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Abstract
How people represent categories—and how those representa-
tions change over time—is a basic question about human cog-
nition. Previous research has suggested that people catego-
rize objects by comparing them to category prototypes in early
stages of learning but use strategies that consider the individ-
ual exemplars within each category in later stages. However,
many category learning experiments do not accurately reflect
the environmental statistics of the real world, where the proba-
bility that we encounter an object changes over time. Our goal
in this study was to introduce memory constraints by present-
ing each stimulus at intervals corresponding to the power-law
function of memory decay. Since the exemplar model relies
on the individual’s ability to store and retrieve previously seen
exemplars, we hypothesized that adding memory constraints
that better reflect real environments would favor the exemplar
model more early on compared with later. Confirming our hy-
pothesis, the results illustrate that under realistic environmen-
tal statistics with memory constraints, the exemplar model’s
advantage over the the prototype model decreases over time.
Keywords: category learning; prototype model; exemplar
model; memory decay; environmental statistics

Introduction
Computational models of categorization have played a key
role in understanding the representations people use when
learning categories. Two prominent models of categorization
include the prototype model, which posits that a stimulus is
categorized by comparing it to solely the “mean” object, or
prototype, of each category (Posner & Keele, 1968; Reed,
1972), and the exemplar model, which asserts that a stimulus
is categorized by comparing it with all of the objects for each
category (Medin & Schaffer, 1978). Earlier findings strongly
favored the exemplar model (McKninley & Nosofsky, 1996;
Medin & Schaffer, 1978; Shin & Nosofsky, 1992), but these
did not consider the progression of category learning over
time. Smith & Minda (1998) studied the fits of the proto-
type and exemplar models of categorization to human perfor-
mance on a word categorization task over time and found that
although the exemplar model dominates in the end, the pro-
totype model has a strong advantage in early stages of learn-
ing, particularly with non-linearly separable (NLS) category
structures. This result is consistent with the proposal that in-
dividuals categorize using a simple rule-based approach in
early epochs and more exemplar-specific strategies in later
epochs (Nosofsky et al., 1994).

While prototype-based categorization vs. exemplar-based
categorization has been extensively studied in the litera-

ture, less attention has been paid to the constraints of mem-
ory on categorization; namely, how much one is able to
utilize prototype-based or exemplar-based categorization is
constrained by how accessible these representations are in
their memory. Prototype-based categorization requires re-
trieving generalized knowledge about the category, whereas
exemplar-based categorization requires retrieving memory
about specific instances. It has been shown that one cat-
egorizes using generalized knowledge in early epochs and
switches to an exemplar-based model in later stages (Smith &
Minda, 1998), which does not seem consistent with findings
in the memory literature showing that it becomes increasingly
easier to access representations of general knowledge than
representations of specific items over time—i.e., memory of
specific items decays much faster than memory of the gist, or
general knowledge (Posner & Keele, 1970; Zeng et al., 2021).
How would one rely more on exemplar-based representations
in late stages of categorization when it is difficult to access
these exemplars in memory?

Memory of specific items decays quickly for a reason.
From a rational perspective, there is no need to retain infor-
mation in memory if it is no longer needed, as determined
by the statistics of the environment (Anderson & Schooler,
1991). Therefore, memory decay obeys a power law function
because the relationship between stimulus recency and the
need odds, the odds that the stimulus will be required in the
future, often obeys the power law in realistic environments,
as examined from environmental sources such as The New
York Times, parental speech, and electronic mail (Schooler
& Anderson, 1997; Figure 1a). In contrast, categorization
experiments, including Smith & Minda (1998), usually use
stimuli that appear with the same frequency regardless of the
last time the stimulus was seen (Figure 1b). This provides
an opportunity for overlearning individual stimuli, which is
unrealistic given the environmental statistics encountered in
the real world (Figure 1a). To fill this gap, we designed an
experiment that better reflects the power-law relationship be-
tween stimulus recency and the need odds (Figures 1c, 1d).
We hypothesize that setting up the categorization experiment
with realistic environmental statistics will reduce the accessi-
bility of exemplar-based representations in the memory over
time, therefore reducing or inverting the trend previously ob-
served in favoring prototype-based representation early on



