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Abstract

Typical models of learning assume incremental estimation of
continuously-varying decision variables like expected rewards.
However, this class of models fails to capture more idiosyn-
cratic, discrete heuristics and strategies that people and ani-
mals appear to exhibit. Despite recent advances in strategy
discovery using tools like recurrent networks that generalize
the classic models, the resulting strategies are often onerous
to interpret, making connections to cognition difficult to estab-
lish. We use Bayesian program induction to discover strategies
implemented by programs, letting the simplicity of strategies
trade off against their effectiveness. Focusing on bandit tasks,
we find strategies that are difficult or unexpected with classical
incremental learning, like asymmetric learning from rewarded
and unrewarded trials, adaptive horizon-dependent random ex-
ploration, and discrete state switching.

Keywords: program induction; reinforcement learning;
heuristics; strategy discovery;

Classic models of reinforcement learning (RL) often as-
sume that humans and other animals incrementally esti-
mate expected rewards or other continuously-varying deci-
sion variables, and make noisy decisions based on them
(Rescorla & Wagner, 1972; Sutton & Barto, 2018). How-
ever, there is increased recognition that the learning strate-
gies actually adopted by humans (and even animals) deviate
qualitatively from these models and instead reflect more dis-
crete, idiosyncratic, and perhaps explicit heuristics: elaborat-
ing simple state-switching strategies like win-stay, lose-shift
(Iigaya, Fonseca, Murakami, Mainen, & Dayan, 2018; Lau
& Glimcher, 2005) and reflecting memories of individual tri-
als rather than summaries (Collins & Frank, 2012; Plonsky,
Teodorescu, & Erev, 2015; Duncan & Shohamy, 2016; Born-
stein, Khaw, Shohamy, & Daw, 2017). Despite individual at-
tempts to capture these behaviors by elaborating classic mod-
els, there is no general formalism spanning the space of such
strategies or predicting what variants organisms adopt in par-
ticular situations, and how.

Recent work on computational approaches to strategy dis-
covery has started to engage with these questions. For ex-
ample, meta-RL has been used to train recurrent neural net-
works (RNNs) to have recurrent dynamics that implement a
learning process (Duan et al., 2016; Wang et al., 2018) which
approximate decision-making strategies that are either task-
optimized (Ortega et al., 2019) or supervised to distill organ-
isms’ learning behavior (Dezfouli, Griffiths, Ramos, Dayan,
& Balleine, 2019; Ji-An, Benna, & Mattar, 2023; Miller, Eck-

stein, Botvinick, & Kurth-Nelson, 2023). However, this ap-
proach is lacking in a number of respects. First, neural net-
works require considerable effort to interpret (making them
awkward for theory discovery) and are data- and compute-
intensive to optimize (making them unlikely candidates for a
process model of how organisms discover strategies). Relat-
edly, it is not clear that they represent the most appropriate
strategy space over which to conduct meta-learning for these
purposes. While the divergence of task-optimized RNNs
from observed behavior might be addressed by introduc-
ing resource costs (Moskovitz, Miller, Sahani, & Botvinick,
2023; Binz & Schulz, 2022), capacity-limited RNNs have
low-dimensional continuous state spaces that do not capture
the types of memory-dependent dynamics discussed above.

Accordingly, we propose instead to use Bayesian program
induction to identify program-structured strategies for meta-
learning in RL problems. This builds on approaches used
to study cognitive representations (Goodman, Tenenbaum,
Feldman, & Griffiths, 2008; Yang & Piantadosi, 2022; Ellis,
Albright, Solar-Lezama, Tenenbaum, & O’Donnell, 2022)
and discover machine learning algorithms (Real, Liang, So, &
Le, 2020) that have been adapted to sequential decision mak-
ing (Toussaint & Storkey, 2006; Wingate, Goodman, Roy,
Kaelbling, & Tenenbaum, 2011). Our Bayesian framework
has a natural interpretation as a resource-rational approach
(Lieder & Griffiths, 2020) by letting the cognitive cost of a
program correspond to its description length, so that simpler
strategies are more probable under the prior but more effec-
tive strategies are more likely to result in optimal behavior
under the likelihood. Importantly, we can explore the rela-
tionship between previously-reported behavior and the strate-
gies resulting from different trade-offs between effectiveness
and program simplicity. By focusing on program-structured
strategies for RL, we explore a broader space of strategies
than has previously been considered. These programs are in-
terpretable and, since they are small and can be extended with
modularity and reuse (Yang & Piantadosi, 2022; Ellis et al.,
2021), may also lead to a process-level model of strategy in-
duction.

