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Resampling reduces bias amplification in 
experimental social networks

Mathew D. Hardy    1,5 , Bill D. Thompson    2,5, P. M. Krafft3 & 
Thomas L. Griffiths    1,4

Large-scale social networks are thought to contribute to polarization by 
amplifying people’s biases. However, the complexity of these technologies 
makes it difficult to identify the mechanisms responsible and evaluate 
mitigation strategies. Here we show under controlled laboratory conditions 
that transmission through social networks amplifies motivational biases on 
a simple artificial decision-making task. Participants in a large behavioural 
experiment showed increased rates of biased decision-making when part 
of a social network relative to asocial participants in 40 independently 
evolving populations. Drawing on ideas from Bayesian statistics, we identify 
a simple adjustment to content-selection algorithms that is predicted to 
mitigate bias amplification by generating samples of perspectives from 
within an individual’s network that are more representative of the wider 
population. In two large experiments, this strategy was effective at reducing 
bias amplification while maintaining the benefits of information sharing. 
Simulations show that this algorithm can also be effective in more complex 
networks.

Large-scale social media platforms are transforming how people com-
municate and consume information online1–3, shaping media narra-
tives4, political discourse5 and popular culture6. However, the complex 
networks created by social media platforms can have unexpected out-
comes. For example, social networks often create ‘echo chambers’ of 
like-minded individuals7–12, raising concerns that social interaction on 
these platforms can increase polarization and amplify bias13, facilitating 
the spread of inaccurate14–16, extreme17 and emotionally charged18 views. 
Indeed, biased social perceptions can emerge naturally solely from 
the tendency for network connections to be unevenly distributed19–21.

Understanding the impacts of social media and developing 
potential solutions is a global priority, leading to calls for better 
governance of social media platforms22,23. An important part of these 
potential solutions is the development of content-selection algo-
rithms that demonstrably reduce harmful effects24. However, the 
complexity of large-scale social networks makes it hard to identify 
specific mechanisms that cause unwanted platform effects and to 
evaluate the effectiveness of mitigation strategies. These challenges 

have hindered development of practical frameworks for designing 
safer algorithms25.

One way to address these challenges is to test the effects of dif-
ferent content-selection algorithms in controlled laboratory settings. 
In this Article, we use an experimental paradigm to study how infor-
mation sharing affects bias in judgement and decision-making. This 
new experimental paradigm allowed us to evaluate a mathematical 
theory of bias amplification and test a mitigation strategy based on this 
theory. Our approach builds on prior research that has demonstrated 
benefits26–30 and risks31,32 of information sharing and that has identi-
fied cognitive biases33 that can be reliably produced in experimental 
settings. In particular, we examined how social networks can amplify 
motivated perception, a bias in judgement and decision-making in 
which people perceive events in a way that supports their desires34–38.

Our experiments used a simple perceptual task: Participants were 
briefly shown displays of 100 randomly positioned and sized blue and 
green dots, and were asked to judge whether the stimulus contained 
more green or more blue dots (Fig. 1). Participants received a monetary 
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learning developed in cognitive neuroscience48, economics49 and 
developmental psychology50. Our model predicts that participating in a 
social network can amplify the perceptual signal, potentially increasing 
accuracy, while also amplifying people’s biases (Extended Data Fig. 1). 
The simultaneous increase in these two quantities is possible because 
social information effectively amplifies the signal-to-noise ratio of the 
stimuli as well as the tendency to make bias-aligned judgements. Our 
model assumes that participants take the observed judgements at 
face value, without accounting for the fact that the people who made 
the judgements might also be biased. As a result, bias can compound 
over time.

Results
Experiment 1 was designed to test the prediction that social networks 
amplify both accuracy and bias when the ground truth prior probabil-
ity is uniform and statistically independent from individual people’s 
biases. We then developed a simple mitigation method based on our 
mathematical analysis, which we evaluated in Experiments 2 and 3.

Experiment 1: bias amplification
The design and results of our first experiment are shown in Fig. 2. Experi-
ment 1 used a factorial design independently manipulating two factors: 
the presence or absence of the motivated perception intervention 
(‘motivated’ conditions versus ‘neutral’ conditions); and whether par-
ticipants were shown the judgements of other people or not (‘social’ 
conditions versus ‘asocial’ conditions). Combining these manipulations 
led to four conditions in Experiment 1: Asocial/Motivated, Asocial/
Neutral, Social/Motivated and Social/Neutral. Each new participant in 
each new wave was assigned to just one of these four conditions using 
block randomization. Ten independent networks were recruited for 
each condition, and 64 participants were assigned to each network 
(8 waves of 8 participants; each participant was assigned to a single 
network). This design ensured that each condition was entirely inde-
pendent of the conditions. Altogether, we recruited 2,400 participants 
from Amazon Mechanical Turk.

reward for every correct answer. However, certain participants were 
offered an additional monetary reward for every green or blue dot 
in each stimulus (‘motivated colour’ was randomized across partici-
pants; see ‘Experiment 1’ in Methods). Because it was earned regard-
less of a participant’s judgement, this reward would not influence the 
judgements of a rational observer. However, on the basis of previous 
results35,36 we expected that it would induce a motivated perception 
bias leading people to overestimate the number of motivated-colour 
dots. In this context, bias is understood as a tendency to make deci-
sions that are consistent with the rewarded motivation, rather than 
deviation from the true answer. While artificial, we designed our task 
so that both of these quantities could be measured, but our approach 
to bias does not depend on the existence of an objectively true answer.

To better understand how social networks impact decision-making 
in this controlled setting, we designed custom software to construct 
evolving social networks by recruiting thousands of participants in 
sequences of discrete groups, or recruitment waves. This setup builds 
on a wide body of research in cognitive science and cultural evolu-
tion investigating social dynamics in settings with population turno-
ver31,39–47. Each wave introduced a new group of participants into the 
network to replace the previous group of participants. Participants in 
each wave observed the judgements made by a group of participants 
in the previous wave, before making their own judgements. This cre-
ated a layered network of social influence that captured one basic 
structural feature of online social media: people formed opinions that 
were informed by metrics summarizing the shared opinions of others. 
Using this controlled experimental approach, we explored the impact 
of social networks on biases in decision-making and how unwanted 
impacts could be mitigated.

To generate quantitative predictions about the consequences of 
information sharing in this context, we performed a formal analysis of 
the hypothesis that social networks can amplify people’s biases (see 
‘Bayesian model’ in Methods). Our model assumes that social informa-
tion plays the role of a prior distribution in a Bayesian computation 
during decision-making, consistent with formal theories of social 
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Fig. 1 | Trial structure. Our experimental paradigm consisted of arranging 
participants into an ordered set of groups, called ‘waves’. At each wave t 
participants in social conditions observed judgements made by the participants 
in wave t − 1. Participants in asocial conditions did not observe any social 
information. a, Asocial/Motivated condition. Each coloured circle at the top 
of the image represents a participant. The square represents the stimulus, and 
triangles represent the participants' judgements. Stimuli consisted of 100 
randomly positioned and sized blue and green dots displayed for one second. 
After viewing a stimulus, participants indicated whether they thought the 
stimulus had more green or more blue dots. Participants received feedback after 
each judgement on practice trials, and at the end of the experiment on test trials. 

All participants received a bonus on every trial if their judgement was correct. 
Participants in motivated conditions (shown here) received an additional 
bonus on every trial for every dot of their motivated colour (green in both 
plots) regardless of whether their judgement was correct. b, Social/Motivated 
condition. Each coloured circle at the top of the image represents a participant. 
Solid line arrows indicate flow of information. The perceptual task was the same 
for participants in asocial and social conditions. However, before and after 
viewing each stimulus, participants in social conditions observed the aggregate 
judgements made by participants in the previous wave on the same stimulus. 
Social information from one wave to the next was presented as the number of 
participants making the majority judgement (ties were broken randomly).
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To align the starting conditions between asocial and social condi-
tions, social conditions in the second wave were yoked to the relevant 
asocial conditions in the first wave47. That is, Social/Motivated par-
ticipants in wave 2 viewed the responses of every Asocial/Motivated 
participant in wave 1 and the same network index, and Social/Neutral 
participants in wave 2 viewed the responses made by every Asocial/
Neutral participant in wave 1 and the same network index (Fig. 2 and 
Extended Data Fig. 2). In other words, the first wave in the social condi-
tion of each network was composed of the first wave from the asocial 
condition. Participants in social conditions in later waves observed 
the responses made by participants in the previous wave, condition 
and network. This initial yoking helped to ensure that any differences 
in outcome between conditions did not result from differences in the 
initial judgements.

We designed the task so that motivated perception would not 
necessarily impact people’s ability to perform well: participants made 
judgements on four stimuli where the correct answer was green, and 
four where it was blue. Each stimulus was defined in terms of a certain 
proportion of green and blue dots, but dot positions and sizes were 
randomized (Fig. 1). Stimulus order was randomized, and participants 
made one judgement on each stimulus on every trial of the experi-
ment. All participants made judgements on the same eight stimuli 
(see ‘Experiment 1’ in Methods). This design led to a sample size of 
19,200 judgements: 5,120 for each asocial condition and 4,480 for 
each social condition. Fewer participants were assigned to the social 
conditions because all participants in the first wave were assigned to 
an asocial condition.

To determine whether accuracy and/or bias differed significantly 
between conditions, we performed a likelihood ratio test between a 
mixed-effects logistic regression with fixed effects for all conditions 

and a mixed-effects logistic regression in which the two conditions were 
coded as a single condition. All regression models included random 
intercepts for each network. Unless otherwise noted, all analyses and 
statistical models were pre-registered before collecting human data. 
Our pre-registered analyses included participant random effects, 
which we omitted as they led to singular fits. Using the pre-registered 
models does not change any of our findings (Extended Data Table 1).