(a) From Schooler & Anderson (1997) (b) Smith & Minda (1998)

(c) Our Experiment (d) Our Experiment, in Log-Log Coordinates

Figure 1: The environmental recency function, displaying the relationship between stimulus recency and its need odds, cal-
culated as P(stim)/(1−P(stim)) where P(stim) is the probability of seeing the stimulus. (a) is based on New York Times
headlines (1986 and 1987), reproduced from Figure 4a in Schooler & Anderson (1997). (b) is calculated based on the experi-
mental design of Smith & Minda (1998). (c) and (d) display average data from the 60 sequences of stimuli generated for the
experimental condition of our experiment. In (c) and (d), P(stim) was calculated using a window size of 15 trials. The linear
log-log relationship in (d) indicates that (c) is a power-law function.

and exemplar-based representations at late stages.

We expand on the work of Smith & Minda (1998) using
Anderson & Schooler’s (1991) observations about realistic
environmental structures and memory retention to redesign
the experiment. In the control condition, we replicated Smith
& Minda’s second experiment (with the NLS category struc-
tures), in which stimuli are presented with uniform frequency
over time. In the experimental condition, however, we con-
strained the presentation of stimuli to reflect the power-law
function in order to better simulate a real-world environment
involving memory constraints (Anderson & Schooler, 1991).
Since the exemplar model requires the storage and retrieval of
all exemplars, later trials would involve heightened memory
constraints.

The plan of the paper is as follows. We first explain the
formulations of the prototype and exemplar models of cate-
gorization. Next, we delineate how we constructed the pre-
sentation of stimuli in the experimental condition in order to
reflect the power-law model encountered in the real world. Fi-
nally, we discuss the behavioral and model results from both

our replication of Smith & Minda (1998) in the control con-
dition and our manipulations of the environmental statistics
in the experimental condition.

Background
Prototype Model
Various versions of the prototype model exist (Medin &
Schaffer, 1978; Medin & Smith, 1981; Reed, 1972); we
use here the formulation specified by Smith & Minda (1998,
2011). The prototype model compares the observed stimulus
to the prototype for each category. First, the distance di,Pk be-
tween stimulus i and the prototype for category k ∈ {1,2}, Pk,
is computed as

di,Pk =
m

∑
j=1

w j|i j−Pk, j|, (1)

where i j is the stimulus’ value for dimension j, and Pk, j is
the the value of the prototype of category k for dimension
j, and w j is the attentional weight assigned to dimension j.



Each attentional weight w j is constrained to take on a value
in [0,1], and the weights together sum to 1 (∑m

j=1 w j = 1).
Once the raw distance di,Pk has been calculated, stimulus i’s

similarity, ηi,Pk , to the category k prototype Pk is computed as

ηi,Pk = e−c∗di,Pk , (2)

where c is a sensitivity parameter constrained to [0,20]. The
sensitivity parameter has the effect of amplifying or shrink-
ing psychological space (Smith & Minda, 1998). Finally, the
probability that stimulus i (Si) will be categorized into cate-
gory 1 (R1) is given by

P(R1|Si) =
ηi,P1

ηi,P1 +ηi,P2

. (3)

Exemplar Model
The exemplar model has been developed and generalized
from the original context model (Medin, 1975; Nofosky
1984, 1986, 1987, 1988; Palmeri & Nofosky, 1995; McKin-
ley & Nosofsky, 1995). This formulation of the exemplar
model was used and thoroughly described in Smith & Minda
(1998). The exemplar model compares the observed stimu-
lus to all of the previously seen exemplars in each category in
order to generate a category prediction for the observed stim-
ulus. The distance di,x and similarity measure ηi,x between
stimulus i and exemplar x are calculated identically as in the
prototype model. However, the exemplar model considers all
exemplars in order to generate a prediction, so the probability
that stimulus i (Si) will be categorized into category 1 (R1) is

P(R1|Si) =
∑x∈C1 ηi,x

∑x∈C1 ηi,x +∑x∈C2 ηi,x
, (4)

where C1 is the set of exemplars for category 1 and C2 is the
set of exemplars for category 2.

