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Abstract

In evaluating our choices, we often suffer from two tragic relativities. First, when our lives

change for the better, we rapidly habituate to the higher standard of living. Second, we can-

not escape comparing ourselves to various relative standards. Habituation and comparisons

can be very disruptive to decision-making and happiness, and till date, it remains a puzzle

why they have come to be a part of cognition in the first place. Here, we present computa-

tional evidence that suggests that these features might play an important role in promoting

adaptive behavior. Using the framework of reinforcement learning, we explore the benefit of

employing a reward function that, in addition to the reward provided by the underlying task,

also depends on prior expectations and relative comparisons. We find that while agents

equipped with this reward function are less happy, they learn faster and significantly outper-

form standard reward-based agents in a wide range of environments. Specifically, we find

that relative comparisons speed up learning by providing an exploration incentive to the

agents, and prior expectations serve as a useful aid to comparisons, especially in sparsely-

rewarded and non-stationary environments. Our simulations also reveal potential draw-

backs of this reward function and show that agents perform sub-optimally when compari-

sons are left unchecked and when there are too many similar options. Together, our results

help explain why we are prone to becoming trapped in a cycle of never-ending wants and

desires, and may shed light on psychopathologies such as depression, materialism, and

overconsumption.

Author summary

Even in favorable circumstances, we often find it hard to remain happy with what we

have. One might enjoy a newly bought car for a season, but over time it brings fewer posi-

tive feelings and one eventually begins dreaming of the next rewarding thing to pursue.

Here, we present a series of computational simulations that suggest these presumable

“flaws” might play an important role in promoting adaptive behavior. We explore the
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value of prior expectations and relative comparisons as a useful reward signal and find

that across a wide range of environments, these features help an agent learn faster and

adapt better to changes in the environment. Our simulations also highlight scenarios

when these relative features can be harmful to decision-making and happiness. Together,

our results help explain why we have the propensity to keep wanting more, even if it con-

tributes to depression, materialism, and overconsumption.

Introduction

“Happiness is like a feather flying in the air. It flies light, but not for very long.”
—Vinicius de Moraes, A Felicidade
From ancient religious texts to modern literature, human history abounds with tales

describing the struggle to achieve ever-lasting happiness. Paradoxically, happiness is one of the

most sought-after human emotions, yet achieving it over the long-term remains an elusive goal

for many people. This pursuit turns out to be hard particularly because happiness is not just a

function of one’s current state, but is plagued by two relativities. First, what it takes to be happy

depends on one’s prior expectations, and these expectations adapt to current circumstances

[1–4]. A positive change in lifestyle produces a “boost” in happiness but the boost often does

not last long and one rapidly habituates to the higher standard of living (aptly coined the

“hedonic treadmill” [5]). Second, happiness is influenced by relative comparisons [6–9].

Beyond the absolute level of what they have, people are often concerned with the difference

between what they have and a desired level that they wish to achieve (the so-called “aspiration

level” [10, 11]). The dynamics of adaptive expectations and relative comparisons have signifi-

cant consequences for mental health and well-being—they can result in a vicious cycle of

never-ending wants and desires, leaving us miserable even in favorable circumstances [12–16].

The conspicuous and turbulent impact of these features on society raises an important

question: why is behavior influenced by habituation and comparison in the first place? A long-

standing assumption within the field is that these relative features might have offered evolu-

tionary advantages [17–21], however, a precise characterization of how and why these relative

aspects might be desirable features of intelligent agents remains lacking.

In this article, we provide a perspective on the costs and benefits of habituation and com-

parisons by adopting the computational framework of reinforcement learning (RL) [22],

within which we can make a formal distinction between what one might call objective and sub-

jective reward functions. RL has historically offered a rich and comprehensive framework for

understanding behaviors that are guided by value [23–26]. In standard RL theory, the reward

function serves the role of defining optimal behavior i.e., what the agent “ought” to accomplish.

This is easy in experimentally-determined environments, but harder in more open-ended

natural environments [27–29]. Nevertheless, in either case, such reward functions are

objective in the sense they are determined directly by the current task and they identify what

an environment designer (or, in a much more complicated sense, evolution) desires the agent

to achieve.

However, recently, the machine-learning literature has embraced the observation that the

reward function plays a second, critical, role in RL in steering the agent from incompetence to

mastery, and so has investigated strategies for reward design [30–35]. These steering reward

functions, often provided by the designer to the agent, have subjective features detached from

the particular task but can nevertheless guide the learning of the agent. Here, we consider

PLOS COMPUTATIONAL BIOLOGY A reinforcement learning perspective on habituation and comparisons

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010316 August 4, 2022 2 / 32

https://doi.org/10.1371/journal.pcbi.1010316


whether subjective reward functions based on habituation and comparisons can steer agents

competently towards objective success.

Specifically, we endow agents with a subjective reward function that, in addition to the

task-specific objective reward, also depends on prior expectations and relative comparisons.

We then embed these agents in various parameterized environments and compare their per-

formance against standard RL agents whose reward function depends on just the objective

reward value. Extensive computational simulations reveal that agents whose reward functions

depend on these additional features learn faster and significantly outperform standard reward-

based agents. Notably, this reward function offers substantial benefits in sparsely-rewarded

and non-stationary environments, settings that are considerably challenging for standard rein-

forcement learning.

Our results suggest that a subjective reward function based on prior expectations and com-

parisons might play an important role in promoting adaptive behavior by serving as a powerful

learning signal. This provides computational support for a longstanding assumption in the

field and explains why the human reward function might be based on these features. At the

same time, our simulations also shed light on potential pitfalls of this function. We find that

agents perform sub-optimally in settings where aspiration-levels are left unchecked and

become too high. We also find that these agents suffer from the “paradox of choice” [36]—

when they are in a setting where different options are very similar to each other, they do not

improve performance and remain constantly dissatisfied.

Taken together, our results provide a computational foundation for a reward function

based on adaptive expectations and relative comparisons, and may shed light on psychopathol-

ogies such as depression, materialism, and overconsumption.

Model

Formalism: Reinforcement learning

To provide the foundation for our approach, we first review the formalism of reinforcement

learning (RL) in the context of Markov decision problems (MDPs).

RL describes how an agent interacting with an environment can learn to choose its actions

to maximize expected long-run future task reward. The environment includes distinguishable

states (like a position in a maze), which can be identified with an observation that the agent

makes, actions which lead to transitions between states (like moving in a cardinal direction),

and objective rewards which are typically scalar (though can also be zero or negative and

depend stochastically or deterministically on the state and/or action). That is, at each step t,
the agent executes an action at, transitions from state st to state st+1 and receives a reward rt.
The agent acquires and maintains a possibly probabilistic policy π(s), which specifies a system-

atic mapping of states to distributions over actions.

In the simplest case, the goal of the agent is to maximize expected return following time t,
where the return Jt is the sum of the rewards:

Jt ¼ rt þ rtþ1 þ rtþ2 þ . . .þ rT; ð1Þ

where T is a final time step. The approach of maximizing expected return makes sense in situa-

tions when there is a natural notion of a final time step. However, in cases where the agent-

environment interaction can go on continually without limit, the agent tries to select actions

to instead maximize expected discounted return, where the return Gt is defined as:

Gt ¼ rt þ grtþ1 þ g
2rtþ2 þ . . . ¼

X1

k¼0

gkrtþk; ð2Þ
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where γ 2 [0, 1] is the discount factor, a parameter that determines the present value of future

rewards.

The first distinction we make between objective and subjective RL problems is common in

the literature. That is, the objective problem involves a fixed lifetime for the agent and maximi-

zation of the expected return Jt. However, the agent does not know this lifetime and instead

solves a subjective RL problem of maximizing the expected discounted return Gt.

RL algorithms are often based on estimating the value function—a function that estimates

how good it is for the agent to be in a given state. Denoted as Vπ(s), the value function is

defined as the expected cumulative discounted reward of being in a state s and taking actions

thereafter according to policy π:

VpðsÞ ¼ Ep½Gt j st ¼ s�: ð3Þ

The value function can also be defined recursively as the sum of the immediate reward and

the discounted value of the successor state as follows:

VpðsÞ ¼ Ep½rt þ gVpðstþ1Þ j st ¼ s�; ð4Þ

where rt is the reward received upon taking action at in state st and transitioning to state st+1.

Here, the expectation E takes into account the randomness associated with the action chosen,

the successor state, and the subsequent reward.

Similar to the state-value function, we can also define the action-value function which tells

us the value of the different actions that can be taken in each state. This value of an action,

called the Q-value and denoted as Qπ(s, a), is defined as the expected discounted future reward

associated with taking an action at in state st and following policy π thereafter:

Qpðs; aÞ ¼ Ep½Gt j st ¼ s; at ¼ a�

¼ Ep½rt þ gVpðstþ1Þ j st ¼ s; at ¼ a�:
ð5Þ

Here, the initial action is set and the expectation accounts for the randomness in state tran-

sitions and subsequent rewards (both of which are conditioned on the action chosen). Further-

more, the relationship between the value function and the action-value function is given as:

VpðsÞ ¼ Ep½Qpðs; aÞ�; ð6Þ

where the expectation takes into account the actions a specified by π(s). In an MDP, there is at

least one deterministic policy that maximizes the expected discounted return simultaneously

at all states. This is called the optimal policy, π�(s), and is associated with an optimal Q-value

function defined as:

Q�ðs; aÞ ¼ max
p

Qpðs; aÞ with p�ðsÞ ¼ argmaxaQ
�ðs; aÞ ð7Þ

for all s 2 S and a 2 A(s). The problem of reinforcement learning is then reduced to estimating

the action values as accurately as possible to maximize total expected discounted return

(although note that policy gradient methods [37] do not formally require action values, rather

only using them for variance reduction [38]).

For our purposes, we consider agents that learn the action values via the Q-learning algo-

rithm [39]. According to the Q-learning algorithm, following a transition st! st+1 initiated by
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action at, a reward prediction error, δt, is calculated and used to update the Q-values:

dt ¼ rt þ gmax
a2A

Qðstþ1; aÞ � Qðst; atÞ

Qðst; atÞ  Qðst; atÞ þ adt;

ð8Þ

where α 2 [0, 1] is the learning-rate parameter that determines how quickly the agent learns

from the new experience. By updating Q(s, a) in proportion to the reward prediction error, the

action values gradually approximate the optimal action values.