As predicted, people in social networks made more accurate judge-
ments. Participants in the Social/Neutral condition identified the cor-
rect majority colour on 65.4% of judgements, significantly more often 
than both Asocial/Neutral (accuracy: 60.4%; β = 0.22, 95% confidence 
interval (CI) from unrestricted regression: (0.13, 0.3); χ2(1) = 25.65, 
P < 0.001) and Asocial/Motivated (accuracy: 60.8%; β = 0.2, 95% CI 0.12 
to 0.29; χ2(1) = 22.58, P < 0.001). This advantage was also observed in 
networks in the Social/Motivated condition, as the model predicted. 
Social/Motivated participants chose correctly on 64.6% of judgements, 
statistically significantly more often than both Asocial/Neutral partici-
pants (β = 0.18, 95% CI 0.09 to 0.26; χ2(1) = 17.6, P < 0.001) and Asocial/
Motivated participants (β = 0.16, 95% CI 0.08 to 0.25; χ2(1) = 15.07, 
P < 0.001). Also as predicted, the colour-based bonus influenced peo-
ple’s judgements. Participants assigned to the Asocial/Motivated group 
made significantly more biased judgements (skewed towards their 
motivated colour) than Asocial/Neutral and Social/Neutral partici-
pants. Asocial/Motivated participants chose their motivated colour 
on 56.2% of judgements, compared with 52.6% for Asocial/Neutral 
participants (β = 0.15, 95% CI 0.07 to 0.22; χ2(1) = 13.36, P < 0.001) and 
51.2% for Social/Neutral participants (β = 0.2, 95% CI 0.12 to 0.28); 
χ2(1) = 23.53, P < 0.001).

Finally, as predicted, motivated perception was amplified among 
participants who were part of a social network. Social/Motivated 
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Fig. 2 | Experiment 1 details and results. a, Experiment 1 used a 2 × 2 factorial 
design, where we varied the presence of social information and of the induced 
bias in the form of motivated perception. For each condition, we recruited 10 
independent networks of 64 (asocial) or 56 (social) participants organized into 
8 discrete waves of 8 new participants each. Dotted line arrows indicates a yoking 
structure we used to reduce variability by controlling the initial settings across 
the social and asocial conditions (see ‘Experiment 1’ in Methods; Extended 
Data Fig. 2). b, Experiment 1 transmission structure in the asocial and social 
conditions. Circles indicate participants, triangles indicate judgements, and 
squares indicate stimuli. Each stimulus was defined by a number of motivated 
colour and non-motivated colour dots (see ‘Experiment 1’ in Methods). The 
judgements made by social participants at each wave were transmitted to the 

participants in the same network at the next wave. Asocial participants were 
recruited in waves to facilitate randomization but did not observe any social 
information. c, Experiment 1 results averaged across waves and networks for each 
condition (n = 15,120 judgements for asocial conditions; n = 4,480 judgement 
for social conditions). The plot on the left shows the proportion of participants' 
judgements that matched their motivated colour. An unbiased participant would 
choose their motivated colour at a rate of 50% on average. The plot on the right 
shows the proportion of judgements where participants correctly identified the 
majority colour of the dots. For both plots, error bars show standard errors of the 
proportions. P values are determined using a likelihood ratio test between mixed 
effects models comparing the relevant conditions (P values were not adjusted for 
multiple comparisons).
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participants chose their motivated colour on 61.8% of judgements, sta-
tistically significantly more often than Asocial/Motivated participants 
(β = 0.23, 95% CI 0.15 to 0.32; χ2(1) = 31.47, P < 0.001). In Supplementary 
Information we report exploratory analyses of the mechanisms under-
pinning these results, showing that information sharing in motivated 
networks helped people make more accurate judgements specifically 
when the answer aligned with their biases, and that social influence 
cannot be reduced to a simpler perceptual priming mechanism (Sup-
plementary Information, ‘Exploratory analyses’).

We fit our Bayesian model (see ‘Bayesian model’ in Methods) to 
data from Experiment 1 using techniques developed in the education 
literature that exploit the relational structure of testing data51 (each 
participant evaluated multiple stimuli, and each stimulus was evaluated 
by multiple participants; see ‘Psychometric model’ in Methods). This 
allowed us to estimate the degree of bias evident in each participant’s 
decision-making while controlling for the ambiguity of each stimulus 
and the observed social information. As predicted, this model repli-
cates the two main results: that participants’ judgements were biased 
towards their motivated colour; and moderately amplified rates of 
bias among Social/Motivated participants (Extended Data Fig. 1 and 
Extended Data Table 2).

Reducing bias amplification
Our analyses illustrate that bias amplification can arise when people 
observe judgements produced by others who share the same biases. 
Bias amplification happens because the bias of one wave is passed 
forward to the next wave through the sample of observed judgements. 
This suggests that bias amplification could be reduced by adjusting the 
transmission process so that people observe a set of judgements that 
better approximate an unbiased sample, representing a broader range 
of perspectives. Previous research has sought to construct more repre-
sentative samples by directly curating opposing viewpoints or through 
heuristic algorithms that alter people’s social connections52–54. Here we 
introduce an algorithmic strategy that makes it possible to obtain more 
representative samples from within an individual’s own network. The 
general form of this problem—approximating a sample from a target 
distribution p using samples drawn from a different distribution q—can 
be solved using a method called multiple importance sampling55,56.

Multiple importance sampling provides a simple formula for 
assigning a weight wjd to each judgement xd made by individual j in 
response to stimulus d. The weight reflects the relative probability 
of the judgement under the generating distribution qj(xd) specific to 
participant j, and a target sampling distribution p(xd):

wjd ∝
p(xd)
qj(xd)

. (1)

After computing these weights for the judgements made by every 
individual in each network, a new sample is drawn from this weighted 
distribution. Intuitively, this algorithm prioritizes judgements that are 
underrepresented in each individual’s network relative to the target 
distribution.

We used the psychometric model described above to calculate 
the terms in this weighting procedure (see ‘Experiment 2 resampling 
algorithm’ in Methods). Specifically, we calculated qj using a logis-
tic model with participant-specific bias parameters estimated using 
hierarchical cognitive modelling at each wave. The target sampling 
distribution p is the posterior distribution implied by adjusting the 
model to approximate the entire population.

Following this procedure results in an adjustment to the social 
information observed by participants on each trial (for example, six 
of eight people chose green, instead of seven of eight; see ‘Experiment 
2 resampling scheme’ in Methods). In more familiar terms, such an 
adjustment would modify the algorithm used to select the content 
presented in a social media feed. The feed would still exclusively contain 

perspectives drawn from each participant’s own network, but the algo-
rithm leverages variation within this network to promote perspectives 
that are more representative of a broader population. Crucially, this 
algorithm is information-preserving and does not require knowledge 
or even existence of a ‘ground truth’.

Experiment 2: evaluating resampling
We hypothesized that our importance sampling strategy would miti-
gate bias amplification while preserving the benefits of information 
sharing within our experimental paradigm. To test this hypothesis, we 
evaluated the efficacy of the strategy in a second large experiment. 
Using the same experimental paradigm as Experiment 1, we recruited 
2,464 participants from Mechanical Turk. We determined this sample 
size by performing a power analysis on 100 simulations of the experi-
ment. These simulations involved alternatively simulating participants’ 
judgements using a model fit to Experiment 1 and simulating the effects 
of the resampling algorithm on the simulated data (see ‘Power analyses’ 
in Supplementary Information).

Participants in Experiment 2 were assigned to one of three condi-
tions: Asocial/Motivated, Social/Motivated and Social/Resampling. 
The Asocial/Motivated and Social/Motivated conditions replicate 
Experiment 1. The Social/Resampling condition is analogous to the 
Social/Motivated condition with the key difference that social infor-
mation in this condition was subject to the resampling algorithm 
described above. Participants in social conditions were not informed 
which social condition they were assigned to. In each condition, half 
of the networks consisted of participants rewarded for blue dots (blue 
‘echo chambers’), and half for green dots (green ‘echo chambers’). This 
setup allowed us to impose homophily along motivated colour into 
each network, which was not present in Experiment 1. We recruited 
14 independent networks (7 green and 7 blue) per condition, with 64 
participants assigned to each network (8 new participants at each of 8 
waves). All participants in the first wave were assigned to the Asocial/
Motivated condition. Social/Motivated and Social/Resampling net-
works were yoked to the same initial asocial judgements. That is, two 
sets of social participants (Social/Motivated and Social/Resampling) 
in wave 2 observed the judgements made by the same set of Asocial/
Motivated participants in the first wave. At later waves, participants in 
social conditions observed the responses made by participants in the 
previous wave and same condition and network. Each participant com-
pleted 16 judgements, leading to a sample size of 39,424 judgements: 
14,336 for the asocial condition and 12,544 for each social condition. 
As in Experiment 1, we used an over-recruitment algorithm to speed 
data collection (more details are given in ‘Over-recruitment algorithm’ 
in Methods).

We pre-registered our main analyses and statistical models before 
collecting data. To test for differences between two conditions, we 
performed a likelihood ratio test between a mixed-effect logistic regres-
sion model with fixed effects for all conditions, and a mixed-effects 
logistic regression model with the two conditions coded as a single 
condition. In addition to the condition fixed effects, all models included 
a fixed effect capturing the participant’s motivated colour and random 
intercepts for each participant.

Replicating Experiment 1, participants in social networks exhib-
ited increases in both bias and accuracy (Fig. 3; full results in Extended 
Data Table 3). Asocial/Motivated participants chose their motivated 
colour on 54% of judgements, compared to 56.7% for Social/Motivated 
participants (β = −0.12, 95% CI −0.19 to 0.05); χ2(1) = 12.53, P < 0.001). 
Similarly, Asocial/Motivated participants chose correctly on 57.4% of 
trials, significantly less often than Social/Motivated participants, who 
chose correctly on 63% of judgements (β = −0.23, 95% CI −0.29 to −0.18); 
χ2(1) = 82.54, P < 0.001). As predicted, however, the resampling adjust-
ment mitigated bias amplification. Social/Resampling participants 
chose their motivated colour on 54.5% of judgements, a significantly 
lower rate than Social/Motivated participants (β = −0.1, 95% CI −0.16 
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to −0.03); χ2(1) = 7.47, P = 0.006). Furthermore, there was no evidence 
that resampling reduced the accuracy benefit of social networks. 
Social/Resampling participants chose correctly on 62.1% of judge-
ments, significantly more often than Asocial/Motivated participants 
(β = 0.2, 95% CI 0.15 to 0.25); χ2(1) = 59.33, P < 0.001), and not statistically 
significantly different from Social/Motivated networks (β = −0.04, 95% 
CI −0.09 to 0.02; χ2(1) = 1.87, P = 0.172). In Supplementary Information, 
we report exploratory analyses showing that our algorithm reduced 
the bias of observed social information in both blue- and green-biased 
networks, facilitating greater consensus (Extended Data Fig. 3; ‘Experi-
ment 2 exploratory analyses’ in Supplementary Information). The 
algorithm did so while propagating judgements from each participant 
at similar rates, rather than for example only transmitting judgements 
made by participants with low estimated bias (Extended Data Fig. 3).