Using this approach, we identify a range of strategies in
various bandit tasks, accounting for some previously ob-
served behavioral phenomena that deviate from classical in-
cremental learning. We find instances where strategies fo-
cus exclusively on reward instead of omission, resembling
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behavioral signatures in rodents (Parker et al., 2016) and
asymmetric learning more broadly (Palminteri, 2023). We
show how this approach supports adaptive, horizon-specific
randomness in exploration, as previously observed (Wilson,
Geana, White, Ludvig, & Cohen, 2014). We also find strate-
gies that switch between discrete decision states focused on
either exploiting known options or exploring new options, as
in previous studies (Ebitz, Albarran, & Moore, 2018). Our
framework provides an interpretable alternative to existing
methods for strategy discovery, which we hope can provide
new insights in other domains.

Program-Based Strategy Induction
We formulate strategies as programs and use sampling-based
Bayesian inference to find programs that are both simple and
effective. We first introduce a formalism for tasks and strate-
gies, then describe our framework for inference, and close
with implementation details.

Tasks and Strategies
We study finite-horizon tasks where at every time step t an
agent takes an action at , makes an observation ot , and re-
ceives a reward rt , resulting over time in a history of agent-
environment interactions ht = (a1:t ,o1:t ,r1:t). Observations
may only provide partial information about the state of the
task (Kaelbling, Littman, & Cassandra, 1998), so future ob-
servations and rewards depend on the full history of agent-
environment interactions, p(ot+1,rt+1 | ht ,at+1). Agents are
modeled as p(at+1 | ht), producing a task-specific distribution
of histories p(ht+1 | ht) = p(at+1 | ht)p(ot+1,rt+1 | ht ,at+1).

Strategies require performing two computations at every
time step: updating internal representations to incorporate
new observations and rewards, and using that updated inter-
nal representation to act. Formally, strategies generate an up-
dated memory mt+1, based on information from the previous
trial (memory mt , action at , observation ot , and reward rt ),
which we refer to as the state update function f ,

mt+1 = f (mt ,at ,ot ,rt). (1)

Choice behavior is driven by the updated memory mt+1 and,
for convenience, information from the previous trial, by way
of a policy function g that returns unnormalized log probabil-
ities for each action,

log p(at+1 | ht) ∝ g(mt+1,at ,ot ,rt). (2)

A completely specified strategy π = (m1,q1, f ,g) also re-
quires an initial memory m1 and unnormalized log policy
log p(a1) ∝ q1 for the first time step. At subsequent time
steps, memory is first updated with Eq. 1 and then action is
taken with Eq. 2. Agents following a strategy are evaluated
based on the expected sum of rewards they accrue over T
steps,

V (π) = E
hT

T

∑
t=1

rt .

Table 1: Primitive operations for strategies.

Primitives Description
Arithmetic, Logic
0, ..., 49 Integers from 0 to 49 (inclusive)
+, * Addition, multiplication
-, 1/(x) Negation, multiplicative inverse
<, == Less than, equals
&&, ||, ! And, or, negation
if(c,x,y) Returns x if condition c is true, y

otherwise
Vectors
vec full(x) A vector filled with the value x
vec n(x1,...,xn) A vector where the first n entries

are supplied and others are 0, e.g.,
vec 2(x,y)=[x,y,0,0]

v[i] Returns ith entry of v
assign(v,i,x) Updated copy of v, with v[i]=x
add assign(v,i,x) Updated copy of v, with

v[i]=v[i]+x
Inputs
prev action Previous action, at
reward Previous reward, rt
state Memory from previous trial mt for

f or current trial mt+1 for g
Action probabilities
logit(l) For two-action tasks,

l = log p(a=0)
p(a=1)

softmax(w,v) Uses unnormalized log probabili-
ties in v, scaled by w

action(a) Takes action a
argmax(v) Takes action with earliest, maxi-

mum value in v

Inference
We use Bayesian program induction to search the space of
strategies with a generative prior over strategies and a likeli-
hood based on the effectiveness of the strategy.