When the Q-values converge to their true values, the agent can act greedily by choosing

actions with the highest estimated action value. During learning, however, the agent faces a dif-

ficult trade-off between exploration and exploitation [40]. If the agent does not explore the

space of possible actions well enough, then the action values will converge too slowly or get

stuck at a suboptimal point. If the agent explores too much, then it will yield a lower cumula-

tive reward. Furthermore, in one of the classes of environments we examine, the environment

is non-stationary (the objective reward function changes over time). This means that continual

exploration is required. The exigencies of exploration constitute a second, and more subtle,

deviation between objective and subjective RL problems [41]. The objective problem requires

optimizing the expected return Jt from the very first action the agent takes. The subjective RL

problem involves learning a policy that makes good choices in future interactions with the

environment, assuming that it is stationary.

In our experiments, the agents learn the action values using the �-greedy policy—at each

state st, with probability 1 − �, the agent chooses the action with the highest estimated Q-value

and with probability � it chooses an action uniformly at random. The �-greedy algorithm pres-

ents a relatively simple yet effective method to balance exploration and exploitation. Another

(relatively) simple and commonly used exploration strategy is the softmax strategy, where the

actions are selected with probabilities proportional to their current values. We chose �-greedy

over softmax primarily for computational convenience—like the �-greedy strategy, the softmax

strategy also has one free parameter but tuning this parameter is generally considered to be

harder than tuning the � parameter [42]. However, in environments with very sparse or noisy

rewards, these strategies perform poorly as random exploration in these environments rarely

discovers rewarding states and such scenarios often require more sophisticated methods for

exploration [43–46]. Later, we will see that part of the reason why relative comparison

improves the agents’ performance is that it provides an additional exploration incentive to the

agents and implicitly encourages them to try new actions.

The Q-learning algorithm is a model-free RL method. Model-free methods [39, 47, 48]

learn the action values directly, by trial and error, without learning a “model” of the environ-

ment (i.e., without acquiring and using information about the reward function and the one-

step state transition distribution). This is computationally efficient but also causes inflexibility:

the absence of a model means that whenever the environment changes, the entire action value

function needs to be re-learned as direct experience of changed rewards and transitions. In

contrast, model-based methods [41, 49, 50] acquire the underlying model of the environment,

and use this model to estimate the action values by iterative computation, analogous to plan-

ning steps to take in a maze. These methods are computationally expensive, but their advan-

tage lies in their flexibility: local changes in the environment which result in local changes in

the model can nevertheless allow the agent to make global changes to its policy (for instance, if

a current path in the maze is blocked off). The issues for exploration and exploitation differ

rather substantially between model-based and model-free methods. Model-based methods can

have a sophisticated knowledge of their own uncertainty, but then face a catastrophically hard
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computational problem of using this information to explore and exploit with optimal effi-

ciency, whereas model-free methods are more simply guided by the reward they receive. Here,

we focus on model-free RL (by using the Q-learning algorithm) to study how the severe limita-

tions that arise from its impoverished use of the reward signal (from the perspective of explora-

tion and exploitation) can be ameliorated by prior expectations and relative comparisons.

The optimal reward framework

Our approach is based on the optimal reward framework [30, 31], a reward design method

which aims to design an appropriate reward function to optimize the behavior of an RL agent.

The optimal reward framework proposes a transformation of the reward function into two

functions—the objective and the subjective reward function. The objective reward function

outlines the task i.e., what the agent designer wishes the RL agent to achieve (e.g., evolution

might desire an agent to maximize fitness). However, objective rewards are usually sparse and

delayed relative to the actions necessary to garner them, making the task considerably hard for

the agent to solve. While the agent designer is taken as being unable to change the actual task,

they can still choose the reward function they provide to the agent. This reward function, often

a parametric transformation of the objective reward function, is called the subjective reward

function and it can potentially provide useful feedback to the agent. The agent designer then

faces the task of figuring out what this reward function that determines the way the agent

learns should be such that the agent comes to satisfy as best as possible the designer’s objective

over a desired distribution of environments. To solve this problem, in our case, the designer

performs a grid search over the space of possible parameter values for a parameterized subjec-

tive reward function and evaluates the expected cumulative objective reward in a single envi-

ronment or a class of environments. This results in an (empirical) optimal reward function i.e.,

the subjective reward function that when used by an agent to learn, allows it to maximize

expected objective reward over the distribution of environments. Crucially, this subjective

reward function can be different from the objective reward function but it may still offer a sig-

nificant advantage over learning based on just the objective rewards.

The optimal reward framework is useful because it answers the question of what makes a

good reward function while maintaining the generality of RL. We here use it to explore when

and why prior expectations and relative comparisons can potentially serve as useful (subjec-

tive) reward functions.

Approach

We consider an agent designer who seeks an RL agent to maximize cumulative objective

reward, Jt, over its finite lifetime. The designer then faces the task of choosing an appropriate

subjective reward function with which to endow the agent, where each possible reward func-

tion is a weighted combination of three components:

f ¼ w1:Objectiveþ w2:Expectþ w3:Compare;

w1;w2;w3 2 ½0; 1�:
ð9Þ

Here, the first component is Objective = rt, and it is the reward that the agent receives upon

taking the action at in state st and transitioning to state st+1. This component is the standard

reward function used in the RL framework. The second component, Expect is intended to cap-

ture a reward function that is determined by prior expectations. We define this component as

Expect = rt − Q(st, at), where rt is the objective reward received after taking the action at in

state st and Q(st, at) is the previous action value estimate of that state-action pair. This
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component decreases the objective reward value according to the current expectation by sub-

tracting the expected value Q(st, at) from rt. Further, this component is adaptive—during

learning, Q(st, at) keeps getting updated and thus the agent’s expectation will adapt to new

experiences. Note that this component is quite similar to the reward prediction error δ, as

defined in Eq 8. One difference, however, is that we set the γ value of the Expect component to

be 0 to focus on local prediction errors and myopic expectations, which makes Expect ulti-

mately negative in many environments. The third component Compare, is given as Compare

= rt − ρ, where ρ is an aspiration level for the agent. At each step t, this component evaluates

the reward received by the agent, rt, in comparison to the aspiration level thereby capturing a

reward function that is determined by relative comparisons. The aspiration level could pre-

sumably be learnt by an agent via peer comparisons or it could be inherited directly from cul-

ture or parents. Here, we assume that the designer directly provides the aspiration level to the

agent. Thus, in addition to providing the subjective reward, the designer also faces the chal-

lenge of providing an appropriate aspiration level to the agent.

In detail, we fix the agents to be �-greedy tabular Q-learning agents where the Q-update is

performed over the subjective reward function that is chosen by the agent designer. Following

algebraic manipulations, the learning rule for the agents can be written as below:

f ¼ ðw1 þ w2 þ w3Þ:rt � w3:r � w2:Qðst; atÞ;

d ¼ f þ gmax
a2A

Qðstþ1; aÞ � Qðst; atÞ;

Qðst; atÞ  Qðst; atÞ þ ad:

ð10Þ

Here, in contrast to the standard Q-learning algorithm as defined in Eq 8, the reward func-

tion f is not just dependent on the objective reward value of a state-action pair rt, but it can

also be influenced by prior expectation and relative comparison (given that the designer

assigns these weights to be different from zero). As a consequence, the Q-value estimate fol-

lowing Eq 10 will differ substantially from the standard Q-learning algorithm, which will even-

tually impact how these agents learn and act in the environment.

As noted, the main aim of the paper is to study how prior expectations and relative compar-

isons can impact learning. That said, the idea is around that a function similar to Eq 9 can

model some aspects of an individual’s well-being [51, 52], acknowledging, of course, that this

is simplistic compared with the careful psychological and neural analyses dissociating hedonic

and motivational aspects of reward [53, 54], and given other factors influencing happiness.

Nevertheless, in order to explore how some of our simulation results might at least be some-

what analogous to psychological findings in this domain, we explore the consequences of

assuming that the (momentary) happiness level of the agent is determined by the subjective

reward value that the agent receives after taking an action. Thus, when w2 6¼ 0 and w3 6¼ 0, the

agent’s happiness is influenced by prior expectations and relative comparisons, and when w2 =

w3 = 0, the agent’s happiness is only influenced by the objective reward value.

We now present various computational experiments in which we vary the distribution of

environments, while keeping the agents and the objective reward function fixed, and derive

the optimal reward function for each setting. To find the optimal reward function, we perform

a (nearly) exhaustive search over the weights w1, w2, and w3 and the aspiration level, ρ, and

compare the average cumulative objective reward of the different agents. Further, we also use

grid search to find approximately optimal, but fixed, values of other parameters such as the

learning rate α and the exploration parameter � (see Methods). Because we specify the objec-

tive function to correspond directly to the first component of f, any set of environments that

results in an optimal reward function where the values of w2 and w3 are not equal to zero can
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supply insights about when and why prior expectations and relative comparisons are useful

reward signals.

We expect the optimal subjective reward function to depend sensitively on the environ-

ments with which agents are faced. We therefore consider a range of paradigmatic challenges.

Facets we consider include the density and stationarity of rewards and the recurrence of the

domain; we also study the structurally simpler domain of bandit problems to illuminate our

findings further.

Results

Experiment 1: Exploring the value of prior expectations and relative

comparisons

Environment design. For our first set of experiments, we use a simulated physical space

shown by the gridworld environment in Fig 1a. The gridworld environment is a popular

testbed for various RL studies [22, 31, 55, 56] and lays out a straightforward way to study and

model sequential decision-making. A single agent resides in the gridworld, and can choose

between five actions: Up, Down, Right, Left, and Stay. Upon taking an action, with 90% proba-

bility the agent moves one step in the direction of the intended action and with 10% probabil-

ity it randomly adopts one of the four other actions. The thick dark grey lines in the figure

Fig 1. Environment design. (a) The two-dimensional gridworld environment used in Experiment 1. (b) To study the properties of the optimal reward,

we made several modifications to the gridworld environment. Top row: In the one-time learning environment, the agent could chose to stay in the food

location constantly after reaching it. In the lifetime learning environment, the agent was teleported to a random location in the gridworld as soon as it

reached the food state. Middle row: In the stationary environment, the food remained in the same location throughout the agent’s lifetime. In the non-
stationary environment, the food changed its location during the agent’s lifetime. Bottom row: We used a gridworld of size 7 × 7 to simulate a dense
reward setting. To simulate a sparse reward setting, we increased the size of the gridworld to 13 × 13.

https://doi.org/10.1371/journal.pcbi.1010316.g001
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represent obstacles (walls) that the agent can not cross (regardless of the movement action), so

it has to navigate through gaps in the walls to move to adjacent subspaces. At the beginning of

training, one location (randomly picked between the four states in the top-right area of the

gridworld; possible locations shown in the green box in the figure) contains the food, and the

agent receives an objective reward of +1 whenever it is in the food state. For generality, we also

include poison and sinkhole states, states which the agent should learn to avoid, in random

locations in the environment (2 each in environments of size 7 × 7 and 4 each in environments

of size 13 × 13). The agent receives an objective reward of −1 at the poison states and while the

agent receives an objective reward of 0 at sinkhole states, they are very hard to get out of (the

agent stays in the state with 95% probability regardless of the chosen action). While our motiva-

tion to include these states was to study avoidance behavior, we note that our qualitative results

do not depend on the number of poison and sinkhole states we include in the environment. We

also refer the reader to the S1 Text where we replicate our results in environments that con-

tained no poison and sinkhole states. The agent receives an objective reward of 0 at all the other

states. The agent’s starting location is one of the four states in the bottom-left area of the grid-

world, opposite the food quadrant (possible locations shown in the yellow box in the figure).

