine Fig. 4, which revisits the programs introduced
n Fig. 2. Both programs have the same length, but differ in their

cost. In particular, the most common program (left) has a large cost,
while the uncommon program (right) has a smaller cost. This pattern
of choice can not be explained solely on the basis of either program
length or cost, but is consistent with the predictions of the grammar
induction prior: The common program has greater subroutine use,
which has higher probability under the grammar induction prior, due
to the preference for reuse in the DP.

We now examine cases where the trace is held constant, but the
rogram varies. By examining a fixed trace, we can directly compare
he structural features of programs while holding action-related fea-

tures constant, such as step cost. For example, Fig. 5 shows three
programs that generate the most common trace for the problem shown.
The common program (left) has a single subroutine. Notably, this
program can be written in several ways since two of the three uses of a
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Fig. 4. Comparing a common participant program (left) to an uncommon one (right) for one task, revisiting the example from Fig. 2. The two programs have equivalent program
lengths. The more common program has a larger step count. The grammar induction prior assigns higher probability to the left program (it is 3.32 times more likely), so it can
explain the overall trend of participant preferences. Subroutines are shown with green lines that connect the subroutine call to its constituent instructions. First use of a subroutine
has solid lines, while subsequent uses have dashed lines. The log of the grammar induction prior is shown, with the values for its three parameters set to 𝛼 = 1, 𝑝𝑒𝑛𝑑 = 1

10
, and

𝑝𝑐 𝑎𝑙 𝑙 = 1
2
.

Fig. 5. Examining a common program (left) to two uncommon programs (middle, right) that all share the same trace. Here, programs are matched by step count, since they share
a trace. Participant choice is not explained by program length, but can be explained by the grammar induction model. See Fig. 4 for more detail about the figure.
subroutine are preceded by the instruction Turn Left. This preceding
instruction can be incorporated by creating an additional subroutine
(middle). This program has the same program length, but is written by
fewer participants. Under the grammar induction prior, this program
is less probable because it has less reuse. An intermediate program
between these two is also shown (right), where the original subroutine
is instead rewritten to include the preceding instruction, reducing the
number of places the subroutine can be called.

Fig. 6 shows a similar example of programs that generate the most
common trace, for a different task. As in the previous example, the
common program (left) has a shorter subroutine that appears more
often, while the uncommon program (right) has more subroutines that
are used less often. Notably, in this case the common program is
actually longer. The grammar induction prior can capture this pattern
for the same reason as above—by way of the DP, it prefers greater reuse
of a single subroutine.
9 
Taken together, these qualitative results challenge a simple ac-
count of choice solely on the basis of cost or program length. This
is particularly notable since participants have a monetary incentive to
minimize the length of their programs in the experiment. Distinctive
about the grammar induction account is that, above and beyond the
length savings associated with the reuse of a subroutine, we expect
additional preference for reuse of subroutines, as predicted by the
rich-get-richer dynamics of reuse from the DP. Next, we move to a
quantitative comparison of models in predicting behavior.

5.2.2. Predicting participant programs
To more comprehensively examine human behavior, we fit models

to the full set of programs people wrote, estimating parameters with
maximum likelihood estimation using the procedures described above
(see Table 2 for fitted parameters). We compare models by using the
Bayesian information criterion (BIC; Schwarz, 1978), which penalizes
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Fig. 6. A case where a common participant program is inconsistent with the predictions of program length. As in Fig. 5, the programs have the same trace, so they are matched
by step cost. In contrast, now the uncommon figure has a shorter program length. The grammar induction prior can predict this pattern of behavior because of the bias towards
reuse. See Fig. 4 for more detail about the figure.
Table 2
Table of fitted models, with log likelihood, BIC, parameter count, and fitted parameters.

Log
likelihood

BIC Param.
count

Parameters

random choice −21709.7 43419.4 0

MDL −16787.3 33582.0 1 𝛽MDL = 0.98
grammar induction −13482.3 26986.9 3 𝛼 = 4.23

𝛽GrammarInduction = 0.48
𝑝𝑐 𝑎𝑙 𝑙 = 0.12

step cost −15880.5 31768.5 1 𝛽StepCost = 1.31
MDL + step cost −15267.2 30549.3 2 𝛽MDL = 0.53

𝛽StepCost = 0.85
grammar induction
+ step cost

−12825.2 25680.1 4 𝛼 = 2.52
𝛽GrammarInduction = 0.38
𝑝𝑐 𝑎𝑙 𝑙 = 0.09
𝛽StepCost = 0.52
Fig. 7. Model comparison of accounts of participant program creation. (a) Plot of BIC of experimental data as predicted by each of the models, after parameter fitting. Models
with smaller BIC are a better account of behavior. (b) BIC of data under each model, but split by task. Parameters are the same as in (a), so they are the best fit for all tasks.
The color of the models is also the same as in (a). Task letter is a reference to the subfigure in Fig. 3.
models based on their number of fit parameters. We first compare
the three priors, based on the model BICs shown in Fig. 7(a). All
improve on a random choice model (Likelihood-ratio test for step cost:
𝜒2(1) = 11658.3, 𝑝 < .001, MDL: 𝜒2(1) = 9844.8, 𝑝 < .001, grammar
10 
induction: 𝜒2(3) = 16454.7, 𝑝 < .001), and the best fit to behavior is
the grammar induction model based on the BIC. Surprisingly, the step
cost model is a better fit to behavior than the MDL model—this could
mean that participants first identified short traces and then compressed
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Fig. 8. Participants write common programs faster and with fewer program evaluations. Bivariate histogram of task responses for each participant on each task, with responses
binned along horizontal axis by program count and along vertical axis by either (a) log-transformed response times (s) or (b) the number of program evaluations. A related
regression analysis is reported in the main text, which uses program count to predict response times and number of program evaluations while controlling for program length and
cost, and finds results consistent with these plots.
them. In order to control for the influence of this kind of strategy, we
also include the combined models described above, in order to compare
the MDL and grammar induction models. Compared to a baseline step
cost model, we still find an improvement in fit in the MDL + step cost
(Likelihood-ratio test, 𝜒2(1) = 1226.6, 𝑝 < .001) and grammar induction
+ step cost (Likelihood-ratio test, 𝜒2(3) = 6110.6, 𝑝 < .001) models.
Among all tested models, the grammar induction + step cost model is
the most predictive of behavior.