Each component of a strategy is a program, a composition
of the primitive operations defined in Table 1. The primi-
tives correspond to simple arithmetic, logic, and vectors, as
well as primitives specific to decision-making, such as pre-
vious actions, rewards, and action distributions. For simplic-
ity, we let agent states be vectors of length 4. The space of
programs consists of all valid combinations of primitive op-
erations that return the appropriate type (either a vector for
m1 and f , or action probabilities for q1 and g), which corre-
sponds to a context-free grammar. The prior, p(π), assumes
expansions in the grammar are sampled uniformly at random,
except terminals (like integers and inputs) are 8 times more
likely than non-terminals in order to avoid excessive nest-
ing. The integers, from 1 onward, are distributed according
to a geometric distribution with probability 0.5. We repre-
sent actions with integers. Invalid programs (non-integral or



out of bounds actions/indices, computing 1/0) were assigned
a value of −∞. Programs that compute starting values (m1,
q1) have a restricted set of primitives, excluding conditionals,
vector indexing, and other input values.

Following the standard approach for planning by infer-
ence (Toussaint & Storkey, 2006; Wingate et al., 2011;
Levine, 2018), we formulate our likelihood by introducing
a Bernoulli-distributed random variable Ω that indicates the
optimality of a strategy, so that

log p(Ω = 1 | π) ∝ βV (π),

with β a positive weight on the value. Notably, optimal strate-
gies maximize this likelihood. Combining the likelihood and
prior, the posterior probability that programs are optimal is

log p(π | Ω = 1) ∝ βV (π)+ log p(π). (3)

The value weight β controls the relative contribution of sim-
plicity and task performance to the prior, so that simpler solu-
tions are preferred when β → 0 and more effective solutions
are preferred when β → ∞.

For inference, we use Markov chain Monte Carlo
(MCMC) with Metropolis-Hastings acceptance to obtain
samples from the posterior, as in prior work (Yang &
Piantadosi, 2022; Goodman et al., 2008). We run
five chains for 5 × 105 steps per weight β, which are
[100,300,1000,3000,10000,30000] for the Wilson et al.
(2014) task and [10,30,100,300,1000,3000] for others. Pro-
posal distributions are subtree-regeneration (Goodman et al.,
2008), and resampling a primitive (retaining arguments),
swapping arguments, inserting a subtree between a parent
and child, and deleting a subtree while retaining an ances-
tor (Yang & Piantadosi, 2022). A subset of m1,q1, f ,g was
proposed to, with each program independently sampled for
inclusion (probability 1

10 for m1 and q1 and 1
5 for f and g),

avoiding empty subsets by always including a program sam-
pled proportionally to inclusion probabilities. Our implemen-
tation is built on the open-source Fleet library used in previ-
ous studies (Yang & Piantadosi, 2022).

Value was estimated from 2×103 rollouts for the Ebitz et
al. (2018) task and 104 rollouts in other cases, using expected
immediate rewards as well as fixed environmental and agent
seeds per chain to decrease variance. To facilitate comparison
across chains, we compare normalized value so that chance
behavior corresponds to 0 and behavior guided by an oracle
(i.e. complete knowledge of the reward probabilities) corre-
sponds to 1. Pareto frontiers were computed by finding the
maximal strategies in the space defined by normalized value
and the prior, using the the top 100 strategies from each chain.