A significant advantage of using the gridworld environment is that we can easily modulate

it to make the task harder/easier for the agent to solve (also refer to Fig 1b). The simplest envi-

ronment we use is a stationary gridworld of size 7 × 7, where the optimal policy takes 12 steps

on average to reach the food state from the start state. Further, in this environment, once the

agent reaches the food state, it can choose to stay in the food location constantly and keep

accumulating objective rewards (Exp 1a, first simulation). Thus, this environment essentially

only requires one-time learning.

We then modify the environment such that the agent teleports to a random location in the

gridworld as soon as it reaches the food state. This environment requires lifetime learning as

the agent has to learn how to reach the food state from any random state in the environment

(Exp 1a, second simulation). After this, we increase the difficulty significantly via two impor-

tant modifications. In Exp 1b, we modify the environment to make it non-stationary such that

the food changes its location during the agent’s lifetime. This means that the agent has to re-

learn the optimal policy whenever the environment changes. In Exp 1c, we modulate the diffi-

culty by increasing the size of the environment from 7 × 7 to 13 × 13. This doubles the number

of steps the optimal policy takes to reach the food state and simulates a sparser reward setting.

Both flexible behavioral change and learning via delayed rewards are important aspects of

intelligent behavior and these settings often provide significant challenges to standard model-

free RL [22, 44, 48, 57, 58]. In simulating these environments we can study whether prior

expectations and comparisons might help overcome these challenges.

Exp 1a: Comparison provides an exploration incentive and improves learning signifi-

cantly. We begin by simulating a simple 7 × 7 stationary environment that requires one-time

learning. Ideally, the agent should find the food state as quickly as possible and then it should

stay in that state for the rest of the lifetime. To evaluate how well the different reward functions

fulfill the designer’s objective, we compare the average cumulative objective reward at the end

of the respective agents’ lifetime.

The reward functions we consider can be classified into seven different categories (refer to

Table 1). For all analyses that follow, we report the best performing agent (along with the cor-

responding parameter values) within each of these reward function categories.

Fig 2a plots the mean cumulative objective reward of the best agents from each reward

function category (α = 0.9, � = 0.01 for all agents). We find that the ‘Compare only’ agent

(w3 = 0.4, ρ = 0.9) obtains the highest cumulative objective reward (M = 2097.02, SD = 219.35),

more than the standard reward-based agent, ‘Objective only’ (M = 1321.89, SD = 644.61;
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w1 = 0.3), as well as the expectation-based agent, ‘Expect only’ (M = 1447.47, SD = 588.75;

w2 = 0.8). Further, the ‘Compare only’ agent outperforms the ‘Objective+Expect’ agent

(M = 1322.42, SD = 733.86; w1 = 1.0, w2 = 1.0), and performs equivalently to the ‘Objective+

Compare’ agent (M = 2095.44, SD = 219.97; w1 = 0.4, w3 = 0.4, ρ = 0.9), the ‘Expect+Compare’

agent (M = 2067.29, SD = 242.58; w2 = 0.1, w3 = 0.8, ρ = 0.9), and the ‘All’ agent (M = 2066.72,

SD = 242.62; w1 = 0.7, w2 = 0.4, w3 = 0.8, ρ = 0.9).

To provide some intuition about why the ‘Compare only’ agent performs so well, we simu-

late the agents’ behavior in a simple 4-state environment. This environment contains no obsta-

cles or poison and sinkhole states, and the agent always moves with 100% probability in the

direction of the intended action. The agent has three movement actions: Right, Left, and Stay,

and its starting location is state s1 and the food location is in state s4. As in the main gridworld

experiment, all non-food states provide an objective reward of 0 and the food state provides an

objective reward of +1. The agent can again stay at the food location constantly, thereby

requiring one-time learning. Fig 2(c) shows a visual representation of one instance of the

agent-environment interaction history along with the subsequent learnt state values for the

‘Objective only’, ‘Expect only’, and ‘Compare only’ agents. We see that near the beginning of

its lifetime (step = 5), the ‘Compare only’ agent assigns a negative value to s1. This is because

this state gives an objective reward of 0 but the agent’s aspiration level is higher than this value

(= 0.95) and thus, the agent receives a subjective reward of −0.95 at this state. This encourages

the agent to move to s2 as the current value of s2 is 0 and greater than the value of s1. After

reaching s2, the agent again assigns a negative value to s2 and then moves to s3 and again

assigns it a negative value, and then moves to s4 where the food is located. Upon reaching the

food state, the agent receives a positive subjective reward of 0.05, r4 = 1 and ρ = 0.95, which

encourages it to stay in the food location for the remainder of its lifetime. In contrast, in the

absence of exploration bonuses such as novelty bonus, optimistic initialization etc., the ‘Objec-

tive only’ and ‘Expect only’ agents assign a value of 0 to both s1 and s2 at the beginning of their

lifetime (since they both receive a subjective reward of 0 at these states). Consequently, at s2,

the agents are equally likely to move to s1 as they are to move to s3 (since the value of all these

states is 0). As a result, these agents take a longer time to eventually reach the food location. In

sum, relative comparison helps learning because it provides an exploration incentive—the

agent quickly comes to assign a negative value to any non-food state it visits (due to its aspira-

tion level) which indirectly encourages the agent to visit novel states.

We suggest that it is this difference in the way these agents learn and explore that helps the

‘Compare only’ agent to obtain higher cumulative objective reward in the larger and more

Table 1. Categories of reward functions. The reward functions we consider can be classified into seven categories.

First is ‘Objective only’, where the reward function depends only on the first component, w1. Similarly, ‘Expect only’ is

the function that depends only on the second component, w2, and ‘Compare only’ is the function that depends solely

on the third component, w3. Then, we have the functions that are a combination of two components—‘Objective+

Expect’, ‘Objective+Compare’, and ‘Expect+Compare’. Finally, we have the reward function, ‘All’, that depends on all

three components.

Reward function category w1 value w2 value w3 value

‘Objective only’ > 0 = 0 = 0

‘Expect only’ = 0 > 0 = 0

‘Compare only’ = 0 = 0 > 0

‘Objective+Expect’ > 0 > 0 = 0

‘Objective+Compare’ > 0 = 0 > 0

‘Expect+Compare’ = 0 > 0 > 0

‘All’ > 0 > 0 > 0

https://doi.org/10.1371/journal.pcbi.1010316.t001
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complex gridworld environment. To illustrate this, Fig 2b plots the average number of times

the agents visit the different states of the gridworld during their lifetime. We observe that in

contrast to the ‘Objective only’ and the ‘Expect only’ agent, the ‘Compare only’ agent spends

less time visiting the non-food states in the world. The ‘Compare only’ agent avoids the non-

food states it has already visited (as the value of those states is negative) and it instead prefers

to visit the states it has not yet visited (as the value of those states is zero), allowing it to find

the food location very quickly. On the other hand, until the time that the ‘Objective only’ and

‘Expect only’ agents first visit the food state, they assign a value of zero to all non-food states

regardless of their visit counts (except the poison state which issues a negative objective reward

= −1). Thus, these agents are equally likely to move to a previously visited state as they are to

move to a novel state which results in them finding the food location more slowly (as they pri-

marily rely on random exploration to find the food location).

Fig 2. Comparison improves learning in simple dense, stationary environments. (a) Mean cumulative objective reward attained by the different

agents in a distribution of 7 × 7 stationary environments requiring one-time learning (lifetime = 2500 steps). Here, relative comparison significantly

improve performance and the ‘Compare only’ agent obtains the highest cumulative objective reward. (b) Average visit counts of the ‘Objective only’,

‘Expect only’, and ‘Compare only’ agents (darker color represents higher visit counts and vice-versa). Compared to the ‘Objective only’ and the ‘Expect

only’ agents, the ‘Compare only’ agent spends very little time visiting the non-food states in the world. (c) Simulation of the agents’ behavior in a simple

4-state environment. The ‘Compare only’ agent assigns a negative value to any non-food state it visits (due to its aspiration level) which encourages it to

visit novel states in the environment. This allows the agent to find the food location very quickly. The ‘Objective only’ and ‘Expect only’ agents primarily

rely on random exploration and find the food location more slowly (α = 0.1 for all agents). (d) Mean cumulative objective reward attained by the

different agents in a distribution of 7 × 7 stationary environments, requiring lifetime learning (lifetime = 12500 steps). The ‘Compare only’ agent again

obtains the highest cumulative objective reward. (e) Time course of the cumulative objective reward attained by the different agents in the 7 × 7

environment requiring lifetime learning (left) and the time course of cumulative subjective reward experienced by the different agents (right). (f) Left:

Mean cumulative objective reward attained by the ‘Compare only’ agent as a function of its aspiration level in the lifetime learning environment. The

performance of the agent drops if the aspiration level is set to be too high or too low (the optimal aspiration level is marked in yellow). Right: Mean

cumulative subjective reward of the agent as a function of its aspiration level (optimal aspiration level agent is shown in yellow marker).

https://doi.org/10.1371/journal.pcbi.1010316.g002
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To complete our analysis of the dense, stationary environment, our next simulation consid-

ers a 7 × 7 environment that requires lifetime learning, where the agent is teleported to a ran-

dom location in the world as soon as it reaches the food state (α = 0.5, � = 0.1 for all agents).