While our inclusion of step costs was primarily meant to ensure
our results hold after controlling for step costs, we also found that
their inclusion improved upon baseline accounts (Likelihood-ratio test
for adding step cost to MDL: 𝜒2(1) = 3040.1, 𝑝 < .001; to grammar
induction: 𝜒2(1) = 1314.1, 𝑝 < .001). We explore several qualitative
examples demonstrating the importance of step costs in participant
programs in the appendix.

Using these parameters (which were fit across all tasks), we examine
the model’s predictions for each task in Fig. 7(b), finding patterns that
are broadly consistent with the group summary. In particular, we find
that one of the grammar induction models is still the best predictor for
each individual task, compared to the alternative accounts.

We test for the influence of two confounds in the Appendix: (1) Does
programming experience have any influence on model comparison? (2)
Does program preprocessing have any influence on model comparison?
We find that controlling for either produces qualitatively similar results
as reported here.

These analyses have focused on predicting behavior for all partici-
pants and tasks. However, an important direction for future studies is
to better understand differences for individual participants and tasks.
We report several analyses in the appendix that provide interesting
directions for future study. On a per-task basis, we find that task
difficulty is related to higher solution variability. We also develop a
theoretical measure that is related to solution variability, based on the
idea that competing objectives (i.e. step cost versus grammar induction)
could lead to higher variability. We also quantify individual differences
between participants by relating subroutine use and program length,
finding variability in how participants trade them off.

5.2.3. Common programs are easier to write
The following analyses explore how judicious use of hierarchy can

make learning and planning easier. We used hierarchical linear mixed-
effects models to test whether people who wrote common programs
had an easier time completing the task. We fit models with lmer and
used a baseline model with fixed effects for the intercept, program
cost, and program length and random effects for per-participant and
per-task intercepts. To test whether common programs were easier to
11 
write, we used a likelihood-ratio test to see if the addition of a regressor
for program count would improve model fit when added to a baseline
model.

One way to quantify the difficulty of the task is the length of time
it takes participants to complete it, a measure that is not specific to our
process-tracing paradigm. We find that participants who wrote more
common programs were faster at writing their programs (𝛽 = −.008,
𝜒2(1) = 69.73, 𝑝 < .001, Fig. 8(a)). This suggests that people prefer
hierarchies that are simpler to use for planning, consistent with prior
findings. Another measure of difficulty, which is uniquely measurable
in our paradigm, is the number of times participants test the execution
of their program in the editor. We found that, in the process of writing
their programs, those with more common programs executed their pro-
gram fewer times (𝛽 = −.053, 𝜒2(1) = 16.48, 𝑝 < .001, Fig. 8(b)). In order
to rule out any effect of programming experience, we also ran these
analyses in the subset of participants with no programming experience.
The results are similar as above, and reported in the appendix. So,
people prefer hierarchies that are easier to reason about—in this case,
people writing common programs can avoid explicit program execution
in the editor, perhaps by instead relying on mental simulation.

6. Discussion

In this paper, we studied the human ability to construct complex,
hierarchical plans. In order to do so, we used a process-tracing experi-
mental paradigm to collect data about hierarchical plans and developed
a framework for program inference to analyze these plans. We ran a
behavioral experiment and found that our model of grammar induction
was better at predicting behavior compared to alternative accounts that
simply assumed participants were efficient as measured by program
length or trace length. Key to the grammar induction model is the idea
that previous use of subroutines should inform future use. In addition,
we used our process-tracing paradigm to examine how the choice of
hierarchy can simplify planning. We found that participants who wrote
common programs were faster at solving the task and required less use
of program execution in the editor.

Our model was motivated by the idea that previous usage should
bias reuse. But when is this bias towards reuse sensible? It might be
a natural solution when tasks typically have repeated subtasks, since
it might lead to more efficient planning or learning (Wen, Precup,
Ibrahimi, Barreto, Va. Roy, & Singh, 2020). Another explanation could
rest on the theoretical observation that the DP is well-approximated
by a particular kind of information-theoretic cost (Dasgupta & Grif-
fiths, 2022)—this would correspond to a representational cost for the
distribution over subroutine calls. One final rationale relates to the
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idealized computational complexity of search, which is influenced by
wo factors: the possible choices at each state and the depth of a
olution. Abstract actions can accelerate search by making it possible
o rapidly reach deeper parts of the search tree. However, they might
egatively impact the complexity of search by increasing the number
f possible choices. A bias towards reuse could mitigate this increase in
omplexity by focusing attention on promising subroutines (c.f. Éltetö &

Dayan, 2023). What psychological mechanisms might implement a bias
owards reuse? Our theory could be cognitively implemented by some
ind of learning or memorization—it may reflect a simple bias towards

recently considered subroutines or instead reflect an online process
of inferring appropriate subroutines based on prior history. We hope
future research can explore how these rationalizations and potential
mechanisms relate to our account, and how they can be developed into
theories of reuse that our model could be quantitatively compared to.
For example, future accounts could develop a generative model of tasks
to explore how repeated substructure relates to participant solutions,
inspired by the approach in Wen et al. (2020).