Exploring Strategies for a Simple Bandit Task
We first survey the strategies discovered for a two-armed

bandit, with a finite horizon of 20 trials and stationary,
Bernoulli reward probabilities drawn from a uniform distri-
bution. The simplicity of this domain makes it possible to
compute the value of strategies exactly. It is also possible to
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(b)
WSLS

m_1 = vec_2(0,1)
q_1 = action(0)
f = state
g = argmax(assign(

state ,prev_action ,reward))

(c)
accumulator

m_1 = vec_full(0)
q_1 = action(1)
f = add_assign(

state ,
if(==(reward ,prev_action),1,0),
1

)
g = argmax(state)

(d)
deterministic partial

accumulator
m_1 = vec_full(0)
q_1 = action(1)
f = add_assign(

state ,prev_action ,reward)
g = argmax(state)

(e)
stochastic partial

accumulator
m_1 = vec_1(0)
q_1 = logit(0)
f = add_assign(

state ,prev_action ,reward)
g = softmax(1,state)

Figure 1: Strategies for the two-armed bandit with station-
ary, Bernoulli rewards. a) The Pareto frontier of deterministic
strategies, which are maximal points in the space defined by
the normalized value and prior. Points correspond to individ-
ual strategies. One stochastic strategy described in the text
is included (unfilled point) for comparison. Value is normal-
ized so that chance behavior has a value of 0 and behavior
guided by an oracle has a value of 1. Also shown is the Bayes-
optimal solution to the task (dotted line). Example strategies
are shown in b-e), marked in a), and described in the text.

compare to the optimal solution, which has a simple analytic
solution that can be reasonably computed for this horizon.

We first examine strategies when value is exactly com-
puted, restricting attention to deterministic policies for com-
putational reasons. We focus on the Pareto frontier defined
by simplicity and utility, that is, solutions that are local max-
ima in the space defined by simplicity and utility (Fig. 1a).
Overall, the model exposes a progression of more elaborate
and more effective strategies parameterized by this trade-off.

One simple solution we identify is win-stay, lose-shift
(WSLS; Fig. 1b), where an action is repeated if the previ-
ous trial was rewarded, or an alternative action is selected if
the previous trial was not rewarded (Robbins, 1952). This
solution has a trivial state update f that simply passes a start-
ing vector onward, with the strategy instead implemented en-
tirely in the policy function g. For the sake of clarity, we



briefly walk through the evaluation of this strategy. When
prev action=0 and reward=1, the result of assign is [1,1].
Since argmax returns the earliest maximum value, the subse-
quent action is 0, so winning results in repeating the action 0.
On the other hand, if reward=0, the result of assign is [0,1],
so argmax would result in the action 1, meaning that a loss
resulted in a switch. The program behaves similarly for the
other action. While a more human-readable implementation
might use a conditional, this implementation’s careful use of
indices avoids the need for a conditional and happens to be
more probable under the prior.

A much more effective strategy accumulates the evidence
indicated by rewards, so that wins increase the preference for
an arm and losses decrease it. The algorithm in Fig. 1c imple-
ments this by incrementing the state at a conditional index, so
that wins for an arm or losses for the other arm result in an
increment as indexed by the arm. Since actions are selected
by using argmax, the arm with the greatest accumulated evi-
dence is selected at any time.

Other discovered strategies worse than the accumulator
corresponded to partial accumulators that only incorporated
part of the reward feedback in either an arm-specific or
reward-specific way (like in Fig. 1d). Strategies better than
the accumulator were typically minor variants of it, like giv-
ing greater weight to outcomes for the arm that was not ini-
tially selected.

For validation, we examined the strategies discovered
when value was estimated and stochastic policies were per-
mitted. We found similar policies as above, and use of
stochastic policies that were often effectively deterministic
due to large values of inverse temperatures.

