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Flexible, goal-directed behavior rests on the human 
capacity to plan (Daw et al., 2005; Mattar & Lengyel, 
2022; Newell & Simon, 1972). For example, if your nor-
mal driving route to work is suddenly blocked by con-
struction, you could plan a new route by creating a 
model of the situation (e.g., forming a “cognitive map” 
of nearby roads, traffic, and other places with construc-
tion) and mentally simulating possible solutions (i.e., 
driving routes that could lead to work). Planned behav-
iors contrast with habits, which are inflexible behavioral 
repertoires that have been automatized or learned 
through trial and error (Wood & Rünger, 2016) and per-
sist even in the face of new information (e.g., reflexively 
taking your normal route to work even though you may 
have seen on the news that there is construction).

In contrast to the recognition that planning is a 
corner stone of behavioral flexibility, an equally long-
standing tradition in psychology emphasizes how rigid-
ity in people’s planning processes can lead to systematic 

suboptimalities or impasses in problem solving. For 
instance, in the classic candle problem (Duncker, 1945), 
participants are presented with a box of tacks, a book 
of matches, and a candle and are instructed to mount 
the candle on a wall and light it. Motivated participants 
routinely fail to identify the solution to the task (empty 
the box of tacks, tack the box to the wall, place the 
candle in the box and light it). This failure to identify 
a good plan is often attributed to functional fixedness, 
in which participants are “fixed” on certain object affor-
dances (how the box can be used as a container) and 
overlook other affordances (how the box can be used 
as a support).

Phenomena such as functional fixedness are particu-
larly intriguing because they are not easily explained 
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by classical accounts of planning. For instance, in mod-
els based on heuristic search (Kaplan & Simon, 1990; 
Newell & Simon, 1972), the problem solver is assumed 
to have a fixed representation of a task (e.g., in chess, 
a representation of the board, pieces, and how they 
move) and then perform computations over that rep-
resentation (i.e., simulating sequences of moves and 
countermoves). Systematically overlooking an obvious 
solution (such as using a box to support a candle) 
should not happen if people are searching through a 
fully specified task representation. This observation has 
led researchers to conclude that problem solving and 
planning depends crucially on identifying the appropri-
ate problem representation (Knoblich et  al., 1999;  
Ohlsson, 1984). However, although it has been argued 
that choosing the right representation plays a role in 
how people flexibly solve new problems, the general 
principles and/or mechanisms underlying such pro-
cesses remain unclear (Kaplan & Simon, 1990; Newell 
& Simon, 1972; Ohlsson, 2012).

Here, we aim to shed light on the long-standing 
question of how people can be actively engaged in 
goal-directed planning yet fail to use the best represen-
tation for a problem, as exemplified by classic findings 
on functional fixedness. We propose that such cognitive 
biases are a consequence of how people manage two 
cognitive costs inherent to planning: complexity costs 
and switch costs. Complexity costs correspond to the 
amount of detail that is represented for the purposes 
of planning a solution—for example, the number of 
chess pieces attended to when planning a move. Recent 
work has demonstrated that people manage represen-
tational complexity by intelligently constructing simpli-
fied models of problems called task construals (Ho 
et al., 2022). Crucially, complexity costs are a function 
of the limited cognitive resources (e.g., attention) avail-
able to solve the immediate problem at hand.

In contrast, switch costs emerge from changing the 
family of representations used across problems. Evi-
dence for switch costs primarily comes from work on 
task switching in simple decision-making paradigms. 
For example, when classifying a digit on the basis of 
its parity (odd/even) or its magnitude (high/low), peo-
ple display slower reaction times when switching 
between the tasks than when continuing to perform the 
same task (Arrington & Logan, 2004). The cost of 
switching which features of a stimulus to attend to in 
order to guide actions—often called the task set—has 
been attributed to a number of different cognitive 
mechanisms, including reconfiguration of the new task 
set as well as persistence of the previous task set (Grange 
& Houghton, 2014; Monsell, 2003; Vandierendonck 
et al., 2010). One way to view the current work is as 
an extension of ideas such as switching and task sets 

from deciding on what single action to take to deciding 
on what sequence of actions to take—that is, to multi-
step planning.

However, whereas existing work on task switching 
has mainly addressed the particular mechanisms of 
switch costs, our goal was to determine how the avoid-
ance of switch costs interacts with the avoidance of 
complexity and achievement of goals to produce func-
tional fixedness. This investigation required two com-
ponents that we developed in the present research. 
First, we needed an experimental paradigm that could 
systematically elicit functional fixedness (as in the clas-
sic studies) and was also amenable to trial-by-trial 
analysis (as in standard task-switching studies and con-
temporary research on decision-making more broadly; 
Wilson & Collins, 2019). Second, we needed a compu-
tational framework for interpreting the intricate dynam-
ics of planning, task representations, and cognitive 
costs both within and across problems. These two 
building blocks are the core methodological contribu-
tions of this research.