We find that in this setting (Fig 2b), the ‘Compare only’ agent (w3 = 0.5, ρ = 0.05) again accu-

mulates the highest cumulative objective reward (M = 771.84, SD = 180.48) greater than the

‘Objective only’ (M = 383.38, SD = 184.67; w1 = 0.7) and the ‘Expect only’ agent (M = 384.68,

SD = 215.28; w2 = 0.1). Further, the ‘Compare only’ agent performs equivalently to the

‘Objective+Compare’ agent (M = 763.51, SD = 169.32; w1 = 0.1, w3 = 0.8, ρ = 0.05),

‘Expect+Compare’ agent (M = 756.56, SD = 179.07; w2 = 0.1, w3 = 0.8, ρ = 0.01), as well as the

‘All’ agent (M = 752.45, SD = 205.88; w1 = 0.7, w2 = 0.1, w3 = 0.5, ρ = 0.01). Fig 2e (left plot) fur-

ther demonstrates the learning difference between the ‘Objective only, ‘Expect only, and the

‘Compare only’ agents. The ‘Compare only’ agent learns faster and attains higher cumulative

objective reward compared to the other agents. Fig 2e (right plot) shows the difference in the

subjective rewards of the three agents throughout their lifetime. The subjective reward of the

‘Objective only’ agent is, naturally, proportional to the objective reward it receives in its life-

time. In some sense, the ‘Objective only’ agent is experiencing happiness in proportion to the

objective reward it receives. The ‘Expect only’ agent, apart from small boosts in happiness

(which occur on the first few food state visits), maintains a steady state of happiness through-

out its lifetime, which is akin to the hedonic treadmill. The ‘Compare only’ agent experiences

negative subjective reward in the early stages of training i.e., it can be thought as being more

unhappy in the beginning (because of the initial visits to the non-food states). However, this

then provides an exploration incentive to the agent and it visits the food state more regularly

which eventually leads to higher subjective reward i.e., in some sense, its happiness rises after

it learns a good policy. Taken together, these simulations suggest that given a distribution of

dense, stationary environments (either requiring one-time or lifetime learning), a reward func-

tion based on comparison to a well chosen aspiration level optimizes the course of learning.

Optimal aspiration level and the trade-off between objective and subjective rewards.

While the above results show that comparison serves as a useful learning signal, it is important

to note that the aspiration level of comparison-based agents needs to be set appropriately in

order for the agents to act optimally. Fig 2f plots the average cumulative objective reward

obtained by the ‘Compare only’ agent as a function of the aspiration level in the dense, station-

ary, lifetime learning environment and shows that the performance of the agent is lowered if

the aspiration level is set to be too high or too low. If the aspiration level is set to be too high,

then the agent assigns high negative values to all the states it visits (since the subjective reward

received at the states is very negative). This can cause the agent to become pessimistic in its

exploration strategy and learn a sub-optimal policy. On the other hand, if the agent’s aspiration

level is too low, then it learns more slowly as it is not encouraged to explore novel states.

We can also study the relationship between the aspiration level and the experienced subjec-

tive rewards of an agent. Agents that have very high aspiration level accumulate high negative

subjective rewards in their lifetime (Fig 2f). Conversely, agents with very low aspiration level

end up accumulating high positive subjective rewards in their lifetime. However, both these

kinds of agents are not well-calibrated to the statistics of the environment. For example, an

agent that has an aspiration level = −0.1 will be deluded as it would keep visiting states that

provide an objective reward of 0 (since they give subjective reward = 0.1) and will most likely

never discover the food location. Thus, agents that experience too many positive subjective

rewards or too many negative subjective rewards do not obtain high objective rewards. In

some sense, this perhaps suggests that both being too happy or too unhappy results in poor

performance and agents that obtain the highest cumulative objective reward tend to experi-

ence a moderate amount of unhappiness in their lifetime. While our definition of happiness is
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obviously very simple, this analysis acts as a demonstration exercise to show the trade-off an

agent designer faces in terms of maximizing the subjective reward accumulated by an agent

and the cumulative objective reward accrued by that agent.

Exp 1b: Prior expectation and comparison help deal with non-stationarity. For our

next simulation, we study the properties of the optimal reward function in a non-stationary

environment. As before, at the beginning of the agent’s lifetime, the food is randomly located

in one of the four states in the top-right area of the 7 × 7 gridworld. Once the agent reaches the

food location, it can choose to stay there constantly (i.e., it is not teleported to a random loca-

tion in the world). However, every 1250 steps, the food changes its location and moves to one

of the other remaining corners of the gridworld requiring the agent to continue exploring in

order to find the new food location.

Fig 3a plots the mean cumulative objective reward of the best performing agents from each

reward category. Here, the ‘Objective only’ agent (w1 = 0.4, α = dynamic, � = 0.1) performs

very poorly, obtaining the lowest objective reward (M = 840.10, SD = 578.24). It is outper-

formed by both the ‘Expect only’ (M = 1483.05, SD = 766.75; w2 = 0.9, α = 0.9, � = 0.1), and the

‘Compare only’ agent (M = 2669.08, SD = 539.81; w3 = 0.2, ρ = 0.9, α = 0.1, � = 0.1). While the

‘Compare only’ agent outperforms the ‘Expect only’ agent, we find that the ‘Expect+Compare’

agent (M = 2846.06, SD = 587.77; w2 = 0.1, w3 = 0.6, ρ = 0.9, α = dynamic, � = 0.1) performs

better than the ‘Compare only’ agent thereby suggesting that both prior expectation and com-

parison are helpful in dealing with non-stationarity.

To gain an intuition about why these factors help in non-stationary environments, we again

look at the agent’s behavior in the previously described simple 4-state environment. As before,

Fig 3. Prior expectation and comparison make an agent robust to changes in the environment. (a) Mean cumulative objective reward attained by

the agents in a distribution of 7 × 7 non-stationary environments (lifetime = 5000 steps). Both prior expectation and relative comparisons are helpful in

dealing with non-stationarity. (b) Agents’ behavior in a simple 4-state non-stationary environment. By step = 50, the ‘Objective only’ agent assigns a

considerably higher value to the food state compared to the ‘Compare only’ and ‘Expect+Compare’ agents. At step = 51, when the food changes its

location, the ‘Objective only’ agent receives a subjective reward of 0 at state s4 and takes a long time to lower the value of this state. Even by step = 100, it

is not able to discover the new food location. In contrast, after the food changes location, the ‘Compare only’ and ‘Expect+Compare’ agents receive high

negative subjective rewards at state s4 which reduces their value estimate of s4 very quickly. This encourages them to visit other states and enables them

to discover the new food location very quickly. (c) Graph showing how the value of the food state changes as a function of the visit counts for the

different agents. While the state value converges for all the three agents, the ‘Objective only’ agent ends up assigning a very high value to the food state

because it receives a subjective reward = 1 at each visit. The ‘Compare only’ and ‘Expect only’ agents receive lower subjective rewards and hence the

converged state value is considerably lower for these agents. (d) Average reward rate of the various agents during their lifetime on the 7 × 7 gridworld

environment (the food changes its location after every 1250 steps). (e) Left: Mean cumulative objective reward attained by the ‘Expect only’ agent as a

function of the w2 values in the non-stationary environment. The performance of the agent drops if the weight is too high or too low (optimal w2 value

is marked in yellow). Right: Mean cumulative subjective reward of the ‘Expect only’ agent as a function of the w2 value.

https://doi.org/10.1371/journal.pcbi.1010316.g003
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the agent’s starting location is s1 and the food is located at s4. To simulate non-stationarity, at

step = 50, the food changes its location from s4 to s1 and it stays there till the end of the agent’s

lifetime (lifetime = 100). Fig 3b shows a visual representation of one instance of the agent-envi-

ronment interaction history (starting from step = 49) for the ‘Objective only’, ‘Compare only’,

and ‘Expect+Compare’ agents. We first see that the agents differ in the way they update the

value of a rewarding state as a function of the number of times they visit that state. For exam-

ple, at step = 50, the ‘Objective only’ agent’s state value estimate for s4 is considerably higher

than the ‘Compare only’ and ‘Expect+Compare’ agents’ estimate. This is because the ‘Objective

only’ agent receives a subjective reward of +1 each time it visits the food state whereas the

‘Compare only’ agent only receives a subjective reward of 0.05 (ρ = 0.95). The ‘Expect+

Compare’ agent receives a subjective reward = 1.05 at the first visit but it then receives a sub-

jective reward close to 0 for subsequent visits. More generally, the converged state value esti-

mate for the food state differs substantially for the three agents. As shown in Fig 3c, given γ =

0.99, the state value estimate of the food state converges to 100 for the ‘Objective only’ agent

whereas it converges to 5 for the ‘Compare only’ agent, and to 1.04 for the

‘Expect+Compare’ agent (also refer to the S1 Text for a derivation of the convergence and the

respective upper and lower bound for the different agents).

At step = 50, the food location changes from s4 to s1 but all three agents stay at s4 because

the estimated value of s4 is higher than the estimated value of s3. The ‘Objective only’ agent

then receives a subjective reward = 0 which reduces the agent’s estimated value of s4. However,

because the previous estimated value of s4 is so high, it takes a long time for the value of s4 to

become lower than s3 which results in the agent remaining in s4 for a long period. The ‘Com-

pare only’ agent receives a high negative subjective reward upon visiting s4 (= −0.95) and

because the value estimate of s4 is not very high, the value estimate reduces very quickly

prompting the agent to explore new locations and eventually find the new food location at s1.

The ‘Expect+Compare’ agent receives an even higher negative subjective reward (subjective

reward induced by the Expect component = −1.04 and the Compare component = −0.95) and

thus, the agent’s value estimate of s4 reduces even more quickly and it ends up finding the new

food location faster than all other agents.

The simulation results for the 4-state environment are consistent with the behavior of the

agents in the 7 × 7 gridworld experiment. Fig 3d plots the average reward rate of the ‘Objective

only’, ‘Expect only’, ‘Compare only’, and ‘Expect+Compare’ agents during their lifetimes on

the gridworld environment. Here, the food changes its location every 1250th step and the

‘Objective only’ agent is not able to learn and discover the new location of the food. The

‘Expect only’ is able to better deal with the change in the environment as it is eventually able to

find the new location of the food. The ‘Compare only’ agent also handles the change in the

environment very well and it comfortably outperforms the ‘Expect only’ agent primarily

because it is more efficient in its exploration (see also the previous section). Finally, the ‘Expect

+Compare’ agent boosts the performance of the ‘Compare only’ agent as it is able to find the

new food location faster. These results suggest that in non-stationary environments, both prior

expectations and relative comparisons are valuable components as they help an agent quickly

‘move on’ from states that used to be rewarding in the past.