While Nosofsky & Zaki (2002) criticized the lack of a
response-scaling parameter in the exemplar model used in
Smith & Minda (1998), extensive debate in the literature
(Myung, Pitt, & Navarro, 2007; Smith & Minda, 1998, 2002)
led us to exclude this parameter in order to reduce the com-
plexity of the model and enable direct comparison to the orig-
inal experiment. Because our experiment used stimuli with
six dimensions, both models had a total of seven parameters:
the six attentional weights (w1, ...,w6) and the sensitivity pa-
rameter (c). The two models were then fit to participant data
from the control and experimental conditions of the experi-
ment.

Methods
Our experiment aims to replicate Experiment 2 (NLS cate-
gories) from Smith & Minda (1998) in the control condition
and made modifications to introduce memory constraints in
the experimental condition. The task required participants
to repeatedly categorize 14 stimuli into two categories. The
stimuli were six-letter nonsensical words taken from Ap-
pendix A of Smith & Minda (1998). Each stimulus can be

thought of as a six digit string of bits, such that the prototype
for category 1 was 000000 and the prototype for category 2
was 111111. Seven stimuli belonged to category 1 [000000,
100000, 010000, 001000, 000010, 000001, 111101], and the
other seven stimuli belonged to category 2 [111111, 011111,
101111, 110111, 111011, 111110, 000100]. Each digit and
position in the binary string corresponds to a unique letter. In
each trial, the participant was shown one of the 14 stimuli and
had unlimited time to select a response of 1 for category 1 and
2 for category 2. For exactly one second after each trial, the
participant was shown Correct or Incorrect accordingly.

We collected data from 60 participants for each condi-
tion. (For reference, Smith & Minda (1998) had 32 par-
ticipants.) Participants were recruited from the 18-23 age
range and English-speaking population using Prolific. The
hypothesis, design, sample size, and analysis of this experi-
ment have been preregistered (https://aspredicted.org/
yq984.pdf). Scripts for the exemplar and prototype models
were derived from the open source code (https://github
.com/jpminda/Categorization Models).

Control Condition
The control condition, similar to Smith & Minda’s (1998) ex-
periment (the only difference being 616 trials in our experi-
ment vs. 560 trials in the original experiment), consisted of
616 trials divided into 44 blocks, each consisting of 14 tri-
als. Each block consisted of a random permutation of the 14
stimuli such that each stimulus was shown exactly once per
block.

Experimental Condition
To create the environmental statistics in Figure 1a, we de-
veloped an algorithm to generate a sequence of stimuli for
the experiment. The specific pattern of stimulus presentation
should, in turn, influence the need odds and hence the par-
ticipant’s retention of objects in memory. The experimental
design first involved assigning each of the fourteen stimuli its
own power-law function, generically defined as

f (x) = axk. (5)

We added several new parameters to the power-law function
to generate the necessary experimental conditions:

f (t) =


0 t < t0
s t = t0
a( t−t0

r )k−θ t0 < t ≤ t0 +n
0 t > t0 +n

(6)

where t is the trial number, t0 is the start trial for the stimulus
to be introduced, r is the range, n is the number of trials the
object’s power-law function should be sampled from, s is the
starting value for the power-law function, and θ is a calibra-
tion parameter. Power-law functions for consecutive stimuli
were introduced in intervals of 35 trials. As in the control
condition, each participant participated in a total of 616 tri-
als. Figure 2a displays the resulting power-law functions for

https://aspredicted.org/yq984.pdf
https://aspredicted.org/yq984.pdf
https://github.com/jpminda/Categorization_Models
https://github.com/jpminda/Categorization_Models


(a) Theoretical Power-Law Functions (b) Stimuli Assignments after Binning and Sampling

(c) Example Stimulus Sequence for a Single Participant

Figure 2: (a) Each curve corresponds to the power-law function for a particular stimulus. (b) Since data is aggregated, each
curve corresponds to the i-th stimulus seen across all participants. For example, the first curve illustrates the average proportion
of each bin allocated to the first stimulus (regardless of its identity) shown to the 60 participants. (c) Each color corresponds to
a unique stimulus i ∈ {1,14}, and the figure highlights the significant temporal clustering and subsequent decay caused by our
stimulus generation algorithm based on power-law functions. Parameter values of a = 1, k =−0.3, r = 1000, n = 350, s = 10,
and θ = a∗ ( n

r )
k were chosen to adequately reflected the power-law function in Figure 1a.

each stimulus over the entirety of the experiment. The order
of the stimuli was randomly assigned for each participant.