One question is whether the resource-rational trade-offs
implied by this model rationalize idiosyncratic behaviors
in biological learning. One notable random policy is the
stochastic partial accumulator in Fig. 1e, which shows a mod-
est increase in value over WSLS. Interestingly, this strategy
ignores losses. This can result in poor performance with de-
terministic behavior, since choice is fixed to the first reward-
ing option (Fig. 1d, marked in Fig. 1a). However, partial
accumulation can perform effectively with stochastic choice.
This example is broadly consistent with findings of asymmet-
ric learning from positive and negative prediction errors, such
as exclusively learning from reward by rodents in a reversal
learning task (Parker et al., 2016). It also echoes findings
of optimistic learning biases in humans (Palminteri, 2023)
that theoretical accounts (in a related task with counterfac-
tual feedback) have shown to be normative in some settings
(Lefebvre, Summerfield, & Bogacz, 2022).

To examine this more closely, we searched exhaustively
over a small space of strategies to see whether exclusive ac-
cumulation of either rewarded or unrewarded trials was more
effective. The space of strategies was a generalization of the
partial accumulators in Fig. 1, testing starting conditions, in-
verse temperature, and whether policies were deterministic
or not. When rewards were accumulated, the best strategy we
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Figure 2: Adaptive random exploration, using a stochastic
accumulator. a) The Pareto frontier for solutions in the long
horizon condition. Many solutions simply accumulate re-
wards, but increase the determinism of policies (less probable
under prior) to achieve greater value. b) The discovered ac-
cumulator. The “■” is a placeholder for the inverse tempera-
ture. c) Replotted from Fig. 2b in Wilson et al. (2014). Across
conditions, there is a horizon-specific adjustment of decision
noise. d) The optimal horizon-specific inverse temperature
for the stochastic accumulator leads to more random behav-
ior for the long horizon condition. Horizon-specific inverse
temperature was selected to maximize Eq. 3 with β = 300.
Rewards were scaled by 1

100 . e) Replotted from Fig. 3a in
Wilson et al. (2014). In the long horizon condition, there
is horizon-specific adjustment of decision noise. f) Memory
magnitude in the accumulator grows over time, resulting in
less randomness for later trials in the long horizon condition.
Same inverse temperature as d).

found was Fig. 1e. When unrewarded trials were accumulated
(replacing reward with +(-(1),reward)), the best perform-
ing strategy was deterministic and implemented WSLS. Thus,
within this limited class of strategies, a bias towards positive
information is rational.

Adaptive Random Exploration
A key feature of optimal behavior in bandit tasks is adaptive
use of exploration—exploring is important early on, but over



time behavior favors the best choice given previous observa-
tions. Wilson et al. (2014) showed that humans explore adap-
tively in a bandit task, with increased preference for unfamil-
iar and less valuable arms for a longer horizon and decreased
preference for both for a shorter horizon. While horizon-
dependent exploration of unfamiliar arms is predicted by nor-
mative accounts, adaptive random exploration is hard to ex-
plain since optimal behavior is deterministic.

The task is a two-armed bandit with normal rewards that
starts with four forced-choice trials, to control the information
participants have about each arm, then proceeds to either one
or six free-choice trials. Forced-choice trials ignored action
probabilities, and an additional primitive was added so that
strategies could test whether the previous trial was a forced-
choice trial. Strategies were found for each horizon condition
independently and, to facilitate comparing conditions, value
was the average received reward on free-choice trials.

Applying our framework to search for stochastic strategies
for this task, we primarily identified an accumulator along the
Pareto front (long horizon shown in Fig. 2a, short horizon was
similar), with varied inverse temperatures for the softmax
(Fig. 2b, increasing with the value weight because the prior
disfavors larger constants). This strategy performs best with
a high inverse temperature, resulting in near-deterministic be-
havior. In this section, we will use this example program to
account for the adaptive random exploration found by Wilson
et al., focusing on the equal-information conditions where it
is most directly exposed.

One pattern of adaptive random exploration was between
different time horizons: on the first free-choice trial, par-
ticipants were more random in the long horizon condition
(Fig. 2c). Focusing on parametrically varying the strategy in
Fig. 2b, we found horizon-specific inverse temperatures for
the softmax that maximized the posterior (Eq. 3). The in-
verse temperature was larger for the short horizon, resulting
in more deterministic behavior compared to the long horizon
(Fig. 2d), consistent with the behavioral findings.