Optimal expectations. Similar to the relationship between the aspiration level and the

subjective reward experienced by the comparison-based agents, the experienced subjective

reward and performance of the ‘Expect only’ agent also depend considerably on the value of

w2 (especially in the non-stationary environment). Fig 3e(left) plots the mean cumulative

objective reward obtained by the ‘Expect only’ agent in the non-stationary environment as a

function of w2, showing that performance is optimized at an intermediate point when the

prior expectation is neither too high nor too low. By contrast with this non-monotonicity,
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Fig 3e(right) shows that agents with very low expectations (low w2) obtain high subjective

reward in their lifetime despite their lack of high cumulative objective reward, whereas agents

that have high expectations (by having high w2) obtain high negative subjective reward and

still without attaining high objective reward. In some sense, this suggests that agents with low

expectations are very happy in their lifetimes without performing well and agents with very

high expectations are very unhappy while also not performing well. On the other hand, agents

with moderate expectations tend to obtain the highest cumulative objective reward while

experiencing some amount of unhappiness in their lifetime. This further demonstrates the

trade-off an agent designer faces with regards to maximizing the cumulative objective reward

and the happiness experienced by an agent. Note that the agent designer does not face this

trade-off for the ‘Objective only’ agent—the happiness of which is directly proportional to its

objective reward. Thus, the ‘Objective only’ agent that accrues the highest cumulative objective

reward is the happiest such agent.

Exp 1c: Reward sparsity requires controlling comparisons. We now study the properties

of the optimal reward function in a sparser reward environment using a 13 × 13 gridworld that

requires lifetime learning, where the agent is teleported to a random location in the environ-

ment as soon as it reaches the food state.

As shown in Fig 4a, the ‘Objective only’ agent (w1 = 0.9), ‘Expect only’ agent (w2 = 0.2), and

the ‘Objective+Expect’ agent (w1 = 0.1, w2 = 0.6) perform very poorly and attain low cumula-

tive objective reward in their lifetime (α = 0.5, � = 0.1 for all three agents). This is not surpris-

ing as reinforcement learning (and exploration more generally) in sparsely rewarding

Fig 4. Relative comparisons can lead to undesirable behavior in sparsely rewarded environments. (a) Mean cumulative objective reward attained by

the agents in a distribution of 13 × 13, stationary environments requiring lifetime learning (lifetime = 12500 steps). While the ‘Compare only’ agent

performs relatively well, it is significantly outperformed by the ‘Expect+Compare’ and the ‘All’ agent. (b) Visualization of the visit counts and the learnt

policy of the ‘Compare only’ agent for states near to the food state. The agent does not visit the food state as often as it visits some of the nearby non-

rewarding states (highlighted in yellow). The agent’s learnt policy suggests that it has developed a form of aversion to the food state as it takes a

needlessly long route to reach the food state. (c) Graph showing how the value of the starting state (which provides an objective reward of 0) changes as

a function of the visit counts for the ‘Compare only’ and ‘Expect+Compare’ agents. As the ‘Compare only’ agent keeps re-visiting the starting state, it

keeps assigning a lower value to this state (due to its aspiration level). On the other hand, due to prior expectations, the ‘Expect+Compare’ agent

prevents this value from becoming too negative. (d) Development and prevention of aversion in the simple 4-state environment (the agent is teleported

to s1 after reaching food state). Each interaction shows the agent’s current estimation of the best action to take at each state and its estimated Q-value of

taking that action at that state. Here, the aspiration level of the agents is deliberately set to be very high. The ‘Compare only’ agent develops an aversion

to the food state (at step = 60 and = 80) whereas the ‘Expect+Compare’ agent does not exhibit any aversion behavior. (e) Visualization of the visit counts

of the ‘Compare only’ and the ‘Expect+Compare’ agent (darker shade represents greater visit counts and vice-versa). At the 6000th timestep, the visit

counts of the two agents are comparable. At the 8000th timestep, the ‘Compare only’ develops aversions and visits states near to the food state more

often than it visits the food state.

https://doi.org/10.1371/journal.pcbi.1010316.g004
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environments is known to be a challenging problem [22, 44, 48, 57, 58]. The ‘Compare only’

agent (w3 = 0.1, ρ = 0.001, α = 0.5, � = 0.1), performs relatively well (M = 102.86, SD = 39.91)

and obtains higher cumulative objective reward than the ‘Objective only’, ‘Expect only’, and

the ‘Objective+Expect’ agent. The addition of the Expect component to the ‘Compare only’

agent is very helpful as we find that both the ‘Expect+Compare’ (M = 130.14, SD = 43.49;

w2 = 0.6, w3 = 0.1, ρ = 0.01, α = 0.7, � = 0.1) and the ‘All’ agent (M = 133.58, SD = 48.21;

w1 = 0.9, w2 = 0.9, w3 = 0.3, ρ = 0.01, α = 0.7, � = 0.1) obtain the highest cumulative objective

reward and perform better than the ‘Compare only’ agent.

To understand why the Compare component is not sufficient by itself to maximize

cumulative objective reward, we construct a simplified version of the previous gridworld envi-

ronment—we remove all poison and sinkhole states and instead of being teleported to a ran-

dom state in the world, the agent is always teleported back to the starting state whenever it

reaches the food state. The ‘Compare-only’ agent (M = 132.16, SD = 15.51) again performs

worse than the ‘Expect+Compare’ (M = 145.15, SD = 11.13) as well as the ‘All’ agent

(M = 152.65, SD = 14.06) in this setting. Fig 4b shows one instance of the visit counts and the

learnt policy of the ‘Compare-only’ agent at the end of its lifetime in this environment. The

agent visits the states next to the food state quite often but it does not visit the food state as

much as it visits these nearby non-rewarding states. The learnt policy of the agent is even more

surprising—the agent learns a policy that encourages it to visit the food state but this policy is

rather sub-optimal as the agent takes an unnecessarily long route to reach the food state. For

example, if the agent is at the state which is to the immediate left of the food state, then follow-

ing the learnt policy, the agent would take 3 steps to reach the food state from that location

(whereas the optimal policy would reach the food state in just 1 step, by taking the action

‘right’). One explanation for this behavior is that perhaps the ‘Compare only’ agent develops

some form of ‘aversion’ to the food state. Whenever the agent visits the food state, it teleports

back to the starting state location. The starting state locations give a negative subjective reward

to the agent (since ρ = 0.001) and the agent quickly assigns a negative value to these states.

Once the agent starts visiting the food location more frequently, it also inadvertently visits the

starting states (due to teleportation) and keeps assigning an even lower value to these states

(they provide a subjective reward = −0.001 at each visit). Thus, the agent eventually starts

avoiding the food state in order to avoid going back and re-visiting the highly negatively valued

starting states. The ‘Expect+Compare’ agent does not develop an aversion to the food state

because the Expect component ensures that the value estimate of the starting state locations

does not become too negative—whenever the Compare component reduces the value of the

starting state, the Expect component induces a positive subjective reward (since it expects a

negative reward at the state but instead receives an objective reward equal to 0). This is also

shown in Fig 4c which plots the state value estimate of the starting state location as a function

of the visit count for the two agents (see also the S1 Text for a derivation of the convergence

and the difference in the upper and lower bound for the starting states for the two agents).

We provide an illustration of how aversion can develop and how the Expect component

helps the Compare component using the 4-state environment. The agent’s starting location is

s1 and it is always teleported back to this location whenever it visits the food location at s4. To

simulate aversion, we deliberately set the aspiration level of the agents to be 0.6, considerably

higher than the optimal aspiration level (= 0.2). Fig 4d shows a visualization of one instance of

the agents’ interaction history with the environment. For each interaction, we show the agent’s

current policy i.e., the estimated best action to take at each state (where ‘<’ corresponds to tak-

ing the action ‘left’, ‘>’ corresponds to taking the action ‘right’, and ‘+’ corresponds to taking

the action ‘stay’) and the estimated value of taking that action at that state. In the beginning, at

step = 20, the learnt policy of the ‘Compare only’ agent is optimal and it takes the correct
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action at each state. At step = 40, the agent still follows the optimal policy but the value of tak-

ing the action ‘right’ at states s1 and s2 is highly negative (and much lower than what it was at

step = 20). At step = 60, the agent’s policy becomes sub-optimal and it estimates the best action

to take at s1 to be ‘left’ and the best action to take at s2 to be ‘stay’. Eventually, at step = 100, the

agent learns to take the correct actions at all the states and its policy becomes optimal again.

The ‘Expect+Compare’ agent does not exhibit any aversion behavior and the learnt policy of

the agent remains optimal throughout its lifetime. These simulations highlight an important

drawback of the ‘Compare only’ agent—when comparisons are left unchecked, it can lead to

too much pessimism and the agent might end up learning a sub-optimal policy especially in

settings where rewards are sparsely available.

The importance of dynamic aspiration levels. Until now, we have considered ‘Compare

only’ agents that have a fixed aspiration level throughout their lifetime. While having a fixed

aspiration level can help the agent to learn in a variety of densely rewarded settings, it fails to

perform as well in the sparse reward setting. In a sparse reward environment, the fixed aspira-

tion level can be useful in the initial stages as it helps the agent to find the food location rela-

tively quickly. However, after a certain amount of time, when the agent starts to visit the food

state constantly, the same aspiration becomes too high for optimal learning. Fig 4e plots one

instance of the visit counts of the ‘Compare only’ and the ‘Expect+Compare’ agent at the

6000th timestep as well as the 8000th timestep. At the 6000th timestep, the two agents are com-

parable to each other and there is very little difference in the visit count plots. At the 8000th

timestep, the ‘Compare-only’ agent starts to show the aversion behavior and visits states near

to the food state more often than it visits the food state suggesting that aversion develops pri-

marily during the later stages of its lifetime.

While one way to address this shortcoming is to include the Expect component, another

way is to have a dynamic aspiration level i.e., an aspiration level that changes during the agent’s

lifetime. We find that for the ‘Compare only’ agent, an optimal strategy is to start with the opti-

mal aspiration level (i.e., the fixed value of the aspiration level which resulted in the highest

cumulative objective reward) and then lower the aspiration level by 10% midway during the

agent’s lifetime. Starting off with the optimal aspiration level allows efficient exploration of the

environment in the beginning of the lifetime. The lowered aspiration level then ensures that

the value of the non-food states does not become too negative and the agent does not develop

any aversion to the food state. This strategy considerably improves the agent—the compari-

son-based agent with the dynamic aspiration (M = 145.15, SD = 11.13) performs better than

the ‘Compare only’ agent with the fixed aspiration level as well as the ‘Expect+Compare’ agent.