While we focused on reuse in the context of a single task, future
esearch could examine patterns of reuse across tasks. Some exist-
ng research has examined this in how people learn program-based
ausal relations, showing that a compositional concept is difficult to
earn without an appropriate curriculum (Rule, Schulz, Piantadosi, &

Tenenbaum, 2018) and the concept learned from experience can be
dependent on the sequence of experienced tasks (Zhao et al., 2023).
Lightbot could be used to examine similar questions by permitting the
transfer of subroutines between tasks. Having explicit representations
f subroutines as they are transferred, adapted, and used in future tasks

might provide an exciting process-tracing approach for testing theories
of the influence of curriculum and experience on learning.

However, adapting our account to study across-task reuse would
introduce issues that we have not yet considered. In particular, an ever-
xpanding library of subroutines would grow unwieldy, making the cost
f search high since many subroutines would need to be considered at
ach step. The rich-get-richer dynamics of our model also pose an issue
ecause a heavily-used subroutine might remain probable long after
t is useful. These issues are addressable by decaying use counts over
ime, or ensuring that contextual information (like the current task or
ask state) is used to prioritize consideration of subroutines. These ideas

could be incorporated into our model by generalizing our approach to
ubroutine sampling to be distance dependent (Blei & Frazier, 2011),

so that subroutine use would be driven by similarities to past uses.
hrough appropriate definition of similarity between subroutine uses,

ike temporal recency or task state similarity, this formalism could be
sed to test complex hypotheses about how time, task, and task state
nfluence the consideration of subroutines. Other ideas could be drawn
rom past work, which has identified that people prioritize possibilities
hat have been probable or effective in the past (Bear, Bensinger,
ara-Ettinger, Knobe, & Cushman, 2020; Mattar & Daw, 2018; Morris,

Phillips, Huang, & Cushman, 2021).
Since our paradigm is a process-tracing paradigm, we cannot be

sure about the relationship between the explicit representation we
can measure (the hierarchical plans people submit) and the internal
epresentations people use to act. Hierarchical structure has often been
tudied by using paradigms like sequence learning, where participants
erform a fixed sequence many times. By contrast, participants never
erform the sequence of actions directly in our paradigm, and instead
ust simulate it mentally or watch it be executed by the robot. In

ddition, participants are not trained on a fixed sequence; they instead
olve the task a single time and simply submit their program. Because

behavior in our experiment is not driven by bottom-up statistics in the
same way as sequential learning, our behavioral paradigm might isolate
a distinct aspect of behavior, namely structural biases of hierarchical
planning.

It is possible that the explicitly hierarchical interface of the task
encouraged participants to use hierarchical structure in a way that
12 
they would not in real-world planning problems. While contempo-
rary studies using laboratory tasks have identified behavioral and
neural signatures of hierarchical plan representations in navigation
tasks (Balaguer, Spiers, Hassabis, & Summerfield, 2016; Huys et al.,
2015; Solway et al., 2014), the structure of Lightbot could encourage
subroutine reuse. Although the explicit incentives of the task (both
bonus payment and number of clicks necessary) encourage minimizing
otal program length, the mere existence of explicitly reusable sub-
outines could push people towards reuse at the expense of longer

programs, perhaps through a demand effect. Testing our account in
a more naturalistic setting is thus a critical—although empirically
hallenging—direction for future work.

Our approach is a computational-level account (Marr, 1982), which
naturally leads to the question of the algorithmic processes people use
to approximately implement our theory, particularly because of the in-
ractability of Bayesian inference. We hope that our experimental find-

ings justify further investigation into possible process-level accounts
and behavioral signatures that could be used to distinguish among
them. Many existing approaches to inference explore how varying
he parameterization of inference algorithms can lead to a human-
ike bias. For example, some studies have explored how low-capacity
lgorithms might recapitulate behavior (Daw & Courville, 2007; Lake
 Piantadosi, 2020) or how different proposal distributions explain

auto-correlation in participant hypotheses (Fränken et al., 2022). These
esults are often interpreted as evidence that human-like biases might
rise from rational use of cognitive resources. Future research might
ursue process models that are more consistent with findings in the
equence learning literature—for example, it has been observed that
arger action sequences might form through concatenation of existing
hunks (Tosatto, Fagot, Nemeth, & Rey, 2022), which can be used to

guide the model of program creation. In general, future work could
extend our model to investigate how process-level and algorithmic
changes can better align with observed behavior.

Our grammar induction prior, as a generative model for programs,
raises the straightforward possibility of an algorithmic implementation
ased on inference. In contrast, the MDL account we compare to is
ot formulated as a probabilistic model, so it requires non-trivial effort
o adapt it to an inference-based algorithm. Either account could be
mplemented by a process of retrospectively compressing an identified
ction sequence, by first planning and then compressing. With appro-
riate weighting, this could form a valid algorithm for the models we
ave introduced. However, a more interesting direction for the future
ould examine the bias induced with varied path-finding (e.g., what
euristic is used to guide the search for solutions?) and compression
lgorithms (e.g., do cognitive constraints influence the set of programs
hat can be considered?). More specific to the grammar induction
rior are sequential inference algorithms (like sequential Monte Carlo
amplers; Doucet, D. Freitas, Gordon, et al., 2001), which suggest a

process in which subroutines are generated prospectively, as part of
the sequential generation of a program. This suggests an interesting
algorithmic question for future studies, which could look for behavioral
indications about whether participants generate hierarchical programs
prospectively, or instead retrospectively compress already-identified
plans. However, despite the access to representations that our paradigm
ffers, it seems difficult to distinguish between these two accounts

with our reported experiments, since the program participants produce
does not immediately indicate whether the trajectory or hierarchy was
constructed first.

