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Abstract
Generative models of human identity and appearance have
broad applicability to behavioral science and technology, but
the exquisite sensitivity of human face perception means that
their utility hinges on the alignment of the model’s representa-
tion to human psychological representations and the photoreal-
ism of the generated images. Meeting these requirements is an
exacting task, and existing models of human identity and ap-
pearance are often unworkably abstract, artificial, uncanny, or
biased. Here, we use a variational autoencoder with an autore-
gressive decoder to learn a face space from a uniquely diverse
dataset of portraits that control much of the variation irrele-
vant to human identity and appearance. Our method generates
photorealistic portraits of fictive identities with a smooth, navi-
gable latent space. We validate our model’s alignment with hu-
man sensitivities by introducing a psychophysical Turing test
for images, which humans mostly fail. Lastly, we demonstrate
an initial application of our model to the problem of fast search
in mental space to obtain detailed “police sketches” in a small
number of trials.
Keywords: face recognition, machine learning, generative
models, images

Introduction
Generative models of human identity and appearance have
broad applicability to behavioral science and technology. For
example, psychologists and neuroscientists can use them to
create experimental stimuli, varying the degree of similar-
ity between a target face and a lineup of other faces to test
an observer’s face recognition abilities. Computer vision
researchers can use them to create face-detection and face-
recognition technologies for applications in security and so-
cial media. And artists can use them to create engaging ani-
mated characters in video games.

Any generative model of human identity and appearance
can be cleaved into two parts: (1) a so-called latent “face
space”, the underlying multidimensional psychological space
of perceived features and properties that specifies which faces
are similar to which other faces, and (2) a renderer that con-
verts a point in the face space to an image. The success of a
generative model of human identity and appearance, then, de-
pends on the quality of both the face space and the renderer.

One way to create a high-quality generative model of hu-
man identity and appearance is to learn the model directly
from a corpus of portraits, using machine learning methods
such as deep neural networks to construct a latent face space
and renderer that reflect the training data. With an adequately
large and diverse data set that contains variation relevant to
human identity and appearance, such an approach holds con-
siderable promise in achieving the goal of creating generative
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Figure 1: A fictive identity from the model at 512×512 px.

models with smoothly navigable and interpretable face spaces
that render into photorealistic portraits representative of hu-
man diversity.

The plan of the paper is as follows. We begin by present-
ing a uniquely diverse dataset of portraits that control much
of the variation irrelevant to human identity and appearance.
Next we train a deep neural network (specifically, a varia-
tional autoencoder with an autoregressive decoder) on these
images. We then perform a visual Turing test for assessing
the quality of such models for use with humans, and show
that our best model nearly passes the test. Next, we show that
samples from the model can be enlarged and drastically im-
proved while preserving identity. Lastly, we demonstrate an
initial application of our model to quickly extracting informa-
tion from human mental representations, yielding expertless
“police sketching”, reducing by tenfold the number of human
judgments required in comparison to previous methods .

Learning a latent face space
for human experiments

The face space learned by a neural network reflects in part
the images used to train it. Many image sets of faces used
for training networks are confounded by variation unrelated
to identity, while lacking representative variation essential to
it. Confounded properties include those of the photographer
and equipment (photographer, camera model, lens model,
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focal length, focal point, aperture, exposure time, distance
to subject, camera placement, light design), the subject’s
ephemeral state (facial expression, pose, arousal), the envi-
ronment (background imagery, ambient lighting), and post-
processing (resolution, digital format, color grading, white
balance, gamma correction, compression quality, watermark-
ing, and digital alteration of skin complexion, hair color, and
face shape), among others. Though learning a representation
of identity that is invariant with respect to these properties
requires a training set that varies along them, holding these
properties constant greatly simplifies the learning problem in
contexts where such invariance is irrelevant (Zhang & Gao,
2009). And though there are public datasets of human faces
that control much of this variation, they tend to have too few
unique individuals, precluding the possibility of learning a
universal face space.