An important point to note is that the above strategy of setting the dynamic aspiration level is

specific to this particular environment—just like a reward function, the aspiration level also

needs to reflect the statistics of the environment. Here, the right strategy was to lower the aspi-

ration level after a certain amount of time and some settings might require a different strategy

altogether.

Interim discussion. The above simulations suggest that relative comparison is a potent

reward signal and prior expectation serves as a useful aid to this reward function.

In Experiment 1a, we found that relative comparisons encourage the agent to avoid going

to the non-rewarding states it has already visited and instead incentivize the agent to explore

novel states. In other words, relative comparisons speed up learning by providing an explora-
tion incentive to the agent. Research in reinforcement learning has also suggested various strat-

egies to encourage exploration by providing appropriately structured intrinsic rewards to an

agent [43, 44, 59, 60]. For example, curiosity-based methods motivate exploration by providing

rewards based on how the agents’ prediction errors change over time and allow an agent even

to operate entirely in the absence of objective rewards. While curiosity-based strategies are
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efficient in domains where rewards barely exist, they can be ineffective in environments where

some rewards are available since they do not make optimal use of that particularly critical

information, and instead overspend time working out how to control facets of the environ-

ment that may not be important. On the other hand, comparison sharpens the information

available from rewards and provides a more educated exploration guidance to the agent (when

the aspiration level is set properly). Thus, we view the exploration incentive provided by rela-

tive comparisons as being complementary to such curiosity-based methods; it is quite likely

that biological agents might use comparisons along with signals such as curiosity to guide their

exploration in complex environments. In S1 Text, we also provide an assessment of relative

comparison against optimistic initialization of the Q-values, finding that the former cannot be

reduced to the latter.

In Experiment 1b, we found that prior expectation and relative comparison make the agent

more robust to fluctuations and changes in an environment. First, expectation and compari-

son-based agents do not assign a very high value to the rewarding state—in a way, they prevent

the agent from becoming too happy with what it has. Then, when the reward changes its loca-

tion, they issue a high negative subjective reward which implicitly encourages the agent to

explore other states in the environment, allowing it to discover the new reward location

quickly. Finally, simulations in sparsely rewarded environments (Experiment 1c) revealed an

important shortcoming of relative comparisons—although comparison still speeds up learning

in this setting, the agent can become overly pessimistic and learns a sub-optimal policy. Here,

the addition of prior expectation helps as it keeps the pessimism in check by signalling to the

agent that things are not bad as they seem. We also found that having a dynamic aspiration

level improves performance and helps overcome this shortcoming. This emphasizes the

importance of having well-tuned aspiration levels to ensure optimal performance of compari-

son-based agents.

Experiment 2: Exploring dynamic aspiration via multi-armed bandits

In the previous section, we showed that while relative comparisons provide a valuable explora-

tion incentive, it is crucial to keep their aspiration level in check to prevent sub-optimal learn-

ing. We also saw that having a fixed aspiration level can be sometimes detrimental to the agent

and it instead needs to have an aspiration that changes within its lifetime. In this section, we

conduct simulations in simpler bandit tasks, to gain a deeper understanding of dynamic aspi-

ration levels.

Environment design. For this set of experiments, we conduct simulations using the

multi-armed bandit environment. In the bandit task, at each timestep, the agent chooses one

of the K options (‘arms’), and receives a reward that depends stochastically on the chosen arm.

The goal of the agent is to maximize its total reward. Unlike the previous gridworld environ-

ment, the multi-armed bandit task has no state transitions. Hence, the reward obtained

depends only on the chosen action and the learning agent has to explore the action set in order

to find the best arm. The multi-armed bandit problem represents one of the simplest RL prob-

lems and and is widely employed in psychology and neuroscience for studying decision-mak-

ing under uncertainty [61–63]. We use this environment because it provides a controlled

setting in which to simulate and study aspiration levels, and also allows us to replicate our pre-

vious findings (in the gridworld environment) using a well-established paradigm.

We begin by simulating stationary bandits where the reward distribution remains constant

over time (Experiment 2a). We use a 10-armed bandit environment where the best arm always

pays an objective reward drawn from a Gaussian distribution with mean 1 and standard devia-

tion 1. The remaining 9 arms pay an objective reward according to Gaussian distributions
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with mean μa< 1 for arm a and a standard deviation of 1. We modulate task difficulty by

manipulating how close (or distant) the best arm is to the other remaining arms. Specifically,

we consider two settings. In the first setting, the arms are evenly distributed such that the

mean of each of the 9 suboptimal arms is drawn from a uniform distribution on the range [−1,

0.9]. In the second setting, the arms are very close to each other with the means of the arms are

drawn from a uniform distribution on the range [0.87, 0.97].

As in the previous experiment, we also simulate non-stationary bandits where the reward

distributions change over time (Experiment 2b). We consider two different scenarios. In the

first scenario, the reward distribution changes suddenly within the agent’s lifetime and the

agent needs to adapt to the new condition in order to perform well. In the second scenario, the

reward distribution changes constantly over time (with the reward mean of the arms following

a random walk) and hence, the agent needs to continuously adapt throughout its lifetime.

Since our primary goal in this experiment is to understand dynamic aspiration, we here

compare the following reward functions: ‘Objective’, ‘Fixed compare’, and ‘Dynamic com-

pare’. ‘Objective’ captures a reward function that is based only on the absolute reward value of

the selected arm. ‘Fixed compare’ compares the reward value of the arm to an aspiration level

which remains fixed through the agent’s lifetime. In contrast, ‘Dynamic compare’ compares

the reward value to an aspiration level that can change within the agent’s lifetime. As before,

we assume that the aspiration level is provided to the agent by the designer and we perform

grid search to find the optimal aspiration for both ‘Fixed compare’ and ‘Dynamic compare’

agents (see Methods). For comparison, we also include the Upper Confidence Bound (UCB)

algorithm [64, 65], which has known performance guarantees and is normatively well-moti-

vated [66, 67]. The UCB algorithm defines a trade-off between an arm’s current expected value

and associated uncertainty and chooses the arm with the highest upper confidence bound of

the mean (see Methods for mathematical details). Note that the ‘Expect’ agent performs very

similarly to the ‘Objective’ agent in the MAB experiments and hence we do not include the

Expect component for the following simulations.

Exp 2a: Stationary multi-arm bandit task. We first simulate a 10-armed bandit task

where the mean of the 9 suboptimal arms is drawn from a uniform distribution on range [−1,

0.9]. To evaluate how well the reward functions fulfill the designer’s objective, we compare the

average cumulative objective reward at the end of the agents’ lifetime of 5000 steps.

We find that the ‘Fixed compare’ agent (� = 0, ρ = 3.5) obtains higher cumulative objective

reward (M = 4648.57, SD = 182.93) than the ‘Objective’ agent (M = 4384.07, SD = 219.66;

� = 0.1). In some sense, this replicates our findings in Experiment 1a as the gridworld environ-

ment requiring one-time learning is slightly similar to the stationary bandit task (in both set-

tings, the agent needs to explore various states/actions and then has to exploit the best option).

Next, our grid search (see Methods) reveals that the best dynamic aspiration strategy is to

increase the aspiration gradually up to a certain point (� = 0, strategy: ρ = 2 from step 0–50, =

2.5 from step 50–100, = 2.75 from step 100–150, = 3 from step 150–200, = 3.5 afterwards) and

the ‘Dynamic compare’ agent which uses this strategy attains a higher cumulative objective

reward (M = 4796.07, SD = 326.45) than the ‘Fixed compare’ agent and the ‘Objective’ agent.

Lastly, as expected, the UCB algorithm achieves the highest cumulative reward

(M = 4875.8066, SD = 170.81) and outperforms all other agents. Fig 5a plots how frequently

the agents select the optimal action (i.e., the best arm) in their lifetimes. The ‘Fixed compare’

agent learns faster than the ‘Objective’ agent and selects the optimal action at a higher percent-

age early during training. By the end of their lifetime, both the agents select the optimal action

at a similar rate. The ‘Dynamic compare’ agent selects the optimal action at a higher rate at

most points during its lifetime implying that it learns a more efficient policy.
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We next simulate a 10-armed bandit task where the arms are very close to each other. Here,

all arms provide a high objective reward and the best arm is not very distinct from the other

arms. In this setting, comparison provides no additional benefit—the cumulative objective

reward obtained by both ‘Fixed compare’ (� = 0.1, ρ = 3.5; M = 4786.41, SD = 133.16) and

‘Dynamic compare’ (� = 0.1, ρ = 2.5 from step 0–50 and ρ = 3.5 after; M = 4790.73,

SD = 132.74) is similar to that of ‘Objective’ agent (� = 0.1; M = 4792.05, SD = 134.63). Com-

parison also does not help the agent make better choices—there is no difference between how

frequently the comparison-based agents and the ‘Objective’ agent select the best arm in their

lifetimes (Fig 5b). At the same time, as shown in Fig 5c, the comparison-based agents con-

stantly receive lower subjective rewards (due to their aspiration). If we again assume that the

happiness of an agent is proportional to the subjective reward value, then here the compari-

son-based agents can be considered as being very unhappy in their lifetimes. While the com-

parison agents were also more unhappy in the previous bandit task, here this misery seems

unnecessary as comparison does not help the agent perform better. In sum, in an environment

Fig 5. Results of the multi-armed bandit experiments. (a) 10-armed bandit simulation where the mean of the 9 sub-optimal arms is drawn from a

uniform distribution on range [−1, 0.9]. The graph plots how frequently the agents select the best arm in their lifetimes. The ‘Fixed compare’ agent

learns faster than the ‘Objective’ agent and selects the optimal action at a higher rate, especially early during training. The ‘Dynamic compare’ agent

selects the optimal action at a higher rate throughout its lifetime compared to these two agents. (b) Bandit task where the arms are very close to each

other. Here, the comparison-based agents and the ‘Objective only’ agent select the optimal action at a similar rate throughout their lifetime (and the

UCB selects the optimal action at a higher rate). (c) Plot of the average subjective reward of the agents in the previous bandit task. Compared to the

‘Objective only’ and the UCB agent, the comparison-based agents experience lower subjective rewards (due to their aspiration level). This seems

needless since comparisons do not help the agents make better choices. (d) Non-stationary bandit task where the reward distribution changes abruptly

during the agent’s lifetime. Compared to the ‘Objective only’ agent, the comparison-based agents select the optimal action at a higher frequency,

especially after step = 2500 i.e., when the environment changes. (e) Non-stationary bandit task where the reward distribution changes constantly during

the agent’s lifetime. Early during training, the ‘Fixed Compare’ agent selects the optimal action at a relatively good rate but it is then comfortably

outperformed by the other agents. The rising aspirations of the ‘Dynamic Compare’ agent allows it adapt to the changes in the environment and it

selects the optimal action at a very high rate throughout the lifetime. (f) Despite accumulating high objective rewards, the subjective rewards

experienced by the ‘Dynamic Compare’ agent keep decreasing due to its constantly increasing aspiration.

https://doi.org/10.1371/journal.pcbi.1010316.g005
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with many similar options, the comparison-based agents suffer from the ‘paradox of choice’

[36] as comparison does not result in any improvement in performance and only leads to

dissatisfaction.