A related concern that is agnostic to the inference algorithm is the
omputational cost of evaluating the terms that comprise the unnor-

malized posterior, namely the prior and likelihood. In particular, the
likelihood in our model requires evaluating a program in the task. Eval-
uating a policy in the general case of stochastic environments requires
integrating over all possible outcomes which can be computationally
costly, driving people to use heuristics when estimating utilities (Lieder,
Griffiths, & Hsu, 2018), like relying on individual memories of past
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trials (Duncan & Shohamy, 2016). While participants have extensive
training on the effect of instructions in Lightbot and have access to
a program simulator, effectively using mental resources and available
time requires judicious use of simulation (Hamrick, Smith, Griffiths,
 Vul, 2015; Ullman & Wang, 2023). We found that the most com-

mon programs participants wrote required less program evaluation,
which suggests that the computational cost of evaluating programs
may influence how participants choose among programs. A previous
study used the Lightbot domain to examine how execution-related
properties of programs influence prior beliefs about programs (Ho,
Sanborn, Callaway, Bourgin, & Griffiths, 2018)—a natural extension
f that analysis could examine whether these computational properties

influence the process of search directly, or only by way of influencing
program evaluation. Future work could use explicit representations
of hierarchy, like in our experiment, in order to finely probe how
differences in hierarchy influence mental simulation.

Hierarchy is a key organizational strategy that humans use to
tructure their behavior in order to make planning and learning effi-

cient (Botvinick et al., 2009; Newell & Simon, 1972), but is difficult
to study, requiring indirect measures to infer internal hierarchical
representations (Huys et al., 2015; Rosenbaum et al., 1983; Verwey,
1996). In this article, we used a process-tracing paradigm to observe
he hierarchical representations used to solve the task, which allowed
s to identify that people have a bias towards reuse captured by
ur generative model of grammar induction. We hope our approach

can inspire future efforts to externalize the representations underlying
complex mental processes such as planning.
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Appendix A

A.1. Algorithms

In this section, we include an algorithm for program execution (see
Algorithm 1) and a generative algorithm that returns samples from the
grammar induction prior (see Algorithm 2).
13 
Algorithm 1 A recursive algorithm for program execution.
Input:

Current subroutine 𝜌𝑖
Start time 𝑡

Output: End time 𝑡
for 𝜌𝑖𝑗 in 𝜌𝑖 do

if 𝜌𝑖𝑗 ∈  then ⊳ Instruction 𝜌𝑖𝑗 is the action 𝑎𝑡
𝑠𝑡+1 ← 𝑇 (𝑠𝑡, 𝜌𝑖𝑗 )
if 𝑠𝑡+1 ∈  then

Halt program execution because a goal has been reached
end if
𝑡← 𝑡 + 1

else ⊳ Instruction 𝜌𝑖𝑗 is some subroutine 𝜌𝑘

𝑡← 𝑟𝑒𝑐 𝑢𝑟𝑠𝑒(𝜌𝑖𝑗 , 𝑡) ⊳ Recursively execute the subroutine
end if

end for

Algorithm 2 Algorithm for sampling from the grammar induction
prior. For simplicity, the programs generated by this algorithm can
ave an unlimited number of subroutines, though we only examine

programs with four subroutines in the text.
Output: Program 𝜋 = (𝜌0, 𝜌1,…)
1: function Instruction()
2: if 𝑡𝑟𝑢𝑒 ∼ 𝐵 𝑒𝑟𝑛𝑜𝑢𝑙 𝑙 𝑖(𝑝𝑐 𝑎𝑙 𝑙) then
3: 𝑘 ∼ 𝑝(𝑧𝑛+1 ∣ 𝑧1∶𝑛) ⊳ Sample subroutine, Eq. (3)
4: if 𝜌𝑘 is not defined then ⊳ Generate if new subroutine
5: define 𝜌𝑘 ⊳ Defining since recursive program is possible
6: 𝜌𝑘 ∼ Subroutine()
7: end if
8: return 𝜌𝑘
9: else
0: 𝑎 ∼ 𝑈 𝑛𝑖𝑓 𝑜𝑟𝑚() ⊳ Sample from actions 

11: return 𝑎
12: end if
3: end function
4: function Subroutine()

15: Initialize 𝜌 as an empty subroutine
6: 𝑗 ← 0
7: repeat
8: 𝜌𝑗 ∼ Instruction()
9: 𝑗 ← 𝑗 + 1
0: until 𝑡𝑟𝑢𝑒 ∼ 𝐵 𝑒𝑟𝑛𝑜𝑢𝑙 𝑙 𝑖(𝑝𝑒𝑛𝑑 )
1: return 𝜌
2: end function
3: 𝜌0 ∼ Subroutine() ⊳ Initiate sampling of program

A.2. Trace search

Our strategy for trace search features three components: (1) find a
large corpus of traces (2) by using heuristic search methods, (3) while
avoiding trivial traces.