Because our goal is to produce a latent space of human
identity useful for empirical experiments with humans, it is
just as important that this representation be decodable into
images that are free of distortions and artifacts, because hu-
man judgments of such images may often mistake them for
features, or otherwise remove the natural context of the vi-
sual stimuli that humans often reason within. This is a dif-
ficult problem in machine learning, and will likely require a
dataset with well-controlled variation so it can be learned us-
ing current methods, yet it also requires just the right diversity,
avoiding heavy bias towards attractive celebrities and certain
ethnicities.

The Humanæ Dataset
To assist in the effective training of a representative latent face
space for human identity, we use a novel dataset based on Hu-
manæ, an artistic work by Angèlica Dass that explores human
diversity by mapping the gamut of skin tone across over 3,300
people, with minimal constraints on participant selection. Of
particular note is that the images are so nearly unvaried in their
production that variation across the images focuses solely on
the diversity of human visual identity. The abundance of con-
trolled variation relevant to identity makes the dataset useful
despite its relatively small size when compared to other face
datasets used to train deep neural networks.

The dataset consists of 3,353 front-facing portraits scraped
from the project’s website (http://humanae.tumblr.com/) with
permission. Portraits were first resized by Lanczos re-
sampling to 1024 × 1024 pixels. Next, the portraits were
aligned through Procrustes superimposition of facial land-
marks, which rotates, scales, and translates each portrait to
minimize the squared distances between the detected land-
marks and those on a target, here a composite that places each
landmark at its average position across all portraits in the set.
Facial landmarks were detected using a pre-trained ensemble-
of-regression-trees detector (Kazemi & Sullivan, 2014). After
cropping a 640×640 square from the center of each portrait,
they were then downsampled to the training size of 512×512
pixels by Lanczos resampling.

We note that, although this dataset is small by the stan-

dards of modern machine learning applications, it is never-
theless effective given its well-controlled production by the
artist. Forty-eight images from this dataset can be seen in Fig-
ure 2. The background of each image was matched to the skin
tone of each face by the artist, a property we left intact.

Generative Models
To assess candidate face spaces, we employed two families
of generative models and one hybrid. Generative Adversarial
Networks (GANs; Goodfellow et al., 2014) are a kind of deep
neural network known to produce high-quality samples with
reasonably good latent spaces. In particular, we use a type
of GAN called WGAN-GP (Gulrajani et al., 2017) because
it showed slight improvements over other GANs we tested.
Samples from the best-performing model are shown in Figure
3. As expected, the quality is high, despite numerous artifacts.

The second type of model that we explored are variational
autoencoders (VAEs; Kingma & Welling, 2014), another type
of deep neural network. Most VAEs produce samples and re-
constructions that are too smooth for our purposes, appearing
slightly abstract and with a soft focus. To this end, we opted
to train a deep “feature-consistent” variational autoencoder
(DFC-VAE; Hou et al., 2017), which preserves the spatial cor-
relations between features, improving the appearance of the
generated images. Surprisingly, samples from this model are
indeed competitive with WGAN-GP (Figure 4), although the
model has difficulty in rendering hair.

Lastly, we opted not to train autoregressive models, which
sample pixels sequentially, with each pixel depending on the
value of all pixels previously sampled. Though these autore-
gressive models perform well, they do not provide a navigable
latent space and thus are not suitable for our purposes. In-
stead, we trained a hybrid model, PixelVAE (Gulrajani et al.,
2016), which provides a navigable face space that captures
course variation, and uses a (partially) autoregressive decoder
only to render finer visual detail. This is a particularly good
match for capturing human identity from portraits because it
allows for an accessible latent space, while encoding fine im-
age detail elsewhere. Indeed, we find that this approach is
effective for our data. The samples in Figure 5 appear perfect
in many respects, including striking detail, variation, and little
to no artifacts. Though it seems clear to us that this model is
superior (and a good candidate for use in human experiments),
each model has its advantages. In the next section, we turn to
a more concrete assessment of sample quality.