To assign a stimulus to each trial based on the continuous
power-law functions, we binned trials into discrete bins of 35
trials, generated a probability distribution for the bin based
on the relative values of the various stimuli power-law func-
tions over the trials in the bin, and generated the stimuli for
trials in the bin by sampling from this distribution. Figure 2b
shows how the resulting sequences of stimuli adequately re-
flected the original power-law functions. Figure 2c shows an
example of stimuli sequence for a single participant. Finally,
we verified that the sequences of stimuli generated by this
method reflected the environmental statistics in Figure 1a.

Model Fitting
Trials were split and grouped into 11 trial segments, each con-
taining 1

11 th of the trials for each stimulus based on when the
trial occurred in the experiment. Conceptually, for the exper-
imental condition, the first trial segment corresponds to the
earliest point along all stimuli power-law functions (highest
retention), and the last trial segment corresponds to the lat-
est point (lowest retention); for the control condition, trial
segments correspond to chronological groupings of trials in
absolute time, exactly as in Smith & Minda (1998).

For the comparison of the control condition to Smith and
Minda’s (1998) results, we used the sum of squared er-
rors (SSE) between the observed and predicted probabilities
as the measure of fit, which we sought to minimize. We
ran Scipy’s Sequential Least Squares Programming (SLSQP)

method with 10 initial random configurations to obtain the
best-fit parameters. The model was fit for each participant
receiving the control condition over each trial segment, as
in Smith & Minda (1998). The resulting best-fit parameters
were used to calculate the SSE that was ultimately used as the
measure of fit in Figure 4.

However, the same model-fitting procedure and definition
of fit are not germane for the experimental condition because
trial segments did not represent chronological groupings of
trials in absolute time; consequently, we could not use the
models to generate predicted probabilities for entire trial seg-
ments, as these contained many trials distributed over time,
and not the exact sequences that were seen by the partici-
pant. (For the exemplar model, this is especially problematic
because each trial within a given trial segment was seen at
a different point in time, thereby involving a different num-
ber of previously seen exemplars. Any probabilities gener-
ated by the model for an entire trial segment could not possi-
bly account for these differences.) Hence, we used the mean
squared error (MSE) within a trial segment, calculated on a
trial-by-trial basis (automatically setting the predicted prob-
abilities of trial-irrelevant stimuli to zero), as the measure of
fit, and fit the model for each participant over the entire exper-
iment (rather than per trial segment) using the SLSQP method
with 10 initial random configurations. We ensured that the ex-
emplar model only considered exemplars seen thus far since
not all exemplars were seen from the beginning. The new
model-fitting procedure and MSE fit calculation were neces-



(a) Control Condition (b) Experimental Condition

Figure 3: Average categorization accuracy over trial segments. Error bars denote the standard error of the mean.

sary so that we could apply the models to an individual trials
(since it would be inappropriate to apply the model to non-
contiguous sets of trials constituting a trial segment and gen-
erate meaningless predicted probabilities based on a set of
data that was not actually observed by the participant, partic-
ularly when different trials within a given trial segment might
involve a different set of previously seen exemplars) and then
average the squared per-trial residuals to derive a metric of
the “fit” for a given trial segment. For ease of comparison,
the same model-fitting procedure was applied to the control
condition, and the comparison is shown in Figure 5.

Results
Behavioral Results
The categorization accuracies per trial segment in each con-
dition were averaged over all participants and graphed over

time, resulting in Figure 3. In the control condition, signifi-
cant learning occurred between the first (M =.62, SD =.11)
and last (M =.73, SD =.18) trial segment, t(59) = −5.08,
p < .001. In the experimental condition, memory constraints
effectively caused participant classification accuracy to de-
crease from the second (M =.92, SD =.08) to last (M =.81,
SD =.15) trial segment, t(59) = 7.99, p < .001. The second
trial segment was compared in the experimental condition be-
cause this was the point that best reflected the beginning of
the power-law function—when the participant has repeatedly
seen the stimulus and is past the very initial stage of learning.