To minimize bias in the programs we generate, we search for the
hortest traces, taking a minimum of 𝑚 = 1000 traces. To avoid any
ffects of tie-breaking, we continue searching to ensure we find all
races of equivalent cost to the 𝑚th trace.

We search in the space of traces using a variant of A* search (Hart,
Nilsson, & Raphael, 1968) that is adapted to find the best 𝑚 traces and
continue searching to avoid tie-breaking effects. Our algorithm closely
resembles m-A* search (Flerova, Marinescu, & Dechter, 2016), which
finds the top 𝑚 solutions for a problem. To ensure search efficiency,
we use a heuristic based on shortest-path lengths. In particular, while
the number of traces grows exponentially in trace length, the number
of task states is finite (though exponential in the number of lights),

https://www.templeton.org/
https://www.afrl.af.mil/AFOSR/
https://www.arl.army.mil/who-we-are/directorates/aro/
https://www.arl.army.mil/who-we-are/directorates/aro/
https://www.arl.army.mil/who-we-are/directorates/aro/
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making it reasonable to compute the shortest path to a goal from any
state. So, the heuristic cost function simply returns the shortest path
length from the trace’s final state to any goal. By design, the heuristic is
monotone (which we also empirically verify), so this ensures the results
are optimal given the assumptions of A* search (Flerova et al., 2016;
Russell & Norvig, 2021).

In order to accelerate search, we avoid traces with trivial action
equences. We required traces to consist of actions that resulted in
hanges to the state, so 𝑇 (𝑠𝑡, 𝑎𝑡) ≠ 𝑠𝑡. We also excluded certain se-

quences that are redundant or symmetric: three left turns, three right
turns, a right turn followed by or preceding a left turn, and light
instructions after turns.

A.3. Program generation

We expand an execution trace into many possible programs that
enerate the trace by rewriting the trace using all combinations of

possible subroutines. Subroutines are only considered if they are called
in at least two places in the resulting program and contain at least
two instructions. To match the experimental interface, programs could
only contain at most four subroutines. Trace rewriting uses a greedy
lgorithm that rewrites to maximize subroutine use, considering one
ubroutine at a time from longest to shortest.

We add special cases to generate programs consistent with those
written by some participants. One case optionally adds post-goal ac-
tions to the trace that are consistent with some candidate subroutine.
Though post-goal actions are extraneous, when produced by a subrou-
tine, they can still result in an overall reduction in program length.
A second case involves recursive subroutines—subroutines that call
themselves repeatedly until the goal is reached. We generate these by
proposing all trace suffixes as subroutines. A final case combines these:
recursive programs with post-goal actions.

Since these programs are used to approximate the posterior, we
minimize bias by ensuring that participant programs are in this corpus
of programs as much as possible. We do so by searching for traces in
order of ascending trace length, taking a minimum of 𝑛 = 1000 traces
but continuing to search for traces of equivalent cost to the 𝑛th trace.
Using A* search to find multiple solutions requires searching over state
trajectories, as opposed to simply searching over states. The cost of the
𝑛th trace is the maximum trace cost we consider, so participants with
programs of greater cost have programs that are not in this set. Using
these methods, 78% of participant programs were generated and 94%
of participant programs written by at least one other participant were
generated. Missing programs largely correspond to programs excluded
for the purpose of efficiency, as noted above: greater than maximum
trace cost, use of actions that result in no state change, use of redundant
instruction sequences, and post-goal actions due to a subroutine used
nly once in the pre-goal program.

A.4. Examining how step cost influences program creation

The model that is the best fit to behavior in the text (grammar
induction + step cost) incorporates the step cost prior, which minimizes
trace length. While the qualitative examples in the main text focused
extensively on providing support for the reuse-based grammar induc-
tion account, we did not provide examples showing support for the
step cost prior. In this section, we review some examples that show
how step costs inform participant choices, leading them to underuse a
subroutine.

The first two columns of Fig. A.1 show programs with a shared
ubroutine (Turn Left, Jump, Activate Light), where the pro-
ram in the first column was created by participants and the one in the
econd column was found by our program search methods. The two
rograms differ very slightly: the one participants wrote has a subrou-
ine used three times (instead of four), a longer program length, but a

horter trace length. Looking closely at the resulting trace, the programs M
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are identical until they diverge in their approach to the final light.
Participants take a more direct route to the final light (Walk, Turn
Right, Jump, Activate Light), instead of taking a longer route
that requires one additional turn but can use the subroutine (Turn
Right, Walk, Turn Left, Jump, Activate Light). Participant
preferences between these programs are inconsistent with the MDL or
grammar induction accounts, but can be explained by the step cost
prior.

The third and fourth columns of Fig. A.1 provide a very similar
xample. The two programs share a subroutine (Walk, Turn Left,
Jump, Activate Light) and only differ in their approach to the
final light. As above, the program that participants created has three
subroutine uses (instead of four), a longer program, and a shorter trace.
This example can also be explained by the step cost prior.

We also include a fifth column which has the simplest subroutine
(Jump, Activate Light), to show that participants will readily use
 subroutine four times in this task.

These examples seem to suggest that the process of subroutine use
might be informed by step costs, particularly since participants never
create the shorter programs (in the second and fourth columns).

While our examples in the main text either have entirely different
races (Fig. 4) or identical traces (Fig. 5, Fig. 6), this example highlights
ifferences in participant choices near the end of a program. We think a
romising direction for future experiments and analyses could focus on
xamples like this, where the trace length and grammar induction/MDL
odels make different predictions.