Experiment 3: evaluating resampling in skewed networks
The results of Experiment 2 suggest that resampling can be effective 
in settings where individuals observe representative samples of judge-
ments from their own networks. Is resampling also effective in settings 
in skewed networks where more biased individuals are more likely to 
share their judgements? This phenomenon has been observed to occur 
in social media57, and potentially increases the bias of the population.

To investigate, we performed a third experiment using a similar 
setup as Experiments 1 and 2. Specifically, we tested the effectiveness of 
our algorithm in networks where the probability that a participant j has 

their judgement propagated to others at the next wave is proportional 
to the magnitude of their bias hj (for more details, see ‘Experiment 3’ 
in Methods).

Participants were recruited in two discrete waves and were 
assigned to one of three conditions; Asocial/Motivated, Social/Cor-
related and Social/Resampling. As in Experiments 1 and 2, both waves 
consisted of different participants. All participants in the first wave 
were assigned to the Asocial/Motivated condition, all participants in 
the second wave to either the Social/Correlated or the Social/Resam-
pling condition. The Asocial/Motivated replicates the earlier experi-
ments. In the Social/Correlated condition, participants observed a 
set of judgements from participants in the previous wave. This set of 
judgements was sampled with replacement from the set of eight judge-
ments that would be propagated in the Social/Motivated condition, 
with the probability of sampling each judgement proportional to the 
magnitude of an estimate of that participant’s bias (see ‘Experiment 
3’ in Methods). That is, participants with high levels of bias towards 
either green or blue would tend to have their judgements transmitted 
at higher rates. In Social/Resampling networks, we used our resampling 
procedure to adjust this skewed set of judgements with the goal of 
obtaining a more representative sample.

We recruited 320 participants for each condition from Mechanical 
Turk, for a total of 960 participants. We determined this sample size by 
performing a power analysis on 100 simulations of the experiment. As 
in Experiment 2, these simulations involved alternatively simulating 
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Fig. 3 | Experiment 2 details and results. a, Experiment 2 had three conditions: 
Asocial/Motivated, Social/Motivated and Social/Resampling. For each condition, 
we recruited 14 independent networks of participants: 7 networks of participants 
paid for green dots, and 7 networks of participants paid for blue dots. As in 
Experiment 1, participants in each network were organized into eight discrete 
waves, with eight participants in each wave. Dashed lines illustrate the yoking 
procedure, where second-wave participants in both social conditions observed 
the judgements made by first-wave Asocial/Motivated participants. b, The 
transmission structure for a single network in the Social/Resampling condition. 
At the end of each wave, we assigned a weight to each judgement made by Social/
Resampling participants in that wave. This weight determined the probability 
of propagating the judgement to participants at the next wave. An independent 
resampling of judgements was done using the same weights for each participant 
in the next wave. c, Calculating the resampling weights for each judgement was 
a two-step process. We first used a psychometric model to jointly estimate the 

bias (β) of each participant j and the ‘informativeness’ γd of each stimulus d. This 
model was fit to Asocial/Motivated participants in wave 1, and to Social/Motivated 
and Social/Resampling participants in waves 2–8. Biases were estimated from 
all of a participant’s 16 judgements. Informativeness for a stimulus d was 
estimated using all 224 judgements the model was fit to on that stimulus. We then 
determined the weight for propagating each judgement using equation (1).  
d, Experiment 2 results averaged across waves and networks (n = 14,336 judgements 
for the asocial condition; n = 12,544 judgements for each social condition). The 
plot on the left shows the proportion of trials where participants' judgements 
corresponded to their motivated colour, and the plot on the right the proportion 
of trials where participants chose correctly. Proportions are averaged across 
all participants in each condition and error bars show standard errors of the 
proportions. P values are determined using a likelihood ratio test between mixed 
effects models comparing the relevant conditions (P values were not adjusted for 
multiple comparisons).
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participants’ judgements using a model fit to Experiment 1 and simulat-
ing the effects of the oversampling and resampling algorithm on the 
simulated data (see ‘Power analyses’ in Supplementary Information).

All participants were assigned to one of 40 independent networks. 
Half of the networks consisted of participants paid for blue dots, and 
half for green dots, with eight participants in a network at each wave. 
Each participant made judgements on the same 16 test stimuli, match-
ing the proportions used in Experiment 2.

Both social conditions were yoked to the same initial asocial data. 
For example, participants in the network with index n in both the Social/
Correlated condition and Social/Resampling conditions observed 
judgements sampled from the same set of judgements made by Asocial/
Motivated participants’ in the network with index n.

Our sample size, analyses, and statistical models were pre- 
registered before collecting data. Our pre-registered analyses included 
random effects for each social network to account for the yoking 
structure, which we omitted as they led to singular fits. Using the 
pre-registered models does not change any of our findings (for full 
results, see Extended Data Table 4).

As in Experiments 1 and 2, we compared conditions by perform-
ing a likelihood ratio test between two logistic regression models: one 
model with both conditions coded separately, and one where they 
were coded as the same condition. All regression models also included 
fixed effects for motivated colour and random intercepts for each par-
ticipant. Tests that compare bias used models that predicted whether 
participants chose their motivated colour, and tests that compare 
accuracy predicted a binary variable capturing whether participants 
chose correctly. Results are shown in Fig. 4.

As predicted, and mirroring the results from Experiments 1 and 2,  
we found that participants in the Social/Correlated condition made 
significantly more biased judgements that participants in the Aso-
cial/Motivated condition—Social/Correlated participants chose 
their motivated colour on 57.6% of trials, compared with 52.7% of 
trials of Asocial/Motivated participants (β = 0.21, 95% CI 0.1 to 0.32; 
χ2(1) = 14.7, P < 0.001). However, our resampling algorithm signifi-
cantly reduced bias amplification; Social/Resampling participants 
chose their bias colour on 54.0% of trials, significantly less than 
Social/Correlated participants (β = −0.15, 95% CI −0.26 to −0.05); 
χ2(1) = 8.0, P = 0.005). Furthermore, as in Experiment 2, we found 
no statistically significant reduction in accuracy between Social/
Correlated and Social/Resampling participants; Social/Correlated 
participants chose correctly on 59.4% of trials, and Social/Resampling 
participants chose correctly on 59.9% of trials (β = 0.03, 95% CI −0.06 
to 0.11; χ2(1) = 0.4, P = 0.535).

Network simulations
Our main analyses and experiments investigated networks in which 
information is passed through discrete waves of participants organ-
ised in completely connected layered networks. However, previous 
research has demonstrated important impacts of network structure 
on how information, beliefs and behaviours spread through popula-
tions58–63. To assess the robustness of our method, we used the model 
we fit to participant behaviour in Experiment 1 to conduct simulations 
measuring the effects of resampling in more complex networks with 
repeated interaction.

Similar to the power analyses conducted for Experiments 2 and 3,  
we simulated behaviour in networks by alternatively simulating par-
ticipants’ judgements using a model fit to experimental data, and then 
simulating the impact of our resampling algorithm using models fit 
to the simulated data (Extended Data Fig. 4). We generated random 
networks using a power-law distribution to determine the number of 
outgoing edges for each node. This distribution was chosen to model 
inequality in social networks, where a few nodes (that is, influencers) 
tend to have a disproportionately high number of connections. The 
power law distribution is defined by a parameter a that determines 
the degree of inequality in the network. Lower values of a lead to more 
unequal networks—as a decreases, a few nodes, or ‘hubs’, tend to amass 
a disproportionately large number of outgoing edges, resulting in a 
skewed network structure.

We compared networks with resampling to those without for three 
different network sizes (64, 128 and 256) and three levels of a (1.5, 2.0 
and 3.0). We simulated 100 network sets (green and blue Social/Moti-
vated and Social/Resampling networks) for each unique combination 
of parameters (for more details, see ‘Network simulation’ in Methods).

In line with our main results, we found that resampling signifi-
cantly reduced bias amplification for every a and network size we 
tested (for results, see Extended Data Table 5 and Extended Data Fig. 5).  
Furthermore, resampling significantly increased accuracy for every 
network type, although the magnitude of the effect was small.

Discussion
Together, these results help to identify the mechanisms contribut-
ing to bias amplification in social networks. This study recreated a 
simplified version of bias amplification in a controlled laboratory 
experiment where we could directly measure the effects of informa-
tion sharing on bias by comparing the judgements made by isolated and 
connected individuals. Experiment 1 showed that information sharing 
led to the amplification of a decision-making bias beyond the levels of 
bias expressed by individuals completing the task alone. Experiment 2 
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Fig. 4 | Experiment 3 results. a, Plot of the proportion of trials where 
participants’ judgements corresponded to their motivated colour. b, Plot of the 
the proportion of trials where participants chose correctly. Participants in the 
Social/Correlated condition observed a set of judgements from participants 
in the previous wave. These judgements were sampled on the basis of the 
magnitude of each participant’s bias, leading to a higher transmission rate of 
judgements from more biased individuals. Participants in the Social/Resampling 

condition observed a set of judgements resampled from the original skewed 
set using our resampling algorithm. As predicted, we found that resampling 
significantly reduced bias amplification. Proportions are averaged across all 
participants in each condition (n = 5,120 judgements per condition). Error 
bars show standard errors of the proportions. P values are determined using 
a likelihood ratio test between mixed effects models comparing the relevant 
conditions (P values were not adjusted for multiple comparisons).
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showed that this amplification effect can be mitigated by a statistical 
resampling strategy applied to the transmission process. Experiment 3  
showed that resampling can be effective in settings where bias is cor-
related with sharing, and simulations showed that the method can also 
be successful in more complex networks.