This horizon-dependent randomness results from an inter-
play between the accumulator’s memory dynamics and the
representation cost of the policy. Accumulating rewards in-
stead of weighting them means that the magnitude of entries
in the agent’s state will increase over time, leading to greater
determinism. So, for the long horizon condition, the inverse
temperature primarily serves to make early choices more
deterministic. Since integers are geometrically-distributed,
larger values of the constant softmax temperature are less
probable. This penalizes the determinism of a policy, resem-
bling information-theoretic approaches to penalizing policy
complexity (Piray & Daw, 2021; Lai & Gershman, 2021).
Combined, this means that a strategy specific to the long hori-
zon condition can afford to be more random early on, avoid-
ing the penalty associated with being deterministic.

The second pattern of adaptive random exploration identi-
fied by Wilson et al. (2014) is within the long horizon con-
dition: participant choice was more random when there were
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f = state
g = softmax(
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)
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exploit
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A2 win
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(d)
m_1 = vec_1(4)
q_1 = softmax(0,vec_1(0))
f = vec_1(

+(1,state[reward]))
g = softmax(6, assign(

vec_full(state[reward]),
prev_action ,
4

))
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no A1

A1
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explore
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A1 loss
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exploit
A1

exploit
A1
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A0 loss
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A0 loss
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exploit
A2
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any A0 win any A1 win any A2 win

Figure 3: Discovering strategies with discrete decision states
for a bandit task with non-stationary reward. a) The state-
based choice model in Ebitz et al. (2018), featuring distinct
states where behavior is either more exploratory or exploita-
tive. Adapted from Fig. 1c in Ebitz et al. (2018). b) A WSLS
strategy that randomly samples from actions after a loss. c)
A state machine for WSLS strategy. States correspond to dis-
tinct action distributions. Edge color indicates action, dashed
edges correspond to losses, and edges with action probabil-
ity of less than 1% were excluded. The initial conditions of
the strategy were modified to simplify the state machine. d)
A more complex strategy that exploits after a single win, but
requires consecutive losses to switch. e) State machine for
d). Wins always lead to a state at top (as indicated), so wins
are excluded elsewhere. States with 4+ consecutive losses
(at bottom) were collapsed because they have similar action
probabilities and identical transitions.

more remaining trials (Fig. 2e). While these results incorpo-
rated free-choice trials, they attempted to avoid a confound
between information and reward by focusing on cases where
each arm had been selected an equal number of times. Us-
ing the best inverse temperature for the long horizon, we saw
similar results (Fig. 2f). As described above, the accumula-
tor’s entries grow over time, resulting in a natural shift toward
more deterministic behavior.



Discrete Decision States
We next examine strategies that emerge for learning in a ban-
dit task with non-stationary rewards, which is difficult to
solve with the accumulation models presented in previous
sections. Ebitz et al. (2018) found that both choice behavior
and neural activity from monkeys in this setting were cap-
tured by a slightly generalized WSLS model that involved
switching between distinct states: exploring by random sam-
pling, and exploiting by selecting a preferred action (Fig. 3a).
Quickly switching between several distinctive regimes of be-
havior is difficult to model using error-based learning.

We study the task reported by Ebitz et al., which is a 3-
armed bandit with Bernoulli rewards. The probability of re-
ward for each arm is in (0.1,0.2, . . . ,0.9). After every trial,
the probability has a 10% chance of drifting up or down by
0.1, while staying in bounds. We set the horizon to 500 trials.

Our framework identifies strategies with similar motifs as
the one proposed by Ebitz et al., so we qualitatively examine
two in this section. The simpler program in Fig. 3b imple-
ments WSLS where losses lead to random sampling among
options—a loss means reward=0, so softmax returns a uni-
form distribution. We also show the program’s dynamics as
a state machine in Fig. 3c, where each state corresponds to a
unique distribution over actions, and the arrows show how
wins and losses change the policy. In the state machine,
the explore state results in random choice. Wins lead to an
action-specific exploit state, and losses lead back to the ex-
plore state. This strategy precisely mirrors the schematic pro-
posed by Ebitz et al. However, while their detailed results
are consistent with state switching, they also show that both
neural and behavioral measures somewhat violate the Markov
conditional independence properties implied by their WSLS
model, suggesting the actual state space is more complicated.
We explore one such strategy next.