A.5. Controlling for effects of program preprocessing

Our primary analysis in the main text compares models based on
ow well they predict programs. As reported, these programs have
een preprocessed. Because preprocessing modifies programs in a way
hat could favor the grammar induction account, in particular since
t maximizes the use of existing subroutines, we run a variant of the
nalysis that avoids any preprocessing of programs.

Our results are very similar to those reported in the main text.
The BIC, log likelihood, and fitted parameters for each model are
reported in Table A.1. We found that all models were more predictive
of behavior than a random choice model (Likelihood-ratio test for step
cost: 𝜒2(1) = 10090.8, 𝑝 < .001, MDL: 𝜒2(1) = 6558.9, 𝑝 < .001, grammar
induction: 𝜒2(3) = 12007.5, 𝑝 < .001) or a step cost model (Likelihood-
ratio test for MDL: 𝜒2(1) = 301.4, 𝑝 < .001, grammar induction: 𝜒2(3) =
3519.8, 𝑝 < .001). We found that the grammar induction model (with or
without step costs) was most predictive of behavior (Fig. A.2(a)). These
ualitative results generally held on a task-specific basis (Fig. A.2(b)).

Of note, however, is that the 𝛼 parameter is much higher for the
rammar induction models than the analysis reported in the main text.

While a bias towards reuse among existing subroutines is generally
present in models due to the rich-get-richer dynamics of subroutine
sampling, a high 𝛼 leads to a preference for subroutine creation. This
could be driven by the number of subroutines used only once, which
are inlined by program preprocessing (Step 4 in Table 1), but present
in this dataset.

A.6. Controlling for programming experience

In our model comparison in the main text, we included participants
with programming experience equivalent to between 1 and 3 college
courses. In order to control for any influence of this prior experience,
we run our primary analyses in the subset of participants (𝑁 = 125)
that have no programming experience.

We found extremely similar results as our analysis in the main text.
Table A.2 lists the BIC, log likelihood, and fit parameters for each

odel. We found that models were an improvement over random
hoice (Likelihood-ratio test for step cost: 𝜒2(1) = 9416.8, 𝑝 < .001,
DL: 𝜒2(1) = 6636.6, 𝑝 < .001, grammar induction: 𝜒2(3) = 12160.8, 𝑝 <
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Fig. A.1. Example programs demonstrating the influence of step costs on participant programs. The most common hierarchical program (first column) uses a subroutine (Turn
Left, Jump, Activate Light) three times. A program discovered by program search (second column) has the same subroutine and uses it four times. This pattern of choice is
inconsistent with MDL and grammar induction, but is explained by step count. Third and fourth columns are a similar example, with the subroutine Walk, Turn Left, Jump,
Activate Light. Fifth column shows that participants will use a shorter subroutine (Jump, Activate Light) four times. See Fig. 4 for more detail about this figure.
Fig. A.2. Model comparison of accounts, without program preprocessing. (a) Plot of BIC of experimental data as predicted by each of the models, after parameter fitting. Models
with smaller BIC are a better account of behavior. (b) BIC of data under each model, but split by task. Parameters are the same as in (a), so they are the best fit for all tasks.
The color of the models is also the same as in (a). Task letter is a reference to the subfigure in Fig. 3.
Table A.1
Table of fitted models to data without program preprocessing, with log likelihood, BIC, parameter count, and fitted parameters.

Log
likelihood

BIC Param.
count

Parameters

random choice −21710.4 43420.7 0

MDL −18430.9 36869.3 1 𝛽MDL = 0.82
grammar induction −15706.6 31435.5 3 𝛼 = 68.12

𝛽GrammarInduction = 0.38
𝑝𝑐 𝑎𝑙 𝑙 = 0.28

step cost −16665.0 33337.4 1 𝛽StepCost = 1.18
MDL + step cost −16514.3 33043.4 2 𝛽MDL = 0.26

𝛽StepCost = 0.96
grammar induction
+ step cost

−14905.1 29839.8 4 𝛼 = 45.48
𝛽GrammarInduction = 0.26
𝑝𝑐 𝑎𝑙 𝑙 = 0.17
𝛽StepCost = 0.59
.001) and also an improvement over a baseline of step cost (Likelihood-
ratio test for MDL + step cost: 𝜒2(1) = 377.8, 𝑝 < .001, grammar
induction + step cost: 𝜒2(3) = 4110.4, 𝑝 < .001). Judged by BIC, the
grammar induction model (with or without step cost) was the most
predictive of behavior (Fig. A.3(a)). These patterns generally held when
examined on a per-task basis (Fig. A.3(b)).
15 
A.7. Does programming experience predict task performance?

Another question of interest is whether programming experience has
an influence on measures of task performance, like how quickly tasks
were completed. In order to test these questions, we analyze all 193
participants that completed the task, which included the 22 participants
with programming experience equivalent to > 3 college courses, who
were excluded from analyses in the main text. For each measure of task
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Fig. A.3. Model comparison of accounts, controlling for past programming experience. (a) Plot of BIC of experimental data as predicted by each of the models, after parameter
fitting. Models with smaller BIC are a better account of behavior. (b) BIC of data under each model, but split by task. Parameters are the same as in (a), so they are the best fit
for all tasks. The color of the models is also the same as in (a). Task letter is a reference to the subfigure in Fig. 3.
Table A.2
Table of fitted models to data excluding participants with programming experience, with log likelihood, BIC, parameter count,
and fitted parameters.