The methods we have presented here—using psychometric 
models to estimate bias and provide a quantitative foundation for 
resampling—can be extended to more naturalistic settings where the 
relative probability of each response under a personalized generating 
distribution and a target sampling distribution can be evaluated. For 
example, if links that are shared by users of a social media platform 
can be identified as having a liberal or conservative bias, this infor-
mation can be used to estimate the biases of individuals who choose 
to share those links. Resampling approaches may also be effective 
in reducing biased perceptions that arise from ‘friendship-paradox’ 
phenomena where people’s perceptions are overly influenced by 
highly connected individuals64.

While promising, further work is needed to better understand the 
robustness of our resampling scheme and modelling framework. Most 
notably, the networks we constructed for our experiments were both 
simple and relatively small. Real-world social networks, by contrast, 
are both larger and more complex65–67. While simulations suggest 
resampling can be effective in more complex networks, future work 
should test this experimentally, especially in settings where sharing is 
mediated by algorithms that prioritize engagement. Along these lines, 
in real-world networks, connections arise from a variety of complex 
structures and relationships. Future work should investigate whether 
resampling can also be effective in networks where connections are 
formed through these richer processes. Adjusting social information 
may also be less successful at influencing people’s beliefs on complex 
topics that interact with people’s identities and experiences.

Our modelling framework also made a number of simplifying 
assumptions that may need to be adjusted in real-world domains. For 
example, for simplicity we assume that individuals do not account for 
the bias of the social information they observe or whether others are 
also social learners. This assumption may break down in naturalistic 
settings where a group’s identity, history, goals and biases are more 
explicit, and previous work has shown that people can be sensitive to 
similar dependencies68. Investigating the extent to which individu-
als account for the generative process of social information both in 
laboratory tasks and real-world networks is an exciting challenge for 
future work, alongside further investigation of principles for mainte-
nance of sample diversity in more complex decision-making settings,  
and integration of our approach with other theoretical models of 
social learning49,69.

Online social networks are often constructed by opaque algo-
rithms that prioritize user engagement70,71. We have identified and 
evaluated a simple adjustment to social networking algorithms that 
reduced bias amplification while maintaining the benefits of infor-
mation sharing. Resampling allowed participants to observe social 
information that was generated by people in their network but that 
better reflected the broader population. This method complements 
interventions such as fact-checking72, education initiatives73 and con-
tent moderation74, providing a framework for reducing bias amplifica-
tion that is transparent, scalable and underpinned by a mathematical 
theory that shows why the approach is effective.

Methods
Bayesian model
Our Bayesian model assumes that participants face a decision between 
two hypotheses: more green dots (h = g) or more blue dots (h = b). 
The evidence on which this judgement is based is the observed data d 
and, optionally, social information s in which k of n other participants 
endorse green. We thus want to compute p(h = g∣d, s). With just two 
hypotheses, we can write Bayes’ rule in log-odds form:

log p(h = g|d, s)
p(h = b|d, s) = log p(s|h = g)

p(s|h = b) + log p(d|h = g)
p(d|h = b) + log p(h = g)

p(h = b) (2)

where we assume that the data d and social information s are independ-
ent, with p(d, s∣h) = p(d∣h)p(s∣h), and p(h) reflects prior biases.

For the social information s, we assume that participants assume 
that each of the judgements is generated independently with prob-
ability 1 − ϵ of matching the true colour (note that the true generative 
process depends on both the wave and others’ motivated colour). 
Under these assumptions, social information in which k of n judge-
ments favour green thus results in

p(s|h = g)
p(s|h = b) =

(1 − ϵ)kϵn−k

ϵk(1 − ϵ)n−k
(3)

= ( ϵ
1 − ϵ )

n (1 − ϵ)kϵ−k

ϵk(1 − ϵ)−k
(4)

= ( ϵ
1 − ϵ )

n
( 1 − ϵ

ϵ )
2k

(5)

= ( 1 − ϵ
ϵ )

2(k−n/2)
(6)

which allows us to write

log p(s|h = g)
p(s|h = b) = (k − n/2) log ( 1 − ϵ

ϵ )
2
.

Using this result, we can rewrite equation (2) as

log p(h = g|d, s)
p(h = b|d, s) = α(k − n/2) + γd + β,

where

α = log ( 1 − ϵ
ϵ )

2
(7)

γd = log p(d|h = g)
p(d|h = b) (8)

β = log p(h = g)
p(h = b) . (9)

By observing that

p = 1
1 + exp {− log p

1−p
}
,

and substituting p(h = g∣d, s) for p, we can derive a logistic expression 
for judging green75:

p(h = g|d, s) = 1
1 + exp{−α(k − n/2) − γd − β} . (10)

To model social network dynamics, we define a Markov chain 
on the number of people endorsing green at time t, kt, for a specific 
stimulus d. The transition matrix of the Markov chain is specified by

kt ∼ Binomial (n, 1
1 + exp{−α(kt−1 − n/2) − γd − β} ) .
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Since γd and β behave equivalently in this model, it is sufficient to 
examine how the stationary distribution of the Markov chain is affected 
by β. Extended Data Fig. 1 shows the stationary distribution as a func-
tion of β for three different values of α, reflecting different levels of 
impact of social information. At all levels of α, the stationary distribu-
tion exaggerates the effect of β (and hence γd), with this phenomenon 
increasing as α increases. Intuitively, this is a form of compounding: 
β and γd have an effect on judgements at each wave, and the social 
information conveys that effect to the next wave where it has a further 
opportunity to influence people’s judgements. In the case of γd this 
potentially increases accuracy, as people make better use of limited 
information—a positive effect of social networks. However, for β this 
is simply a magnification of bias.

Experiment 1
Participants. All experiments were approved by the institutional review 
board of Princeton University, and all participants gave informed 
consent. We recruited 2,619 participants from Amazon’s Mechanical 
Turk, limiting our study to those located in the United States. We only 
recruited participants with a Mechanical Turk approval rating of 95% 
or higher, and participants could only take the experiment once. Indi-
viduals that participated in a pilot version of the study were excluded 
from the experiment. Participants received a base payment of US$0.65 
for completing the experiment, plus an average bonus of US$0.65. On 
average, participants spent 4 min and 10 s on the task, and earned an 
average hourly wage of US$21.73. Our recruitment algorithm used 
planned over-recruitment to facilitate efficient data collection in the 
context of sequential batch recruitment, enabling us to recruit the 
target sample size of 2,400 participants (see ‘Over-recruitment algo-
rithm’ in Methods). Over-recruited participants were paid using the 
same procedure, but were excluded from analyses and did not have 
their judgements transmitted to the next wave. Our sample size and 
analyses were pre-registered on 19 September 2019 (pre-registration 
available at ref. 76).

Conditions. Our experiment used a 2 × 2 factorial design with two 
binary factors; presence of motivation bias (induced by the experi-
menters) and availability of social information. Each participant was 
randomly assigned to one of the four conditions implied by this cross.

The reward structure factor had two levels: motivated and neutral. 
In motivated conditions, participants were randomly assigned a moti-
vated colour of either green or blue. These participants received one 
point for every dot of their motivated colour on each trial. To ensure 
the expected total reward for participants in all conditions was equal, 
participants in neutral conditions received an additional 400 point 
reward for completing the experiment. Participants in all conditions 
also received a 50 point reward on each trial if their judgement was 
correct. At the end of the experiment, participants’ bonuses were paid 
to them with 10 points equal to one cent.

The social factor also had two levels: asocial and social. Partici-
pants in the social conditions observed a set of other participants’ 
responses on the same stimulus before each trial. Participants in asocial 
conditions performed each trial individually.

Wave structure. Participants were recruited in discrete batches, or 
‘waves’. A wave of participants was not recruited until all the partici-
pants in the previous wave completed the experiment. All participants 
in the first wave were randomly assigned to one of the two asocial 
conditions, and participants in later waves were randomly assigned 
to one of the four conditions.

Network structure. We recruited ten independent networks for each 
condition. After being assigned to a condition, each participant was 
then randomly assigned to a network. Each network had eight partici-
pants at each wave. Network determined the responses participants 

in a given wave observed. That is, the network captured the social 
network the participant was assigned to. This network was constant 
across trials, so a participant observed the responses by the same set 
of participants on each trial. Participants in asocial conditions were 
assigned to a network but did not observe any social information.

We created networks in which participants were rewarded for 
different colours. To do so, each participant was assigned a marked 
colour of either green or blue. Equal numbers of participants in each 
network and condition were assigned each colour. In the motivated 
conditions, marked colour corresponded to the participant’s moti-
vated colour. Participants in neutral conditions, however, were not 
aware of their marked colour. Response data were coded as whether the 
participant chose their marked colour, and the judgements observed 
by a participant were recoded in terms of that participant’s marked 
colour (Extended Data Fig. 2).

Procedure. All practice and test stimuli consisted of 100 randomly 
positioned blue and green dots displayed for 1,000 ms. After viewing 
a stimulus, participants judged whether the image contained more 
blue or more green dots. The blue (#007ef8, LAB: 53.49, 16.3, −69.16) 
and green (#009500, LAB: 53.49, −57.73, 55.72) colours were chosen for 
identical lightness in LAB colour space. A fixation cross and bounding 
box preceded presentation of the stimuli for 600 ms.

For each stimulus, the position and size of dots varied between net-
works and waves, but not across conditions. That is, for each network, 
participants in condition A observed with the exact stimuli viewed 
by participants in condition B. For example, all participants in wave t 
and network r observed the exact same display (St,r) for each stimulus. 
Participants in the next wave but same network making judgements on 
the same stimulus observed a display (St+1,r) with the same number of 
marked colour dots as St,r, but that were configured in different sizes 
and positions. A participant’s marked colour then determined the 
colour of each dot.