Experiment 1: Visual Turing Tests
Though several objective heuristics exist for measuring the vi-
sual quality of generated images, because we are developing
a generative model for use in experiments with human par-
ticipants, it is more important that the generated images are
of high visual quality from the subjective perspective of a hu-
man observer. This is particularly true for synthesized faces,
which are notoriously susceptible to the “uncanny valley” ef-
fect (Mori, 1970), where synthetic faces near the threshold of
photorealism appear bothersome.



Figure 2: Sample images from the aligned/cropped Humanæ dataset.

Figure 3: Samples from WGAN-GP trained on humanæ.

Figure 4: Samples from DFC-VAE trained on humanæ.

Figure 5: Samples from PixelVAE trained on humanæ.

To evaluate the degree to which we can traverse this valley,
we use a visual Turing test for synthesized images that draws
on methods from perceptual psychophysics to measure peo-
ple’s ability to distinguish real from synthesized photographs
of faces, where the synthesized photographs are samples from
each of the candidate models. This stands in contrast to two
other forms of visual Turing test, one in which a human ad-
judicator determines which of two images was generated by
human behavior (Lake et al., 2015), the other in which a visual
recognition task is used to determine whether the observer
performing the task is a human (Von Ahn et al., 2003; Ge-
man et al., 2015). Our test allows us to answer the question of

which models can successfully fool humans and how this abil-
ity interacts with image size. The latter is important because
successful generative models are often trained and tested with
small images, e.g., 32× 32 px, and it is unclear how many
pixels are required for humans to make sensible judgments.

We collected such judgments from 250 participants re-
cruited from Amazon Mechanical Turk, each of whom per-
formed 40 trials, 10 for each log-spaced size from 16×16 px
to 64×64 px. On each trial, one image was selected from the
training set and the other was a sample from one of the three
candidate models. We also included a fourth candidate model
as a control, one for which we know participants can easily
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Figure 6: Psychophysical detection curves for each model.
PixelVAE performs consistently better, and straddles the dot-
ted line representing chance performance.

distinguish samples from real photographs: a model that gen-
erates images by bootstrap resampling pixels from portraits
in the Humanæ dataset. The results are plotted in Figure 6.
WGAN-GP performs worst, likely due to diverse artifacts,
whereas PixelVAE consistently outperforms all other models
in fooling humans. In fact, it stays near or below the line of
chance for all image sizes, effectively traversing the uncanny
valley for this domain. It is notable that near-perfect sam-
ples are rarely obtained in generative image models, outside
of small domains such as MNIST (LeCun et al., 2010) and
SVHN (Netzer et al., 2011).

Improving image quality
and exploring the latent space

While our visual Turing tests show that our samples can fool
human participants, they are still relatively small compared to
the average comfortable stimulus sizes used in human exper-
iments. This is an unfortunate feature of most modern gen-
erative image networks, which struggle to learn distributions
over large sets of pixels. However, we note that the 64× 64-
pixel portraits generated by the PixelVAE carry enough infor-
mation to convey identity (Bachmann, 1991). This suggests
our samples can be improved by a super-resolution network
that enlarges the image, inventing plausible fine details while
preserving identity.

To do this, we use a generative adversarial network with
an added content loss as our super-resolution upsampler net-
work (Ledig et al., 2016). We train this network to enlarge
64×64-pixel portrait inputs to 512×512-pixel outputs. Fig-
ure 7A shows enlarged PixelVAE samples. To our knowledge,
these are among the highest quality synthesized facial identi-
ties produced by a deep neural network. Figure 7B demon-
strates through enlargements of linear interpolations between

random samples that identities and their composites are pre-
served, and only the quality and size of the image are im-
proved.

We also tested for overfitting by randomly selecting 8 sam-
ples and finding their nearest neighbor in the training set, de-
fined by pixelwise linear correlation. As evident in Figure 9,
samples and their nearest neighbors in the training set depict
different identities.

For our purposes, a useful machine representation is one
that can be explored locally by humans and yield interesting
variations on a concept. Figure 8 shows four levels of varia-
tion added to a base sample. This simple procedure allows us
to propose small adjustments to facial features or hair, as well
as large adjustments that dramatically alter identity along sev-
eral meaningful dimensions. In the next section, we will use
these properties to interact with human explorers.