Exp 2b: Non-stationary multi-arm bandit task. We now study aspiration levels using

non-stationary bandits. We first simulate ‘sudden change’ where the reward distribution of the

arms changes abruptly during the agent’s lifetime. We use the 10-armed evenly distributed

environment from the previous simulation, where the mean of the 9 sub-optimal arms is

drawn from a uniform distribution on range [−1, 0.9]. We simulate non-stationarity by ran-

domly shuffling the reward distribution of the arms midway during the agent’s lifetime (e.g.,

arm 1 could end up having the reward distribution of arm 10 and vice-versa). Replicating our

findings in Experiment 1b, we find that the ‘Fixed compare’ agent (� = 0, α = 0.1, ρ = 3.5)

obtains higher cumulative objective reward (M = 4561.3, SD = 235.11) compared to the ‘Objec-

tive’ agent (� = 0.1, α = 0.1; M = 4191.19, SD = 180.47) (also see Fig 5d). Next, our grid search

reveals that having a dynamic aspiration is not necessary in this setting as the ‘Fixed compare’

agent accumulates a similar cumulative objective reward to the best ‘Dynamic compare’ agent

(M = 4558.55, SD = 240.11) and also selects the best action at a similar rate in its lifetime (Fig

5d). Note that the difference in the pattern of the choices between Fig 5a and 5d for the first

2500 steps is due to the different learning rule used in the non-stationary environment (see

Methods). We also note that after the environment changes (i.e. after step = 2500), the com-

parison-based agents outperform the UCB algorithm which is unsurprising since the standard

UCB algorithm is not designed to handle non-stationarity.

We next simulate ‘constant change’ where the reward distribution of the arms changes con-

stantly throughout the agent’s lifetime. We use a 10-armed bandit where the reward mean of

the arms follows a random walk. At time t = 0, the rewards of the 10 arms are drawn from a

Gaussian distribution with mean 0 and standard deviation 1. Then, at each time step, we

change the mean reward of the arms by adding a normally distributed increment with mean 0

and standard deviation 0.1. In this environment, having a fixed aspiration level is quite harm-

ful as the ‘Fixed compare’ agent (� = 0.1, α = 0.1, ρ = 5) obtains the lowest cumulative objective

reward (M = 30879.62, SD = 9933.37), lower than the ‘Objective’ agent (� = 0.1, α = 0.8;

M = 32220.31, SD = 9930.40). Next, using grid search, we find that the best dynamic aspiration

strategy is to start with a moderate aspiration (ρ = 1.5) and then increase the aspiration con-

stantly throughout the lifetime (by 0.005 at every time step, also see Methods) and the

‘Dynamic compare’ agent which uses this strategy achieves the highest cumulative objective

reward (� = 0, α = 0.1; M = 34609.12, SD = 10717.57), greater than all other agents. We note

that the dynamic aspiration strategy applied here has a different form from the one that

worked best in the gridworld environment (Exp 1c), where it was beneficial to lower the aspi-

ration level after a certain point. This is because in that environment, a high aspiration level

was only useful in the early stages of training (as it encouraged exploration) but it later became

sub-optimal due to the constant teleportation. Here, because the reward distribution of the

arms changes constantly (which means that a current sub-optimal arm may become optimal

in the future), an ever-increasing aspiration level allows continual exploration and learning, at

least over the timecourse of the experiment. Fig 5e shows that early during training, the ‘Fixed

compare’ agent selects the optimal action at a relatively high rate but then this aspiration

becomes sub-optimal very quickly. The ‘Dynamic compare’ agent keeps adapting to the

changes in the environment and selects the optimal action at a higher rate at all times. How-

ever, the constantly rising aspiration of the ‘Dynamic compare’ agent has some unintended

consequences—the agent receives lower subjective rewards over time (also see Fig 5f). Thus,

despite accumulating higher objective rewards over time, internally, the agent experiences

constant dissatisfaction due to its ever-increasing aspiration. In some sense, the agent is
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showing a dissociation between ‘liking’ and ‘wanting’, where it keeps pursing new goals despite

not liking what it receives [68–70]. In summary, in constantly changing environments, having

a fixed aspiration level is detrimental and results in the agent being overtaken and left behind.

At the same time, while constantly rising aspiration help in achieving better performance, they

also result in ever-increasing dissatisfaction.

Discussion

Sensibly or not, people often find it hard to remain happy with what they have. One enjoys a

newly bought car for a time, but over time it brings fewer positive feelings and one eventually

begins dreaming of the next rewarding thing to pursue. As a consequence, we keep getting

lured by the promise of unfathomable future happiness whilst hardly enjoying the riches of the

present. Here, we have presented a series of simulations that suggest that these seemingly mal-

adaptive “flaws” might perhaps play an important role in promoting adaptive behavior. Using

the idea of reward design, we explored the value of adaptive expectations and relative compari-

sons as a useful reward signal and found that across a wide range of environments, these fea-

tures help an agent learn faster and be more robust to changes in the environment. Thus, even

though comparisons to the past and future often induce unhappiness, they might still have a

beneficial pervasive influence on cognition as they can motivate one to escape the unpleasant

or (even worse) mundane present.

In the remainder of the paper, we connect our findings to psychological research on happi-

ness, consider potential shortcomings of our work, and discuss implications of our results for

disorders such as depression and overconsumption.

Connections to psychological research on happiness

Although our setup is limited in many respects, our findings have some potential connections

and implications to research on human happiness and well-being.

Affluence and happiness. In identifying situations where comparisons can be harmful,

our results provide insights to some modern day problems related to affluence and well-being.

For instance, we found that when an agent is faced with many similar options, comparisons

resulted in constant dissatisfaction without any improvement in performance (Exp 2a). Thus,

one lesson that can be taken from our results is that when presented with many similar choices,

a decision-maker is better off curtailing comparisons and making decisions without relying on

them. This accords with the view that given the explosion of choices in modern times, learning

to accept good enough will increase satisfaction and simplify decision-making [36, 71].

We also found that in continually changing environments (Exp 2b), constantly rising aspi-

ration helped in achieving better performance but also resulted in ever-increasing dissatisfac-

tion. This is in line with research that suggests that affluence often only has weakly positive, or

even negative, correlation with subjective well-being, primarily because an improvement in

conditions leads to a rise in aspiration which subsequently dampens happiness and satisfaction

[72, 73]. At the same time, we also saw in Exp 2b having a fixed aspiration level can be quite

harmful and results in sub-optimal performance. This relates to the literature on the ‘aspira-

tion-poverty trap’—individuals with low social and economic background often have lower

aspirations than rich individuals, which can lead to underachievement and lower levels of

investment thereby perpetuating a negative cycle (e.g., a large amount of high-achieving, low-

income students do not apply to any selective college or university despite the fact that these

selective institutions would often cost them less) [74–77]. Thus, a potential message of these

findings is that one should have high aspirations in order to get out of unpleasant situations,

but it is then important eventually to curtail them when one is finally in favorable
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circumstances. Of course, this leaves an open question about how a decision-maker can come

to manage and curtail comparisons in the first place. Indeed, an extensive literature in positive

psychology has developed various interventions such as practicing gratitude, counting good

things, and following mindfulness to enhance well-being and happiness [78–81]. An interest-

ing future direction would be studying the computational mechanisms underlying such inter-

ventions as well as investigating possible methods via which an agent can set and learn its own

aspiration level. A promising direction in this vein could be studying how aspiration levels

might be shaped via a functional relationship between a model-free and model-based system

[82, 83]. For instance, a model-based system might alter the aspiration level of the model-free

system based on fluctuations in the environment. This in turn could also be helpful to under-

stand what leads someone to develop unreasonably high aspirations [84–86].

Optimal levels of happiness. Our findings provide computational support to a growing

body of psychological research which documents the “dark side” of being too happy and are

consistent with early philosophical ideas that extreme levels of any emotion, including happi-

ness, can be undesirable [87–90]. We observed that an agent’s internal happiness was not nec-

essarily reflective of their performance in the environment and both being too happy and too

unhappy led to unwanted outcomes. Agents with unreasonably high aspiration or expectations

developed sub-optimal behavior and were also very unhappy in their lifetimes (due to unmet

aspirations and expectations). Similarly, agents that had very low aspiration or expectations

also performed poorly as they were prone to getting stuck at local minima. However, these

agents, despite accumulating very low objective rewards, were very happy in their lifetimes.

More broadly, our simulations suggest an inherent trade-off between happiness and perfor-

mance—in most environments, agents that obtain the highest objective rewards tend to be

moderately unhappy in their lifetimes. This is also loosely comparable to the finding that peo-

ple who experience slightly lower levels of happiness are more successful in terms of income

and education level compared to people with the highest levels of happiness [91]. In general,

one implication of our work is that it might be optimal to have agents that are not always

happy and are instead caught in a cycle of never-ending wants and desires. That said, it is

worth stating that our simulations do not consider the possibility that an agent can intervene

on its own happiness. For instance, in certain settings, a meta-controller could influence an

agent to maintain high levels of happiness once it reaches a desired performance threshold

(which would allow the agent to be successful and also be happy). In this vein, an interesting

direction for future research could be studying the possible role of meta-cognition in influenc-

ing happiness.