Each participant first completed two practice trials. Participants 
received accuracy and reward feedback after each practice trial. Par-
ticipants were then required to pass a comprehension test in their 
first three tries to complete the experiment. Each participant com-
pleted eight test trials. No trial-by-trial feedback was given on test 
trials. Instead, participants were told their earnings and performance 
at the end of the experiment.

Each practice and test stimulus was associated with a number of 
marked and non-marked colour dots. Practice stimuli had 47 and 53 
marked-colour dots. Test stimuli had 48, 49, 51 or 52 marked-colour 
dots, with two trials for each unique number. Trial order for both prac-
tice and test trials was randomized.

Social information was presented as the number of participant 
making the majority judgement. For example, if six of eight participants 
in the previous wave chose their marked colour, then a participant P 
at the next wave whose marked colour was blue was informed that 
six of eight participants in the previous wave chose blue. However, 
if only three of eight participants chose their marked colour, then P 
was informed that five of eight participants chose green. When equal 
numbers of participants chose their marked and non-marked colours, 
we used simple randomization to determine which colour was pre-
sented as the response of four out of eight individuals. The social icons 
observed before the stimulus were presented again above the blue and 
green response buttons when participants made their judgement.

We used cover stories to make the task more intuitive. All partici-
pants were informed that they were working for an imaginary mining 
company looking for valuable gemstones. Participants in motivated 
conditions whose marked colour was blue were told that they would 
be looking for blue sapphires in green grass, and to inspect areas and 
judge if the area had more sapphire dots or more grass dots. Partici-
pants in motivated conditions whose marked colour was blue were 
given a similar cover story, but were instructed that they were looking 
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for green emeralds in blue water. Participants in neutral conditions 
were told to judge whether the area contained more blue sapphires 
or green emeralds.

Statistical testing. Differences in accuracy and bias between con-
ditions were assessed using likelihood ratio tests between relevant 
mixed effects models (Extended Data Table 1). The likelihood ratio 
test assumes a sample size large enough for the test statistic to follow 
a chi-square distribution and independent observations. We did not 
formally test these assumptions for our Experiment 1 analyses or any 
subsequent likelihood ratio test reported in this paper.

Psychometric model
We fitted separate versions of the Bayesian model introduced above 
to the judgements made by Asocial/Motivated and Social/Motivated 
participants in Experiment 1. These models can also be interpreted in 
terms of Item Response Theory51, a psychometric approach typically 
used to jointly estimate individuals’ abilities and questions’ difficulties 
using testing data. We used this approach to estimate the impact of 
social information α, the informativeness of the data γd and the biases 
of participants β.

The model specified in equation (10) in the main paper is a form 
of logistic regression. We fit two models—one for the Social/Motivated 
condition and one for the Asocial/Motivated condition—via Bayesian 
logistic regression. We estimated the bias bj of participant j towards 
their motivated colour using a hierarchical Bayesian model, with 
bj ∼ 𝒩𝒩(μb,σb), μb ∼ 𝒩𝒩(0, 3) and σb ~ lognormal(0, 2) (fitting the model 
with different priors results in minimal changes to the fitted parame-
ters). This model allows us to pool data across participant groups and 
increases statistical power. The estimate μb of the mean of the 
population-level distribution captures the tendency of blue- and 
green-biased participants to choose their motivated colour. This can 
be then recoded as the bias βj of participant j towards green in the 
regression model:

βj = {
bj, if j′smotivated colour is green

−bj, if j
′smotivated colour is blue.

(11)

To model each stimulus, both models included coefficients 
γγγddd ∼ 𝒩𝒩(0, 20) on each level of a dummy variable representing the num-
ber of green dots (0.48, 0.49, 0.51 and 0.52) in the stimulus. We mod-
elled the impact of the social information s on Social/Motivated 
participants’ judgements by fitting a weight α ∼ 𝒩𝒩(0, 20) on k − n/2, or 
the number of green judgements observed for the stimulus minus 4 
(n/2). The asocial model did not include α. Controlling for this social 
information allowed us to compare the individual-level bias of Asocial/
Motivated and Social/Motivated participants using the bias term μb as 
described above.

Parameters in both models were estimated from eight Markov 
chain Monte Carlo chains run for 2,500 iterations using the No-U-Turn 
variant of Hamiltonian Monte Carlo77. The first 1,250 iterations of each 
chain were discarded and not used for parameter estimation. Average 
sampled values and highest density intervals for both models are given 
in Extended Data Table 2.

Experiment 1 model fitting. We used this model to analyse the judge-
ments made by Asocial/Motivated and Social/Motivated participants. 
In both models, the mean bias towards motivated colour (β for partici-
pants paid for green dots, −β for participants paid for blue dots) was 
positive and significant, indicating that participants’ judgements were 
skewed towards their motivated colour (Asocial/Motivated bias mean 
0.268, 90% highest density interval 0.218–0.32; Social/Motivated bias 
mean 0.371, 90% highest density interval 0.302–0.44; full results in 
Extended Data Table 2). Similarly, there was a monotonic relationship 

between the proportion of green dots and the estimated coefficient γd 
for each stimulus. Finally, in the Social/Motivated model, we observed 
a positive relationship between the number of prior judgements of 
green and the probability of choosing green (α = 0.232, 90% highest 
density interval 0.199–0.265). These parameters are predicted to lead 
to moderately amplified bias (Extended Data Fig. 1).

Experiment 2 resampling algorithm
The resampling algorithm used in Experiment 2 involved (1) fitting 
a psychometric model to estimate participant biases and stimulus 
informativeness, (2) estimating weights for each judgement using 
multiple importance sampling, and (3) resampling a set of judgements 
to propagate to participants at the next wave. Here we describe each 
step of this process in detail.

Estimating β and γd. We modelled the generating distribution q and 
the unbiased target distribution p using a psychometric model based 
on the Bayesian model introduced above. Participant biases were 
assumed to be βj ~ N(0, 3) and stimulus informativeness was γd ~ N(0, 3). 
We omitted α from this version of the model. We did this to establish 
that the resampling algorithm can be applied in the most general case 
where the observation history of the people whose judgements are 
being resampled is unknown. To estimate q (the probability of the 
judgement under the generating distribution) we use a Bayesian logistic 
regression model that incorporates both of these factors. To estimate 
p (the probability of the judgement under the target distribution), we 
calculate the distribution that results from setting βj = 0. This approach 
is an appropriate model of the unbiased broader population in our 
setting because there were equal numbers of participants with green 
(β > 0) and blue (β < 0) biases, allowing us to assume that the mean of 
this distribution is zero; in other settings, the target β can be set to the 
empirical population mean. Unlike the Experiment 1 psychometric 
model, coefficients were estimated for each stimulus directly from 
judgement data. That is, we fit γd without using the true dot propor-
tions (that is, the correct answer). Additionally, our approach does 
not require knowledge of the true bias of any individual. Instead, our 
framework allows us to estimate biases through distributional assump-
tions about the population.

At the end of each wave, we fit the item response theory (IRT) 
model by running eight Markov chain Monte Carlo chains for 2,500 
iterations (with the first half warmup) using the No-U-Turn variant 
of Hamiltonian Monte Carlo77. In the first wave, the model was fit to 
Asocial/Motivated participants, and in later waves it was fit to Social/
Motivated and Social/Resampling participants.

Multiple importance sampling. We aimed to obtain an unbiased 
sample of judgements while only having access to judgements pro-
duced by a biased population. This problem—approximating a sample 
from a target distribution p using samples drawn from a different 
distribution q—can be solved with importance sampling55. In impor-
tance sampling, a weight w̃i is assigned to each sample xi, with:

w̃i =
p(xi)
q(xi)

. (12)

This setup assumes that all observations are drawn from a common 
generating distribution q. In our setting, however, bias can vary across 
individuals. This means that the observed judgements are drawn from 
a distinct generating distribution qj for each participant j. That is, we 
estimate the probability of the judgement on stimulus d using both the 
stimulus parameter γd and the fitted bias parameter βj for participant 
j. For example, all else equal, qj will be lower on judgements where 
participants with a high bias towards green chose blue.

This setting requires a more specific form of adjustment known as 
multiple importance sampling56. One method for performing multiple 
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importance sampling is to set the weight of each observation equal to 
its probability under p divided by its probability under qj:

w̃i =
p(xi)
qj(xi)

. (13)

The weights are then normalized so they can be interpreted as compo-
nents of a probability vector. This can be done by dividing each weight 
by the sum of the weights for all N observations:

wi =
w̃i

∑N
n=1 w̃n

. (14)

Resampling judgements. In our setting, q is the distribution of biased 
judgements and p is the unbiased distribution. Given a sample from q, 
we can use importance sampling to draw a sample of judgements that 
is closer to p. As described above, this procedure involves assigning 
weights to the original set of judgements and then sampling a new 
set of judgements from the set with probabilities proportional to  
the weights.

At the end of each wave, we used the estimated IRT models to 
calculate p, the probability of the judgement under an average bias 
towards green, and q, the probability of the judgement given the par-
ticipant’s bias for all judgements in the wave. We used equation (13) to 
calculate the unnormalized weight w̃jd  for every judgement made by 
Asocial/Motivated (wave 1) or Social/Resampling (waves 2–8) partici-
pants. To normalize the weights, we assigned each judgement to a 
judgement set. A judgement set consisted of the N = 8 judgements 
made by the participants in the same network and wave on stimulus d. 
Following equation (14), each weight was normalized by dividing it by 
the sum of all the weights in the judgement set.

The normalized weights w determined the probabilities of propa-
gating each judgement to participants at the next wave. On every 
Social/Resampling trial, we used these probabilities to sample a set of 
eight judgements from the relevant judgement set. Judgements were 
resampled with replacement, and distinct samples were propagated 
to each participant at the next wave.