Log
likelihood

BIC Param.
count

Parameters

random choice −15840.5 31680.9 0

MDL −12522.2 25051.5 1 𝛽MDL = 0.95
grammar induction −9760.1 19541.5 3 𝛼 = 4.15

𝛽GrammarInduction = 0.48
𝑝𝑐 𝑎𝑙 𝑙 = 0.10

step cost −11132.1 22271.3 1 𝛽StepCost = 1.38
MDL + step cost −10943.2 21900.6 2 𝛽MDL = 0.36

𝛽StepCost = 1.07
grammar induction
+ step cost

−9076.9 18182.2 4 𝛼 = 2.16
𝛽GrammarInduction = 0.35
𝑝𝑐 𝑎𝑙 𝑙 = 0.06
𝛽StepCost = 0.64
Fig. A.4. Plotting measures of task performance for different levels of programming experience. Values are (a) log-transformed response times (s), (b) the number of program
valuations, and (c) the percentage of programs that match the most common program. Error bars show the 95% confidence interval of the mean, estimated by bootstrapping.
p
(

performance, we used a likelihood-ratio test to see whether adding a
ixed effect for programming experience would significantly improve
pon a null model, which predicted the measure with a fixed intercept
nd random per-participant intercepts. We found that programming
xperience did not improve predictions of task performance for any
easures we considered, which consisted of response times (𝜒2(2) =

3.04, 𝑝 = .218; Fig. A.4(a)), number of program evaluations (𝜒2(2) =
0.94, 𝑝 = .625; Fig. A.4(b)), and percentage of programs that match the
common program (𝜒2(2) = 2.08, 𝑝 = .353; Fig. A.4(c)). These findings
uggest that prior programming instruction or experience may have

minimal impact on task performance in Lightbot.
Another test that could be impacted by our inclusion of those with

rogramming experience is our analysis of performance characteristics
16 
of those who wrote common programs (in Fig. 8). In particular, in the
main text we found that participants, when writing common programs,
completed the task more quickly and with fewer program evaluations.
Running the same analysis with the 125 participants that had no
rogramming experience, we found similar results of faster responses
𝛽 = −0.011, 𝜒2(1) = 43.77, 𝑝 < .001, Fig. A.5(a)) and fewer program

evaluations (𝛽 = −0.054, 𝜒2(1) = 6.34, 𝑝 = .012, Fig. A.5(b)).

A.8. Examining variance in task solutions

We examine the variability in how participants solve tasks, focusing
on two questions: How does this variability relate to task performance?
Can we use our models to predict which tasks will elicit greater
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Fig. A.5. Participants without programming experience write common programs faster and with fewer program evaluations. Bivariate histogram of task responses for each participant
on each task, with responses binned along horizontal axis by program count and along vertical axis by either (a) log-transformed response times (s) or (b) the number of program
evaluations. A related regression analysis is reported in the text, which uses program count to predict response times and number of program evaluations while controlling for
program length and cost, and finds results consistent with these plots.
Fig. A.6. Plotting the cumulative number of participants that wrote the 𝑘 most common programs. The bar corresponding to the most common program is the leftmost bar in
each subfigure, at left and in red. Task label is a reference to subfigure in Fig. 3.
Table A.3
Measures of task properties, difficulty, and solution variance. Each column is a different task, with letter referencing a subfigure in Fig. 3. Rows
report task properties (light count), difficulty (mean across participants of log response time, mean across participants of number of program
evaluations, number of times task was skipped), and solution variance (number of unique solutions, and number of participants that wrote the
most common program).

Task a b c d e f g h i j

Light count 3 8 3 6 3 7 8 6 4 3

Mean log response
time (seconds)

5.69 5.71 4.87 5.41 5.27 5.72 5.50 5.22 4.88 4.61

Mean program
evaluations

9.31 12.55 5.42 9.92 8.69 14.80 12.24 9.60 7.14 5.60

Times skipped 5 5 0 1 1 13 7 5 2 3

Number of
unique solutions

69 86 32 63 91 125 117 80 62 63

Number of participants
with most common program

32
(19%)

31
(19%)

59
(35%)

50
(29%)

19
(11%)

8
(5%)

16
(10%)

32
(19%)

23
(14%)

15
(9%)
variability? We measure variance in problem solutions in two ways: the
number of unique solutions, and the number of participants that wrote
the most common program. The quantities we analyze in this section
are reported in Table A.3 and a histogram of program frequencies is in
Fig. A.6.

We first examine whether solution variability can be linked to
measures of task difficulty previously examined: response times and
number of program evaluations (Fig. A.7). We report Spearman’s rank
correlation coefficient between measures of difficulty and variance,
using a permutation test to evaluate statistical significance. We found
that unique solution count had a positive relationship with increased
task difficulty (program evaluation count: 𝜌 = 0.78, 𝑝 = .01, 𝑁 = 10,
response times: 𝜌 = 0.73, 𝑝 = .021, 𝑁 = 10). We found a negative
17 
relationship (that did not reach statistical significance) between task
difficulty and the number of participants who wrote the most common
program (program evaluation count: 𝜌 = −0.29, 𝑝 = .414, 𝑁 = 10,
response times: 𝜌 = −0.20, 𝑝 = .572, 𝑁 = 10). These results both suggest
that tasks with greater solution variability also tend to be more difficult.

Can we predict the empirical variability we see, using the predic-
tions of our models? The variability could arise from the competing
objectives that people are balancing. For example, our best fitting
model combines two objectives: the grammar induction prior and the
step cost prior. In cases where these two priors disagree, differences
in their relative weight could lead to considerably different model
predictions. So any variability in their relative weight in our research
participants could be a source of solution variability.
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Fig. A.7. Plotting measures of task difficulty (response times, number of program
valuations) and solution variability (unique solution count, number of participants
ith most common program). Task label is a reference to subfigure in Fig. 3.