Evolutionary pressures and happiness. Our results also speak to a literature in econom-

ics that explores the types of evolutionary pressures that could have produced habituation and

relative consumption [92–95]. Similar to our work, these studies model happiness using the

metaphorical principal-agent framework, where the principal (evolution) wishes the agent to

be maximally fit and has the ability to choose the utility function of the agent to her best advan-

tage. One such study shows that when an agent has limited ability to make fine distinctions

(i.e., it cannot tell apart two values that are within a small distance from each other) and when

it has a limited range of utility levels (i.e., it has a bound on the minimum and maximum level

of happiness it can experience), then evolution would favor a utility function that is adaptive

and depends on relative comparisons [95]. In our view, the primary contribution of these stud-

ies is showing how cognitive limitations could have favored a happiness function that depends

on prior expectations and relative comparisons, and our work complements these studies by

suggesting that, regardless of the agent’s constraints, this function could have also been favored

because of the learning advantages it confers.
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Relation to mood and anhedonia

Closely related to our research is recent work that posits a role for mood in learning [96–99].

In these proposals, mood is formalized as the moving average of reward prediction errors (and

more recently, an estimate of the Advantage function [96]), and is considered to represent

environmental momentum. Momentum indicates whether an environment is improving or

worsening and can be an important variable for adaptive behavior. Our results augment these

studies by showing how (myopic) reward prediction errors (in the form of prior expectations)

are a valuable aid to relative comparisons and accelerate learning in a wide variety of environ-

ments. Studying the interaction of mood with prior expectations and relative comparisons is

an important question for future work.

One observation in the context of mood is that the sorts of adaptive relativities for learning

that we have discussed can lead to instabilities in evaluation—modeling aspects of dynamic

diseases, such as bipolar disorder [97]. Certainly, the subjective values of states that are taught

by the subjective reward functions can vary greatly from their objective values, which is prob-

lematic if, for instance, the parameters of the subjective reward function change over time.

More generally, given that aspiration levels are an interesting lever for the brain to pull on

itself, examining its consequences for psychiatric dysfunction in a range of environments [100,

101] is an important direction for future research. It would also be worth exploring whether

dysfunctions such as anhedonic depression [102–104] partly arise because of problems with

subjective rather than objective components of reward sensitivity. The same issues might be

more broadly relevant, given the chain of reasoning that leads from disturbed average rates of

reward [105] to altered motivation in depression [106], potentially negative symptoms in

schizophrenia [107], and indeed transdiagonistically across a number of psychiatric and neu-

rological conditions [108]. Nevertheless, it would be remiss not to point out the careful distinc-

tions made between hedonic and motivational aspects of rewards, as between ‘liking’ and

‘wanting’ [53, 54], that we have blurred.

Limitations

Our work has several limitations which should be addressed in order to draw more concrete

parallels between our simulation-based results and psychological research on happiness. For

one, we assumed that the agent designer directly provided the reward function to the agent

and the agent had no say in what reward function it received. This simplification meant that

we were not able to study how an agent might develop biased expectations or aspirations as

well as study the consequences of an agent being able to control its own happiness. A produc-

tive avenue for future research could be studying reward design using the meta-learning

framework, such that an agent learns to choose the parameters of its happiness function in

response to the environment it faces [109, 110]. Relatedly, we also did not investigate in detail

the potential interaction of discounting with prior expectations and relative comparisons

(since we kept a fixed value for the discount factor in our experiments). Studying this further

would be an important question for the future. Another limitation of our work is that we did

not consider how aspirations can be influenced by social comparisons. Future research could

address this by conducting multi-agent simulations wherein agents also compare themselves

to other agents in the environment. This could also help understand how relative comparisons

might interact with other components of happiness such as guilt and jealousy. Future work

should also consider how the components of happiness we have considered here might interact

with other affective states such as anxiety [111] and boredom [112]. Lastly, while our choice of

environments was driven in part due to their popularity within the RL community, it is not
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completely clear how much our results will generalize to more real-world situations and there-

fore, caution must be exercised when generalizing our simulation results.

Concluding remarks

We conclude by providing some perspective on the problem of overconsumption, an

extremely pressing issue that severely threatens future generations. Constant habituation to

modern luxuries and ever-rising aspirations are leading us to consume Earth’s natural

resources at an alarming rate and resulting in rapid deterioration of our planet [113–117]. Par-

adoxically, people in modern societies are hardly more satisfied than previous generations

[118–121], yet we keep becoming caught in the rat race of consumption and continuing the

modern obsession of growth at all costs [122–126]. One implication of our results is that given

how advantageous habituation and relative comparisons are in promoting adaptive behavior,

it could be possible that these features might be very deeply entrenched in our minds. Thus,

any steps to reduce overconsumption will also need serious considerations on how to tackle

these biases of the human mind and will require the expertise of scientists from multiple disci-

plines. For better or worse, we are prone to becoming trapped in a cycle of never-ending wants

and desires, and it is more urgent than ever to develop concrete policies and large-scale inter-

ventions to reduce habituation and comparisons.

Methods

Experiment 1

Implementation details. To derive the optimal reward function, we performed a dense

grid search over the weights wi, from 0 to 1 with increments of 0.1; this resulted in the consid-

eration of 1330 different reward functions (since there are 11 reward functions between the

interval [0, 1] and 11 × 11 × 11 = 1331; then subtract 1 to exclude the reward function w1 = w2

= w3 = 0). Further, since we assume that the agent designer directly provides the aspiration

level to the agent, we also performed a dense grid search over the aspiration level, from 0.001

to 1 with increments of 0.05. To ensure that any difference in the performance of the agents

was primarily due to the difference in their reward function and not due to a sub-optimal rate

of learning or a poor �-greedy strategy, we (approximately) optimized the learning rate α and

the exploration parameter � for all the reward functions considered (using a grid search from

0.1 to 0.9 with increments of 0.1). Note that our main results are not significantly affected by

the exact value of these parameters (also refer to S1 Text). For the non-stationary environment,

we also considered a simple learning rate strategy that adapts to environmental change by

tracking the reward prediction error. Specifically, this strategy set the learning rate in propor-

tion to the absolute value of the reward prediction error and thus learned faster when there

was a change in the environment. The ‘Objective only’ and ‘Expect+Compare’ agents ended

up using this strategy as it helped to improve their performance. Lastly, for all experiments and

for all agents, we set the initial Q-values to be zero and set the discount factor γ equal to 0.99.

Evaluation details. The different experiments used different environments (stationary

7 × 7 gridworld in Exp 1a, non-stationary 7 × 7 gridworld in Exp 1b, and stationary 13 × 13

gridworld in Exp 1c). In all experiments, we performed our search of the reward function over

a total of 100 environments, where the environments varied in terms of the agent’s starting

location, the location of the food, poison, and sinkhole states. We then evaluated how good

each reward function was in maximizing the designer’s objective by directly comparing the

average cumulative objective reward of each agent over the 100 environments.

In Experiment 1a, in the one-time learning environment, we ran each agent for a single epi-

sode for a lifetime of 2500 steps. In the lifetime learning environment, we ran each agent for a
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single episode for a lifetime of 12500 steps. In Experiment 1b, we ran each agent for a single

episode for a lifetime of 5000 steps. In Experiment 1c, we ran each agent for a single episode

for a lifetime of 12500 steps. The lifetime of the agents was decided based on pilot experiments

where the criterion was the numbers of steps required by the agents to learn a stable policy.

Experiment 2

Model details. As in Experiment 1, we fix the agents to be �-greedy agents where the Q-

update is performed over the subjective reward function endowed by the agent designer. To

study the effect of dynamic aspiration levels, we compared agents with the following reward

functions: ‘Objective’, ‘Fixed compare’, and ‘Dynamic compare’. In the stationary environ-

ments, upon selecting an arm and receiving reward rt, the agents update the action value of the

chosen arm as follows:

Qtþ1  Qt þ
1

k
½ðrt � rÞ � Qt�; ð11Þ

where k is the number of times the arm has been pulled so far and ρ is the aspiration level of

the agent. The ‘Objective only’ agent has ρ = 0 throughout its lifetime. The ‘Fixed compare’

agent is endowed with a fixed aspiration level at the beginning of each round whereas the aspi-

ration level of the ‘Dynamic compare’ agent can change during training (provided the agent

designer changes it). In the non-stationary environments, the agents update the action value of

the chosen arm as follows:

Qtþ1  Qt þ a½ðrt � rÞ � Qt�; ð12Þ

where α 2 [0, 1] is the learning rate. In the stationary environments, the Q-value estimate of

an arm is simply the average of the subjective returns received from pulling that arm. In con-

trast, in non-stationary environments, the agents weight recent pulls more highly than past

pulls (if α> 0) allowing them to adapt to changes in the environment better. For comparison,

we also evaluate the agents against the UCB algorithm [64, 65], which chooses actions deter-

ministically as follows:

at ¼ argmax
k

QtðkÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffi
2 log t
NtðkÞ

s

; ð13Þ

where Nt(k) is the number of times action k has been selected. Intuitively, at each round, UCB

pulls the arm with a good combination of empirical reward estimate and potential benefit asso-

ciated with the possibility that a relatively undertested arm might be particularly good. The lat-

ter factor, associated with the
ffiffiffiffiffiffiffiffi
2 log t
NtðkÞ

q
term helps to avoid always pulling the same arm without

considering other arms. This is because as Nt(k) increases, the chance of pulling that arm

decreases.

Implementation details. In all simulations, we ran each agent for a lifetime of 5000 steps

over 2000 rounds. To ensure that any difference between the agents was primarily caused by

their reward functions and not by sub-optimal rate of learning or poor �-greedy strategy, we

optimized the learning rate α and the exploration parameter � for all reward functions

considered.

For both ‘Fixed compare’ and ‘Dynamic compare’ agents, we derive the optimal aspiration

by performing dense grid search. For the ‘Fixed compare’ agent we performed a search from

0.5 to 5 with increments of 0.5 and assigned the aspiration level at the beginning of each

round. The aspiration of ‘Dynamic compare’ agent could change during training. For
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computational tractability, we change the aspiration every 50 steps and derive the dynamic

aspiration by performing a grid search from 0.5 to 5 with increments of 0.5 over fixed intervals

of 50 steps (i.e., we set a fixed aspiration between steps 0–50 by performing a grid search, and

then similarly searched and set a fixed aspiration level between 50–100 steps, and so forth). In

the ‘constant change’ simulation (Exp 2b), for the ‘Dynamic compare’ agent, because the envi-

ronment changes at each step, we changed the aspiration at each step (as opposed to every 50

steps) and again derived the value of this change via grid search (from 0.00 to 0.2 with incre-

ments of 0.005).

Supporting information

S1 Text. Supplementary material and results. Includes replication of the results, additional

simulation results, value convergence derivation, and additional plots.

(PDF)
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