Experiment 2
Participants. All experiments were approved by the institutional review 
board of Princeton University, and all participants gave informed 
consent. We recruited 2,518 participants from Amazon’s Mechanical 
Turk. As in Experiment 1, we required participants to be based in the 
United States and have an approval rating of at least 95%. To keep up 
to date with evolving data quality norms on Mechanical Turk78 (Experi-
ment 1 was run in September 2019; Experiment 2 was run in November 
2021), we also required participants to have successfully completed 
at least 5,000 human intelligence tasks. Participants could only take 
the experiment once. We allowed individuals who completed Experi-
ment 1 or its pilot studies to participate in the experiment. However, 
individuals that participated in a pilot version of Experiment 2 were 
excluded. Participants received a base payment of US$1.20 plus an 
average bonus of US$1.28. Participants spent an average of 5 min and 
24 s on the task, and earned an average hourly wage of US$31.82. As in 
Experiment 1, we used an over-recruitment algorithm to accelerate col-
lection of our target sample size of 2,464 participants. Over-recruited 
participants were paid using the same procedure, but were excluded 
from analyses and did have their judgements transmitted to the next 
wave. Our sample size and analyses were pre-registered on 2 August 
2021 (pre-registration available at ref. 79).

Conditions. All participants were assigned a motivated colour for 
which they received a one point bonus for every dot of that colour. 
In addition to their colour bonus, all participants received a 50 point 
bonus on each trial if their judgement was correct. At the end of the 

experiment, participants’ bonuses were paid to them with 10 points 
equal to one cent.

Participants were assigned to one of three conditions—Asocial/
Motivated, Social/Motivated and Social/Resampling. Participants in 
the asocial condition completed the experiment individually and did 
not observe social information. Social participants observed a set of 
judgements made by participants in the previous wave on the same 
stimulus before making a judgement. Social/Motivated participants 
observed the original judgement set. Participants in Social/Resampling 
networks observed a set of eight judgements sampled with replace-
ment from the judgement set. We resampled a separate set of eight 
judgements for each participant.

Wave structure. As in Experiment 1, participants were recruited in 
eight discrete waves. Networks and conditions were run in parallel, 
so participants at wave t + 1 were not recruited until all participants in 
wave t completed the experiment. All participants in the first wave were 
assigned to the asocial condition. Equal numbers of participants in later 
waves were assigned to each condition using block randomization.

Network structure. At each wave, participants in each condition were 
randomly assigned to a network. We recruited 14 networks for each 
condition. A network determined the responses social participants 
observed. This network was fixed, so a social participant observed 
social information from the same set of participants on each trial.

As in Experiment 1, each network had eight participants in each 
wave. Instead of assigning participants with both green and blue biases 
to the same network as in Experiment 1, networks were composed 
entirely of participants with the same motivated colour. Seven of the 
networks for each condition consisted of participants biased towards 
green, with the other seven populated by participants biased towards 
green. This structure allowed us to avoid marked-colour recoding 
within networks as we did in Experiment 1.

Procedure. As in Experiment 1, all stimuli consisted of 100 dots dis-
played for one second. Participants then judged whether there were 
more blue or more green dots in the stimulus. The blue (#007ef8) 
and green (#009500) colours matched those used in Experiment 1. 
A fixation cross and bounding box was displayed for 600 ms before 
presentation of the stimuli. Positioning and sizing for a given stimulus 
was determined randomly under the constraint that no dots overlap 
with each other or the stimulus boundary. Unlike Experiment 1, we 
did not constrain dot positioning and sizing to match on each wave 
and network.

Social information on each trial was shown before participants in 
social conditions viewed a stimulus. Social information consisted of 
both text and icons, with k icons coloured to match the judgement of 
the majority, and 8 − k coloured in grey. For example, six green and two 
blue judgements were displayed as six green and two grey icons. How-
ever, if only three of eight participants chose green, participants were 
shown five blue icons and three grey icons. Ties were broken via simple 
randomization. The same social icons a participant observed before a 
stimulus were also presented above the blue and green response but-
tons when participants made their judgement.

Participants first completed two practice trials with 53 and 47 
green dots. Participants received accuracy and reward feedback after 
both practice trials. Practice trials did not count towards participants’ 
bonuses, and no resampling was performed on practice trials in Social/
Resampling networks. Participants then completed a comprehension 
test before starting test rounds. Participants that failed to answer every 
test question correctly in their first three tries were excluded from the 
experiment.

As in Experiment 1, test stimuli had either 48, 49, 51 or 52 green dots 
(our pre-registration erroneously stated that test stimuli would have 
either 49 or 51 green dots). Participants completed 16 test trials, with 
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4 test trials for every number of green dots. No trial-by-trial feedback 
was given on the test trials. Instead, participants were informed of their 
earnings at the end of the experiment. Trial order for both practice and 
test trials was randomized.

To make the task more intuitive, we used the same cover stories 
we used in Experiment 2. Participants were told that they were working 
for an imaginary mining company looking for valuable gemstones. 
Participants whose motivated colour was blue were instructed that 
they were looking for blue sapphires in green grass, and those whose 
motivated colour was green were told that they were looking for green 
emeralds in blue water.

Over-recruitment algorithm
In Experiments 1 and 2, we applied an over-recruitment procedure 
designed to facilitate efficient network turnover in sequential, 
batch-structured recruitment settings where a full wave must complete 
before the next wave can be started (we did not use over-recruitment 
in Experiment 3). Specifically, at each wave, we performed planned 
over-recruitment at the experiment level. That is, we first calculated the 
required total sample size for the current wave including all networks. 
We then added a number of additional potentially fillable recruitment 
slots to that total. This ensured that participants who began the task 
but failed to complete it or took a disproportionately long time to do 
so did not prevent completion of a wave, which occurred frequently 
during pilot testing.

As soon as the target sample size for a wave had been completed, 
the new wave was recruited. Any participants who were in the process 
of completing their task when their wave hit the target sample size 
completion were automatically assigned to an over-recruited category. 
Participants assigned to the over-recruited category completed the 
task normally and received the same payments and bonuses as all other 
participants, but their data were not transmitted to the next wave nor 
included during our analyses.

Our procedure aimed to keep the number of over-recruitment 
slots available during the experiment constant. For example, in 
Experiment 1, our total potential over-recruitment budget during 
the first wave was 50 participants. The number of over-recruitment 
slots that were actually used each wave depended on the number 
of participants who specifically accepted the task, started the task 
before the current wave was complete, but did not complete the 
task before their wave reached the target sample size completion. 
For example, if six participants fell into this category during wave 1, 
we made six additional over-recruitment slots available during wave 
two to keep the total number of recruitment slots constant over time 
(over-recruitment slots not utilized at one wave remained available 
during the next wave).

This general principle of constant potential for over-recruitment 
was the guiding design for our recruitment strategy in both Experi-
ments 1 and 2: it ensured fair compensation and participation oppor-
tunities for all participants, while also ensuring that no individual 
participant could compromise the progress of the experiment as a 
whole through delayed or failed participation.

Experiment 3
Participants. All experiments were approved by the institutional review 
board of Princeton University, and all participants gave informed con-
sent. We recruited 960 participants from Amazon’s Mechanical Turk. 
Participants were required to be based in the United States, have an 
approval rating of at least 99%, and have successfully completed 15,000 
human intelligence tasks. We required higher worker metrics compared 
to Experiments 1 and 2 to ensure high data quality. Participants could 
only take the experiment once, and individuals that participated in a 
pilot version of Experiment 3 were excluded. Participants received 
a base payment of US$1.40 plus an average bonus of US$1.27. Par-
ticipants spent an average of 5 min and 14 s on the experiment, for an 

average wage of US$35.58 per hour. Our sample size and analyses were 
pre-registered on 17 May 2023 (pre-registration available at ref. 80).

Conditions. All participants were assigned a motivated colour of either 
green or blue and received a 50 point bonus on each trial if their judge-
ment was correct. At the end of the experiment, participants’ bonuses 
were paid, with 10 points equal to one cent.

Participants were assigned to one of three conditions—Asocial/
Motivated, Social/Correlated and Social/Resampling. Participants in 
the asocial condition completed the experiment on their own without 
observing social information. Participants in the social conditions 
observed a set of eight judgements made by participants in the previous 
wave on the same stimulus before making a judgement. These judge-
ments were sampled with replacement from the judgements Asocial/
Motivated participants in the network with the same index and previous 
wave made on the same stimulus. We resampled a separate set of eight 
judgements for each participant (for more details on resampling, see 
‘Oversampling and resampling’).

Wave structure. Participants were recruited in two discrete waves. All 
participants in the first wave were assigned to the Asocial/Motivated 
condition, and equal numbers of participants in the second wave were 
assigned to each of the social conditions using block randomization. 
Networks and conditions were run in parallel, so participants in the 
second wave were not recruited until all participants in the first wave 
finished the experiment.

Network structure. At each wave, participants were randomly assigned 
to a network. We recruited 14 independent networks for each condition. 
A network determined the responses social participants observed. 
Network assignment was fixed, so a social participant observed social 
information from the same set of participants on each trial.

Each network had eight participants, and was composed entirely 
of participants with the same motivated colour. Twenty networks for 
each condition consisted of participants biased towards green, and 20 
networks consisted of participants biased towards blue.

Procedure. We used the same stimulus task used in Experiments 1 and 
2 (Fig. 1). All stimuli consisted of 100 dots displayed for one second. 
Participants then judged whether there were more blue or more green 
dots in the stimulus. A fixation cross and bounding box was displayed 
for 600 ms before each stimulus. Positioning and sizing for a given 
stimulus was determined randomly on each trial, under the constraint 
that no dots overlap with each other or the stimulus boundary. As in 
Experiment 2, we did not constrain dot positioning and sizing to match 
on each wave and network.

Social information on each trial was presented before partici-
pants viewed each stimulus. Social information consisted of both 
text and icons, with k icons coloured to match the judgement of the 
majority, and 8 − k coloured in grey. For example, five green and three 
blue judgements were displayed as five green and three grey icons. 
However, if only two of eight participants chose green, participants 
were shown six blue icons and two grey icons. Ties were broken via 
simple randomization at the time of the experiment. The same social 
icons a participant observed before a stimulus were also presented 
above the blue and green response buttons when participants made 
their judgement.