Model Results

The model results over trial segments from the control con-
dition are compared with the results from Smith & Minda
(1998) in Figure 4. The model results over trial segments

(a) Replication (b) Original

Figure 4: Comparison of (a) the results from our approximate replication in the control condition with (b) the results from the
original experiment, reproduced from Smith & Minda (1998). Models were fit for each participant’s performance over a trial
segment and then averaged over all participants for the condition, with fit calculated as the SSE in a trial segment. Error bars
denote the standard error of the mean.



(a) Control Condition (b) Experimental Condition

Figure 5: Comparison of the prototype and exemplar models in the (a) control and (b) experimental conditions. Models were
fit for each participant’s performance over the entire experiment and then averaged over all participants for the condition, with
fit calculated as the MSE of all per-trial residuals in a trial segment. Error bars denote the standard error of the mean. While
the MSE fit was required for the experimental condition due to trial segments being non-contiguous groupings of trials, it was
also done for the control condition for ease of comparison.

from the experimental condition are compared with the re-
sults from the control condition in Figure 5. As shown in
Figures 4 and 5, the advantage of the exemplar model over
the prototype model is increasing in the control condition but
decreasing in the experimental condition.

To formally test if the difference in model fits between the
prototype and exemplar models changed over the course of
the experiment, we ran a two-way ANOVA on the model
fits with the trial segment (first/second, last) and model type
(prototype, exemplar) as within-subject variables. For the
analysis of the control condition using the fit measure and
model-fitting method derived from Smith & Minda’s (1998)
experiment, the interaction between model type and trial
segment was still significant, F(1,59) = 19.72, p < .001.
The interaction between model type and trial segment was
also significant when using our modified model-fitting proce-
dure and calculation of fit for both the experimental condi-
tion, F(1,59) = 80.75, p < .001, and the control condition,
F(1,59) = 21.55, p < .001.

General Discussion
How well do the prototype and exemplar models of cate-
gorization reflect human performance over different stages
of learning under realistic environmental statistics? In this
study, we replicated the experiment by Smith & Minda (1998)
in our control condition, in which the frequency of stimulus
presentation remains fixed regardless of the last occurrence
of the stimulus. We modified this design to present stimuli
according to the power-law model of memory decay in or-
der to better reflect realistic environmental statistics (Ander-
son & Schooler, 1991) in our experimental condition. We
hypothesized that setting up the categorization experiment
with realistic environmental statistics would reduce the ac-

cessibility of exemplar-based representations in the memory
over time, therefore reducing or inverting the trend in Smith
& Minda’s (1998) findings. Our findings from the control
condition mostly align with Smith & Minda’s (1998) findings
that when stimuli are presented with consistent frequency, the
exemplar model’s advantage over the prototype model grows
over time. The results from the experimental condition con-
firm our hypothesis: when stimulus presentation more accu-
rately reflects the power-law property of the environment, the
exemplar model’s advantage over the prototype model gener-
ally wanes over time.

Average categorization accuracy improved over time in the
control condition; this pattern is expected, as participants
were shown stimuli with equal frequency throughout the ex-
periment and thus could learn from more information over
time. In the experimental condition, however, categoriza-
tion accuracy steadily declined after the second trial segment.
(The first trial segment represents the initial stage of learn-
ing, during which accuracy is still expected to be lower.)
Therefore, our experimental design was successful at intro-
ducing memory constraints that inhibited performance over
time. Since later trial segments contain trials further along
each object’s memory decay curve, when the object is pre-
sented less frequently, the behavioral results follow the im-
plications of the recency effect on memory—that individuals
have more difficulty retaining objects that were not presented
as recently (Anderson & Schooler, 1991).

Our findings help to reconcile incongruities between the
results from category learning and memory experiments.
Indeed, unlike traditional experimental scenarios involving
constant environmental recency functions (Smith & Minda,
1998), memory constraints encountered in realistic environ-
ments reduce the advantage of the exemplar model over the



prototype model over time. Under such memory constraints,
the faster decay of individual exemplars in memory relative to
the decay of the prototype (Posner & Keele, 1970; Zeng et al.,
2021) more strongly inhibits the performance of the exemplar
model over the prototype model later in learning.
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