Fig. A.8. Plotting a measure of theoretical solution variability (the JS divergence
between the grammar induction and step cost priors, using fitted parameters from
Table 2) against two measures of empirical solution variability (number of unique
olutions, and number of participants that wrote the most common program). Task

label is a reference to subfigure in Fig. 3.

We test this idea by seeing whether our measures of empirical
solution variance are related to a theoretical measure about the level of
disagreement between our theories of program writing. We quantify the
disagreement between two theories as the Jensen–Shannon (JS) diver-
gence of their distributions over programs, using the fitted parameters
in Table 2. The JS divergence is
𝐷𝐽 𝑆 (𝑝 ∣∣ 𝑞) = 1

2
[

𝐷𝐾 𝐿(𝑝 ∣∣ 𝑚) +𝐷𝐾 𝐿(𝑞 ∣∣ 𝑚)
]

where 𝑚(𝜌) = 1
2 [𝑝(𝜌) + 𝑞(𝜌)] is a mixture of the two distributions and

(𝑝 ∣∣ 𝑚) = ∑

𝑝(𝜌) log
(

𝑝(𝜌)
)

is the Kullback–Leibler divergence.
𝐾 𝐿 𝜌 𝑚(𝜌)
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Fig. A.9. Plotting the number of program evaluations for trials with varying numbers
of subroutines. The box shows data quartiles, while whiskers show range of the data.

The JS divergence is a non-negative measurement of how different two
istributions are, taking the value of 0 when the two distributions are

the same.
Since our best model combines the grammar induction and step

cost priors, we used the JS divergence between these two priors as
a measure of theoretical disagreement, and compared them to our
measures of empirical solution variability (Fig. A.8). We found a posi-
ive relationship between the JS divergence and the number of unique

solutions (𝜌 = 0.69, 𝑝 = .034, 𝑁 = 10) and a negative (but not
tatistically significant) relationship between the JS divergence and the

count of participants that wrote the most common program (𝜌 = −0.58,
𝑝 = .083, 𝑁 = 10). The direction of these correlations is consistent
with the idea that disagreement between priors could be a source of
ncreased solution variance.

A.9. The influence of program evaluation on subroutine creation

In contrast to typical studies of planning, where a plan might be
pdated in the course of its execution, our task permits the testing
nd revision of a plan. A natural question is whether the ability to
valuate programs in Lightbot has an influence on the programs people
rite. One simple test is to see whether the number of subroutines
articipants used was associated with the number of times they eval-
ated their program. A positive relationship might suggest that the
se of subroutines requires validating the subroutine has the expected
esult. A negative relationship might suggest that participants avoid
alidating subroutines because it is easy to reason about their expected
esults. We find a positive relationship between program evaluations
nd subroutine counts (𝜌 = 0.21, 𝑝 < .001, 𝑁 = 1668, Fig. A.9), which

holds even after excluding outlier trials where participants evaluated
programs more than 40 times (𝜌 = 0.20, 𝑝 < .001, 𝑁 = 1649). While we
avoid any causal interpretation of these results, we hope future research
can continue to examine the influence of process-tracing paradigms on
behavior.

A.10. Individual differences in subroutine use

Our analyses have largely focused on characterizing behavior at the
group level. However, there is considerable variety in the programs
that people write. Are these programs merely superficially different,
with similar structural characteristics, or do participants have differ-
ent structural preferences? We investigate this at the individual level
(averaging over tasks) by plotting program length against attributes
related to subroutines—the number of subroutines (Fig. A.10(a)), and
their average length (Fig. A.10(b)). Testing the relationship between
these variables, we find a significant negative correlation between
program length and subroutine count (𝜌 = −0.79, 𝑝 < .001, 𝑁 =
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Fig. A.10. Showing individual differences between participants by plotting program length against (a) number of created subroutines and (b) the average length of created
subroutines. Participant-level values are averaged across tasks.

Fig. A.11. Screenshots of the experiment tutorial, in the same order as presented to research participants.
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Fig. A.12. Screenshots of the experiment tutorial, continued from Fig. A.11.
171), as well as between program length and mean subroutine length
(𝜌 = −0.83, 𝑝 < .001, 𝑁 = 171). These findings suggest that the
variety in participant programs is fit well by a single dimension, with
short programs and more/longer subroutines at one extreme, and long
programs with fewer/shorter subroutines at the other.

A.11. Experiment tutorial

The complete experiment tutorial is presented in Fig. A.11 to
Fig. A.14. It explains the task (Figs. A.11(a)–A.11(c)), how to use each
20 
of the program instructions (Figs. A.11(d)–A.13(a)), and how to use
and create subroutines (Figs. A.13(b)–A.13(c)). Screenshots with a Run
button at upper left require the solution of a task (e.g., Fig. A.12(a)),
while others are simply informational. Then, participants complete a
more complex practice problem (Fig. A.13(d)). Finally, instructions for
the incentive for minimizing instruction count (i.e. program length)
are shown in Fig. A.14. It shows a number of example programs for
a given trace, in order to demonstrate how program length varies with
the choice of subroutines.
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Fig. A.13. Screenshots of the experiment tutorial, continued from Fig. A.12.
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Fig. A.14. Screenshots of the experiment tutorial, continued from Fig. A.13.
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Appendix B. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.cognition.2024.105990.

Data availability

See the Data Availability section in the manuscript.
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