Participants first completed two practice trials with 53 and 47 
green dots. Participants received accuracy and reward feedback after 
both practice trials. Practice trials did not count towards participants’ 
bonuses. Participants then completed a comprehension test before 
starting test rounds. Participants that failed to answer every test ques-
tion correctly in their first three tries were excluded from the experi-
ment. Test stimuli had either 48, 49, 51 or 52 green dots. Participants 
made judgements on 16 test stimuli, with four stimuli for every number 
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of green dots. Trial-by-trial feedback was not given on the test trials. 
Trial order for both practice and test trials was randomized.

We used the same cover stories we used in Experiments 1 and 2 
to make the task more intuitive. Participants were told that they were 
working for an imaginary mining company looking for valuable gem-
stones. Participants whose motivated colour was blue were told that 
they were looking for blue sapphires in green grass, and those whose 
motivated colour was green that they were looking for green emeralds 
in blue water.

Oversampling and resampling. At the end of the asocial wave, we 
fit an IRT model to participants’ judgements to estimate their bias. In 
these models, bias was coded in terms of bias towards green, so that 
participants with positive biases tend to choose green more than other 
participants, and those with negative biases tend to choose blue more 
than other participants.

In each social condition, we propagated a skewed set of judge-
ments to participants so that asocial participants with high magnitude 
biases had judgements propagated at higher rates. Specifically, we 
assigned a probability h to propagating each participant’s judgement 
in terms of their bias:

̃hi = |bi| (15)

The bias weights were then normalized for all eight participants 
in the network:

hi =
̃hi

∑k∈N
̃hk

(16)

On each trial, we sampled a set of eight judgements with replace-
ment from the original set of eight judgements made by asocial partici-
pants in a given network on that stimulus. The probability of sampling 
each judgement was given by the participant’s weight h. Participants in 
the Social/Correlated condition observed the skewed sampled set of 
judgements. Participants in the Social/Resampling condition observed 
a set of judgements where the skewed sample was adjusted by our 
resampling algorithm. To do so, we adjusted q used in equation (13) to 
account for oversampling:

q(xij) = {
logit−1 (bi − dj) × hi, if xij is green

1 − logit−1 (bi − dj) × hi, if xij is blue
(17)

Every other step of the resampling procedure proceeded as in 
Experiment 2.

The same fitted IRT model was used to estimate quantities for over-
sampling and resampling. We fit this model to the asocial participants’ 
judgements after the first wave completed, running eight Markov chain 
Monte Carlo chains for 2,500 iterations, with 1,250 warmup iterations 
for each chain.

We used a bootstrapping approach to propagate judgements for 
both social conditions. After fitting the IRT model, we simulated run-
ning our skewing and skewing-resampling procedure 10,000 times for 
each judgement set (that is, each set of eight judgements for a stimu-
lus–network combination). We used these simulations to estimate the 
probability of sampling a green judgement for each judgement set 
and used this probability to sample a set of eight judgements on each 
trial during the experiment. Sampling was done separately for each 
participant. That is, a separate sample was propagated to each social 
participant in the second wave.

Network simulations
Here we provide more details on the network simulations reported in 
the main text.

Setup. To simulate participants’ judgements, we fit oracle models to 
the judgements made by Asocial/Motivated and Social/Motivated 
participants in Experiment 1. These models were highly similar to the 
psychometric model we fit to measure the individual-level biases of 
Asocial/Motivated and Social/Motivated participants in our Experi-
ment 1 analysis (see ‘Experiment 1 psychometric model’ in Methods).

Both models used a Bayesian logistic regression to predict whether 
a participant chose green on each stimulus, and included a hierarchical 
term capturing the bias of each participant towards their motivated 
colour. The prior for the bias bj for participant j was set to bj ∼ 𝒩𝒩(μb,σb) 
with μb ∼ 𝒩𝒩(0, 3) and σb ~ lognormal(0, 2). Both models also included 
a constant c ∼ 𝒩𝒩(0, 20), and separate weights yyy ∼ 𝒩𝒩(0, 20) on each level 
of an indicator capturing the number of green dots (0.48, 0.49, 0.51 
and 0.52) on the stimulus. The Social/Motivated model included an 
additional weight v ∼ 𝒩𝒩(0, 20)  on the number of green judgements 
observed for each stimulus.

We used the same ‘oracle’ models we used in our power analyses 
for Experiments 1 and 2 to simulate participants’ judgements (see 
‘Psychometric model’ in Methods; Extended Data Fig. 4). Before simu-
lating any judgements, we first sampled a bias for each participant 
from the distribution defined by the mean bias parameters for the 
asocial oracle model. The sampled bias was multiplied by negative one 
for participants in blue networks, so that the bias term captured bias 
towards green. Participants made judgements in discrete ‘iterations’ 
(analogous to ‘waves’ in our experiments). On each iteration, simulated 
participants made judgements on a common set of stimuli. In the first 
iteration, participants made their decisions individually, and we used 
the parameters from the asocial oracle model to simulate judgements. 
At later iterations, participants made their judgements on the basis 
of the judgements of their connected peers in the network. That is, 
participants ‘observed’ the judgements made by their parents on the 
same stimulus in the previous iteration for every stimulus.

For each simulation, we simulated four networks; one Social/Moti-
vated populated by participants with a motivated colour of green, one 
Social/Motivated network populated by participants with a motivated 
colour of blue, one Social/Resampling populated by participants with a 
motivated colour of green, and one Social/Resampling network popu-
lated by participants with a motivated colour of blue. Both the Social/
Motivated and Social/Resampling networks were populated by the 
same set of sampled participants. Similarly, the network connections 
for both sets of networks were identical, and networks were ‘yoked’ to 
the same initial set of asocial decisions. That is, we first sampled a set of 
biases to populate both the Social/Motivated and Social/Resampling 
networks. We then constructed two networks (blue and green) that we 
used for both conditions, and used the same simulated set of asocial 
decisions to initialize both networks. All nodes had eight incoming 
edges from eight distinct nodes, and nodes were not allowed to be 
their own parents. Biases were sampled separately for green and blue 
networks, and network connections were generated for green and 
blue networks.

On each iteration, participants made judgements on 16 stimuli, 
matching the proportions we used in Experiments 2 and 3. We simu-
lated each network for eight iterations. In the networks with Social/
Resampling networks, we fit an IRT model to all participants’ judge-
ments for the previous iteration in both the blue and green networks. 
As in the experiment (and unlike the oracles models), this IRT model 
did not have access to the ground truth of any stimulus or partici-
pants’ biases (see ‘Experiment 2 psychometric model’ in Methods). We  
used this IRT model to determine the resampling weights following 
equation (1).

We then used this model to identify weights for each judgement, 
and sample a new set of judgements following the same procedure we 
used in Experiment 2. To fit these models, we ran eight Markov chain 
Monte Carlo chains for 2,500 iterations, with 1,250 warmup iterations. 
Networks were constructed using the NetworkX81 Python library.
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Analyses. We limited our analyses to comparing bias and accuracy 
on iterations where simulated participants observed social informa-
tion—that is, we ignored data from the first iteration. To test for differ-
ences between conditions, we fit two logistic regression models on the 
social data from both conditions and the relevant dependent variable 
(chose motivated colour or chose correct); one with a coefficient for 
condition, and one without. Both models included a fixed effect for 
motivated colour (participant and network random intercepts were 
excluded as they led to singular fits; including them does not change 
any of our findings). We then determined whether bias or accuracy 
varied between the conditions by performing a likelihood ratio test 
between the two models.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Experiment and simulation data for this study are available through the 
Open Science Repository at https://doi.org/10.17605/OSF.IO/YTH5R.

Code availability
Code for both experiments, data analyses and simulations are available 
at https://doi.org/10.17605/OSF.IO/YTH5R, which contains an archived 
version of a GitHub repository containing all of the experiment code. 
Both experiments were built using Dallinger (Experiment 1: 5.1.0; 
Experiment 2: custom fork; Experiment 3: 9.0.0). The resampling algo-
rithm in Experiments 2 and 3 were implemented in Python (3.9) using 
NumPyro (0.7.2). The resampling algorithm for the power analyses and 
the psychometric models of Experiment 1 were implemented in R using 
Rstan (2.21.3). The predictions shown in Extended Data Fig. 1 were 
generated using MATLAB. Mixed effects models were implemented in 
R (4.1.2) using lme4 (1.1.28). Network simulations were done in Python 
(3.10.4) using the NetworkX library (3.1).
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Extended Data Fig. 1 | Stationary distributions for social networks.  
(a) Stationary distributions on the proportion of people endorsing green as a 
function of the bias β towards green, for different levels of sensitivity to social 
information α. The bias translates into a stationary distribution strongly skewed 
towards green, with increasing effect as α increases. (b) Average proportion of 
green judgements under this stationary distribution, compared against the bias 

of a single individual. The social network amplifies individual biases. Because 
bias β and the information from the stimulus γd have the same effect in the 
mathematical equation on judgements, this model predicts that the effects of 
both will be exaggerated by participating in a social network: people will become 
more biased, but also more accurate. Note that this analysis could be equivalently 
stated in terms of blue bias and blue judgements.
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Extended Data Fig. 2 | Experiment 1 yoking structure and marked colour 
design. All participants in the first wave were assigned to an asocial condition. 
In the second wave, social participants observed the judgements made by first-
wave asocial participants in the same motivated condition and network index 
(see Methods, Experiment 1). Each network consisted of four participants with 
a marked colour of blue and four of green at each wave. A participant’s marked 
colour determined the colour of the dots in the stimulus (dot sizes and positions 
were fixed in a wave and network). To match this colour-swapping, social 

information was also presented in terms of the participant’s marked colour. That 
is, if 5 of 8 people chose their marked colour in the previous wave, participants 
with a marked colour of green would be told that 5 of 8 people chose green, and 
participants with a marked colour of blue that 5 of 8 participants chose blue. 
Marked colour corresponded to motivated colour for participants in motivated 
conditions. Participants in neutral conditions were assigned marked colours 
using an identical process, but were not informed of their marked colour.
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Extended Data Fig. 3 | Experiment 2 participant observations and estimated 
biases. The resampling algorithm increased consensus between networks 
with induced biases towards green and blue. (a) Each bar shows the proportion 
of green judgements from the previous wave that each participant (n=784 
for both conditions) observed over all 16 trials of the experiment. Bars are 
arranged in descending order, and bar colour corresponds to the participant’s 
motivated colour. (b) Estimated participant biases and transmission rates in the 