The strategy in Fig. 3d (state machine in Fig. 3e) elaborates
both the exploration and exploitation phases. In particular,
when exploiting (top) it switches only after three successive
losses; for exploration (bottom) it tries random arms until a
win, but avoids the most recent choice. The code implements
this by counting consecutive losses in the 0th entry of mem-
ory, resetting the counter to 1 following a win, and using the
counter to inform choice probabilities. Importantly, this strat-
egy retains the discrete, state-like nature of the proposal in
Ebitz et al. Similar to the bandit algorithms discussed above,
this strategy also responds more readily to positive feedback,
which is also consistent with theoretical findings (in a related
task) that choice-confirmation bias is adaptive when reward
is non-stationary (Lefebvre et al., 2022).

Discussion
We have proposed a framework for strategy induction, using
inferential methods to identify strategies that are both simple
and effective. By searching for program-structured strategies,
our approach is able to find strategy representations that are
more interpretable than results from other approaches. We

use this framework to examine strategies for RL tasks that
trade off between simplicity and effectiveness. We were able
to discover strategies consistent with previously observed be-
havior, like asymmetric sensitivity to prediction errors, adap-
tive random exploration, and use of discrete decision states.

We were able to justify adaptive, horizon-dependent ran-
dom exploration in our framework, as previously observed
(Wilson et al., 2014). Within a fixed class of strategies, our
framework can cast this adaptive behavior as the result of a
resource-rational trade-off. Other approaches could explain
this by penalizing the divergence of policies from a uniform
distribution (Lai & Gershman, 2021; Piray & Daw, 2021;
Levine, 2018). However, our approach goes beyond simple
information-theoretic penalties on action distributions since
it can identify structured, task-specific strategies and penalize
them based on their description length.

One limitation of our current approach is that the pri-
mary cost of a program is its representational cost. This ne-
glects any execution-related costs the program might incur,
like memory use. Penalizing trial-specific computation costs
could encourage strategies that conditionally perform fewer
computations in some trials, which, for example, could result
in habits which can be adaptive under a speed-accuracy trade-
off (Dezfouli & Balleine, 2012). Future research could also
adjust the primitive operations available to reflect cognitive
resource limitations. For example, many kinds of memory are
known to be subject to capacity limits or noise, like working
memory (Collins & Frank, 2012) and action values (Findling,
Skvortsova, Dromnelle, Palminteri, & Wyart, 2019).

Our approach is a computational-level account (Marr,
1982) of strategy induction, leaving open questions about the
algorithms underlying strategy discovery. Future work could
examine the process-level bias induced by varying the num-
ber of samples taken in MCMC or for value estimation. An-
other question is how library learning, which adds common
subprograms as primitives (Ellis et al., 2021), could acceler-
ate inference. Library learning offers a simple way to perform
continual learning, which, by contrast, is an open challenge
for neural networks (e.g., requiring task-specific network dy-
namics to be identified and frozen to avoid catastrophic inter-
ference in research by Duncker, Driscoll, Shenoy, Sahani, &
Sussillo, 2020).

While we have focused on resource-rational strategies for
learning in a handful of bandit tasks, future research could
apply this framework to identify interpretable strategies for
sequential decision making in settings like planning, prob-
lem solving, and other learning tasks. Future work could also
apply this framework to discover strategies directly from be-
havioral data, as others have done with RNNs (Miller et al.,
2023; Ji-An et al., 2023). We hope that the continued devel-
opment of strategy discovery methods can accelerate our un-
derstanding of cognition by identifying novel features of be-
havior (Collins & Cockburn, 2020) and avoid misinterpreta-
tion of behavioral signatures (Collins & Frank, 2012; Akam,
Costa, & Dayan, 2015).
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