To understand our paradigm, consider the 2D mazes 
shown in Figure 1, where the blue circle marks the start 
location, and the yellow square marks the goal. Black 
tiles represent walls that prevent movement, and the 
blue tiles correspond to blocks that generally prevent 
movement (darker blue) but have smaller notches that 
can be traversed (lighter blue). These mazes can be 
represented in one of two ways: Either in terms of both 

Statement of Relevance

Even when planning ahead, people exhibit sur-
prising cognitive biases. One classic example is 
functional fixedness, the tendency to overlook 
relevant but unfamiliar ways of using an object to 
solve a problem despite actively searching for a 
solution. Functional fixedness is not only puzzling 
but also pervasive: Thinking about situations in 
rigid and unhelpful ways has consequences in 
virtually every domain of human life, from over-
coming personal challenges to tackling complex 
problems in science, business, and politics. Here, 
we tested a new theory of functional fixedness 
based on the avoidance of two kinds of cognitive 
effort: the effort required to represent details of 
a problem and the effort required to switch to a 
new way of representing a problem. Our findings 
reveal how cognitive biases such as functional 
fixedness, despite appearing superficially irratio-
nal, can reflect a deeper rationality grounded in 
the strategic allocation of cognitive effort.
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blocks and notches or only in terms of blocks (Figs. 1a 
and 1b). These two families of representations induce 
distinct construal strategies that participants can apply 
to a given problem. We predicted that because the 
blocks-only construal strategy had a lower complexity 
than the blocks-and-notches strategy, people would 
tend to prefer the former, when possible. Furthermore, 
we predicted that when participants were solving mazes 
in sequence, the cost of switching between representa-
tional strategies would bias them to reuse their previous 
strategy even when it would lead to taking a suboptimal 
path (e.g., overlooking an opportunity to take a shorter 
route via a notch). That is, we predicted that functional 
fixedness would arise because people would attempt to 
avoid complexity and switching during planning.

To precisely characterize and test this hypothesis, 
we built on the computational framework of value-
guided construal (Ho et  al., 2022), which formulates 
the problem of selecting a task construal in terms of an 
approximately optimal trade-off between cognitive 
costs and task performance. In this sense, value-guided 

construal approaches planning representations from a 
normative, resource-rational perspective (Anderson, 
1990; Gershman et al., 2015; Griffiths et al., 2015; Lewis 
et al., 2014; Marr, 1982; Shenhav et al., 2013). To apply 
these ideas to functional fixedness, we treated construal 
selection as a hierarchical process consisting of con-
strual strategy selection (e.g., deciding whether to 
attend to only blocks or both blocks and notches) and 
construal selection (e.g., attending to a specific combi-
nation of blocks and/or notches). As we will discuss in 
more depth in the analysis of our first experiment, this 
modeling approach provides an invaluable analytical 
tool for assessing the paradoxical combination of 
behavioral flexibility and conceptual rigidity observed 
in human problem solving.

Open Practices Statement

Preregistrations, data, code, and materials for Experi-
ments 1 and 2 have been made publicly available via 
OSF (https://osf.io/yuta6).
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Fig. 1. Blocks-and-notches mazes in Experiment 1. (a) Participants move through the maze by controlling the blue circle. Mazes were 
composed of walls (black tiles), a goal (yellow tile), and blocks (blue 3 3×  objects). The walls and blocks prevented movement, except 
for the lighter notches in the blocks, through which movement was allowed. Our account predicted that people would attend only to 
the notch relevant to identifying an optimal path (marked by an orange star) and ignore the other notches (indicated with gray stripes). 
A notch-necessary maze is shown, in which the construal that optimizes representational simplicity and behavioral utility requires attend-
ing to a notch. (b) On notch-unnecessary mazes, an optimal path can be found by forming a blocks-only construal rather than a more 
complex blocks-and-notches construal. (c) Test mazes produce different planned behaviors depending on whether the optimal blocks-
only versus optimal blocks-and-notches construal is used, allowing us to diagnose which construal strategy they are using. In particular, 
only participants who used a blocks-and-notches strategy would visit a critical notch, marked here with an orange star.

https://osf.io/yuta6
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Experiment 1: Functional Fixedness  
in Maze Navigation