Experiment 2: Composite sketches via
interactive evolutionary computation

A valuable but challenging application of generative models
of human identity and appearance is the revelation of identi-
ties and appearances available only in a person’s mind. For ex-
ample, in police composite sketching, a trained artist with ex-
pertise in portraiture aims to translate witness testimony into a
workable sketch that will enable law enforcement officials to
recognize on sight the perpetrator of a crime (Mancusi, 2010).
Or when creating cover art for a book, an illustrator may wish
to render a character’s likeness using vague suggestions from
the text.

Searching the latent space of a generative model of human
identity provides a way to render these obscured identities.
For example, software-based facial-composite tools used by
some law enforcement agencies guide a witness through a se-
ries of sequential decisions about facial features to arrive at a
well-formed composite sketch. When that generative model
has been learned directly from a corpus of human identities,
the model’s latent space may reflect the underlying variation
in a way that benefits the search.

Various search and optimization algorithms are available,
with some having proven particularly useful for human-in-
the-loop search. Interactive evolutionary computation, a tech-
nique that inserts humans into various stages of an evolution-
ary process (e.g., as the fitness function), has been success-
fully used for human-in-the-loop search over digital designs
and in other contexts (Takagi, 2001).

Here, we used a crowdsourced form of interactive evo-
lutionary computation that leverages the human capacity to
compare the relative resemblance of displayed portraits to
a target identity. The particular evolutionary algorithm that
we used comes from a family of so-called “Natural Evolu-
tion Strategies” that approximates stochastic gradient descent,
making use of gradient information to efficiently find high-
scoring pockets of the latent space (Spall, 1992). The search
begins by selecting a seed, a point θt in the latent space, typ-
ically the origin. On each round of the search, a lineup of



Figure 7: a. Decoded random samples drawn from the prior. b. Three decoded 7-point linear interpolations between two random
samples drawn from the prior.

Figure 8: Latent noise perturbations at four levels of intensity.

Figure 9: Samples and nearest neighbors in the training set.

n portraits is generated by adding spherical Gaussian feature
noise εi to the seed. A set of participants then ranks the n por-
traits according to their resemblance to the target identity (e.g.
“a young boy with red hair”, “Barack Obama”). Each portrait
is assigned a score F(θ) equal to its average rank across all the
participants. The next seed, θt+1 is set to θt +α

1
nσ

∑
n
i=1 Fiεi,

where α is the learning rate. Thus, the next seed reflects the

differences between high- and low-ranked examples to the ex-
tent that there is agreement between participants about the re-
semblance rankings.

Ten participants completed each round of the search. We
found that interactive evolutionary computation over the la-
tent space of our learned PixelVAE model efficiently found
regions of the face space corresponding to target identities.
Figure 8 shows the seeds and example images for 10 rounds
of evolutionary search for three target categories.

Discussion
Here, we describe a finely tuned coupling between powerful
generative models of human identity and appearance learned
directly from data, and data that provides just the right varia-
tion essential to capturing the diversity of human identity and
appearance. The samples produced by the models are inter-
esting in their own right and rival the image quality of many
state-of-the-art model–dataset pairs. However, we find these
models most interesting in terms of what they tell us about hu-
mans, and how they can be applied to technology. Our hope is
that the Humanæ dataset will inspire similar approaches, and
that our models can be used as both empirical and practical
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“A five-year-old girl  
with long blonde hair”

“A forty-year-old Asian  
woman with short black hair”

“A seventy-year-old,  
balding, clean-shaven man”

⋮

Figure 10: Three 10-round evolutionary searches through the latent space. The final seed for each set of trials represents a
collective mental template for the verbal description at the bottom.

tools. In the future, it will be worth exploring larger datasets,
fine-tuning current models, testing new models, and finding
new applications for interacting with humans and their own
psychological representations of faces. Other questions re-
main. Can we approximately quantify the extent to which
such spaces are universal? That is, do they contain every
identity? To what extent do these space already align with
human psychological representations of faces? And what are
the limits to how much information about human identity and
appearance can be extracted from a person’s recollections?
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