Social/Resampling condition. In our resampling algorithm, each participant’s 
judgement could be propagated multiple times to a participant at the next wave. 
Rather than only propagating judgements made by those with low estimated 
bias, the algorithm transmitted each participant’s judgements at similar rates. 
Points show the estimated green biases of participants in the Asocial/Motivated 
(wave 1) and Social/Motivated (waves 2-7) condition and the number of times 
their judgements were transmitted.
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Extended Data Fig. 4 | Simulation design. For the network simulations and 
power analyses, we alternated between simulating participants’ judgements and 
the effects of our resampling procedure. We first fit the parameters Φ̃ of the 
oracle models to Experiment 1 data Xe1 using Markov Chain Monte Carlo. One 
model was fit to Asocial/Motivated participants, and one to Social/Motivated 
participants. For the power analyses, at each wave t, we used either the asocial 
(wave 1) or social (waves 2-8) oracle to sample participant biases θt and simulate 
judgements θt (this process is illustrated here). By contrast, for the network 
simulations, we sampled a set of participant biases θ using the social oracle 

model and used these parameters to simulate judgements Xt at each iteration 
(there was no population turnover in our network simulations). To simulate our 
resampling procedure, we then fit IRT parameters θt to the simulated judgements 
at each wave. As in Experiments 1 and 2, these IRT models did not have access to 
the ground truth or participants’ true biases. We used our fitted IRT model to 
determine the importance weights wt for each judgement and resample a set of 
judgements ̃Xt to propagate to the next wave or iteration. For each simulation,  
we repeated this process for 8 waves (the same fitted oracle model was used in  
all simulations).
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Extended Data Fig. 5 | Network simulation results. Plots show the proportion 
of (a) bias-aligned and (b) correct judgements by iteration. Simulated 
participants in the first iteration made their judgements asocially. For each set 
of simulations, two histories were sampled starting at the second iteration; one 
where participants viewed the judgements made by their parents in the previous 
iteration (Social/Neutral), and one where these judgements were resampled 

using our algorithm (Social/Resampling). The same constructed networks were 
used for both histories, with one populated by simulated participant "paid" for 
blue dots, and one by simulated participant "paid" for green. Error bars show the 
standard errors of the proportions (n=204,800, 409600, and 819,200 for each 
point in the networks with 64, 128, and 256 participants, respectively).
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Extended Data Table 1 | Experiment 1 results

The values in each 2 × 4 cell give chi-square statistics and p-values for the likelihood ratio tests between two logistic regressions comparing the relevant conditions. The dependent variable 
in bias comparisons captures whether a participant chose their marked colour (see Methods, Experiment 1 for a description of marked colour), and whether they chose correctly for accuracy 
comparisons. All models include random intercepts for each network to control for our dot randomization scheme (see Methods, Experiment 1). Reported and prereg models are identical, 
except that prereg models include random intercepts for each participant. Note that the statistics from these two models will be nearly identical when the variance of the participant random 
intercepts is near zero. The bottom two rows give the proportion of judgements where participants chose their marked colour (bias) and the correct colour (accuracy) for each condition. 
p-values were not adjusted for multiple comparisons.
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Extended Data Table 2 | Parameter estimates from the psychometric models fit to Experiment 1

Each estimate gives the mean sampled value for the parameter averaged over all chains and iterations. Values in brackets below each estimate show cutoffs for the 90% credible intervals. 
Values below the brackets show Rhat values for the statistic. Running the asocial model for more iterations results in lower values of Rhat but has negligible impacts on parameter estimates. 
Individual-level participant biases are not reported.
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Extended Data Table 3 | Experiment 2 results

As in Extended Data Table 1, the values in each 2 × 4 cell give chi-square statistics and p-values for the likelihood ratio tests between logistic regression models with and without separate fixed 
effects for the two conditions. Bias models predicted whether participants chose their motivated colour, and accuracy models whether they chose correctly. All models include a fixed effect 
for motivated colour, and a random intercept for each participant. Prereg models include an additional random intercept for each social network to account for the social yoking scheme (see 
Methods, Experiment 2). The bottom two rows give the proportion of judgements where participants chose their motivated colour (bias) and the correct colour (accuracy) for each condition. 
p-values were not adjusted for multiple comparisons.
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Extended Data Table 4 | Experiment 3 results

The values in each 2 × 4 cell give chi-square statistics and p-values for the likelihood ratio tests between two logistic regression models; one with separate fixed effects for the two conditions, 
and one where both conditions were coded as a single condition. Bias models predict whether participants chose their motivated colour, and accuracy models whether they made the correct 
judgement. All models include a fixed effect for motivated colour and a random intercept for each participant. Prereg models have an additional random intercept for each social network 
to account for the social yoking scheme (see Methods, Experiment 3; we reported the "Reported" models as the prereg models had singular fits). The bottom two rows give the proportion of 
judgements where participants chose their motivated colour (bias) and the correct colour (accuracy) for each condition. p-values were not adjusted for multiple comparisons.
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Extended Data Table 5 | Network simulation results

Values report the average proportions of bias-aligned judgements, correct judgements, and chi-square statistics testing for differences between the resampling and neutral conditions 
(values were averaged across all 100 simulations and iterations 2-8). All models include a fixed effect for motivated colour (random intercepts for each participant and simulation number 
were excluded as they lead to singular fits). Chi-square tests were done by running a likelihood ratio test between an unrestricted model with fixed effects for both conditions (resampling and 
motivated) and a restricted model without this fixed effect. p-values were not adjusted for multiple comparisons.
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Data collection All code and data is available at https://doi.org/10.17605/OSF.IO/YTH5R. Experiments were built using Dallinger (Experiment 1: 5.1.0; 
Experiment 2: 7.7.0; Experiment 3: 9.0.0). The resampling algorithm in Experiment 2 was implemented in Python (3.9) using NumPyro (0.7.2). 
The resampling algorithm for the power analyses for Experiments 2 and 3 and the psychometric models of Experiment 1 were implemented in 
R using Rstan (2.21.3). Predictions from the Bayesian model shown in Figure 2 were generated using MATLAB. Network simulations were done 
in Python (3.10.4) using the NetworkX library.

Data analysis Mixed effects models were implemented in R (4.1.2) using lme4 (1.1.28).
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Experiment and simulation data for this study are available through the Open Science Repository at https://doi.org/10.17605/OSF.IO/YTH5R.
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Reporting on sex and gender Data on participants' sex and gender was not collected.

Population characteristics Data on participants' demographics was not collected.

Recruitment Participants for all studies were recruited online through Amazon Mechanical Turk. Our sample was therefore potentially not 
fully representative. Participants were randomly assigned to treatments.

Ethics oversight All experiments were approved by the institutional review board of Princeton University.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Behavioural & social sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description All data are quantitative. On each round of the experiment, participants observed randomly positioned and sized blue and green dots 
for one second and estimated the color of the majority of dots. Our experimental design varied the presence of an induced bias 
(control and motivated conditions) and social information (asocial and social conditions). All participants received a reward on each 
trial if their judgement was correct. Participants in motivated conditions received an additional bonus on every trial for every dot of 
their motivated colour. Participants in asocial conditions made their choices individually, whereas participants in social conditions 
observed the choices made by other participants on the same stimulus.

Research sample All participants were recruited on Amazon Mechanical Turk and so samples were not representative. Participants were required to be 
located in the United States of America and at least 18 years old. We limited participants to those living in the US as our IRB only 
covered US participants. For Experiment 1, we required a minimum Mechanical Turk approval rating of 95. For Experiment 2, we 
required participants to have a minimum Mechanical Turk approval rating of 95 and 10,000 approved HITs. For Experiment 3, we 
required a Mechanical Turk approval rating of 99 and 15,000 approved HITs. We had stricter requirements for Experiments 2 and 3 
to keep up with evolving data quality norms (i.e., to reduce the proportion of bot participants).

Sampling strategy We preregistered our sample size before data collection for all experiments. For Experiment 1, we selected the largest sample size 
our budget permitted. We selected the sample size for Experiments 2 and 3 using a power analysis on simulated data of our 
proposed experiment (see Supplementary Information for more information). All participants were recruited from the MTurk 
participant pool, and so all samples were convenience samples.

Data collection For all experiments, participants were recruited in discrete waves (batches) over several days. Participant recruitment was done 
using the Dallinger Software package. To speed data collection, we recruited participants using an algorithm that partially recruited 
participants at each generation. This allowed us to speed data collection given the constraint that all participants in a generation had 
to complete the experiment before the next generation was recruited. 
 
Recruitment was done via Mechanical Turk, and so participants completed the experiment using their own computer. No individual 
besides the participant was required to be present. Participants were not informed of which condition they were assigned to nor the 
hypotheses being tested.
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Timing Data for Experiment 1 was collected in September 2019. Data for Experiment 2 was collected in November 2021. Data for 

Experiment 3 was collected in May 2023.

Data exclusions For Experiments 2 and 3, our recruitment algorithm partially overrecruitted participants at each generation to speed data collection. 
As specified in our preregistrations, we excluded data from overrecruited participants from analysis. We will also exclude a 
participant's data from analysis if the experiment webpage fails for that participant.

Non-participation We excluded participants who did not complete the full experiment, who failed to pass a comprehension quiz in their first three tries, 
or who were over-recruited (see preregistrations for more details). In Experiment 1, we excluded 219 of 2,619 recruited participants. 
In Experiment 2, we excluded 447 of 2911 recruited participants. In Experiment 3, we excluded data from 157 from 1,117 recruited 
participants.

Randomization Participants were assigned to a treatment using block randomization.
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