Our first experiment tested whether people form simpli-
fied and rigid task representations when planning in 
maze tasks such as those discussed above. Participants 
first completed one of two sets of training mazes that 
differed in whether they could be solved by represent-
ing mazes in terms of blocks only (notch unnecessary) 
or both blocks and notches (notch necessary). This was 
followed by a set of test mazes in which the blocks-only 
solution was longer than the blocks-and-notches solu-
tion (Fig. 1c). If people avoid both complexity and 
switching, then those trained on the notch-unnecessary 
trials will adopt a blocks-only construal strategy and 
persist in using it on the test trials. In other words, we 
predicted functional fixedness: They would overlook 
opportunities to use the notches to solve the task, even 
when doing so would have led to a better solution.

Method

Four hundred nineteen participants from the Prolific 
experimental platform with U.S. and UK Internet proto-
col (IP) addresses completed our experiment. This num-
ber was based on a power analysis with pilot data. Each 
participant was paid a $1.34 base wage and could addi-
tionally receive a $1 to $2 performance-based bonus. 
All experiments were approved by the Princeton Uni-
versity Institutional Revew Board (Protocol ID: 10859, 
protocol title: Computational Cognitive Science).

The experiment consisted of pretask instructions, the 
main task, and posttask questions (free response and 
age). After providing consent and before the main part 
of the experiment, participants were given instructions 
and practice trials that introduced them to the dynamics 
of the mazes. Each maze was a 13 13×  grid consisting 
of central black walls (fixed across all mazes), empty 
white regions, a blue circle that could be controlled 
with the arrow keys, a yellow goal location, and four 
3 3×  blue blocks. The body of the 3 3×  blocks pre-
vented movement, but they could have smaller 1 1×  or 
1 2×  notches that permitted movement through that 
part. The body of the blocks were rendered in the 
browser with a red, green, blue (RGB) value of 
173 216 230, , , and the notches were indicated by a lighter 
shade (alpha transparency value was reduced to .5). At 
the beginning of each trial, a green square (slighly 
smaller than 1 × 1) was shown overlaying the goal to 
help draw attention to its location and to encourage 
planning at the beginning of the trial by indicating a 
deadline (i.e., time pressure) for moving once actions 
were begun. The green square remained fixed in  
size until the first move was taken, after which it 

progressively shrank for 1,000 ms until the next move 
was taken or it disappeared. That is, after each move, 
the square returned to its original size but immediately 
began to shrink again until the next move was taken.

The first two practice trials included a trial with 
blocks that did not have any notches, as well as a trial 
with notched blocks that required navigating through 
a notch to reach the goal. This set of practice trials was 
crucial, as it ensured that all participants were explicitly 
introduced to the idea of a notch and directly experi-
enced traversing it to navigate to the goal. The second 
two practice trials demonstrated the bonus structure of 
the mazes: On each trial, participants began with 100 
points, each step led to a reduction of 1 point, and each 
bump into a wall resulted in a reduction of 10 points. 
Points on a trial could not go below 0. If the green 
square disappeared, 0 points were received on that trial. 
Points were converted to bonus payments at a rate of 
10 cents per 100 points. On these two practice trials, 
but not on the main trials, the points left at each time 
step were shown at the top of the screen. Finally, before 
starting the main trial sequence, participants were 
shown a review of the rules and needed to answer five 
comprehension questions correctly within two tries to 
continue (questions incorrectly answered on the first 
try were marked in red).

In the main task, participants were placed into two 
groups, each of which was assigned to one of the two 
training conditions: Participants in the notch-unnecessary 
training condition solved 12 mazes for which the short-
est path did not require going through a notch and 
therefore could be solved by construing mazes only in 
terms of blocks. The mazes were pseudorandomly 
sampled from 128 distinct mazes that were generated 
from eight base mazes that were randomly transformed 
according to the eight symmetries of a square and hav-
ing their start/goal locations randomly swapped. Par-
ticipants in the notch-necessary training condition 
solved 12 mazes sampled from another set of 128 mazes 
in which the shortest path required passing through a 
notch. This second set was similarly generated from 
eight base mazes, but these mazes were designed to 
have a shortest path that was a similar sequence of 
actions as the notch-unnecessary training mazes. Thus, 
the training conditions used mazes that were matched 
on optimal behavior, but solving the mazes in the 
notch-necessary condition required using the more cog-
nitively more expensive strategy of considering both 
blocks and notches.

After the 12 training mazes, participants from both 
conditions were given eight test mazes that had two 
types of solutions: a short, direct path to the goal that 
passed through a notch, and a long, roundabout path 
to the goal that did not pass through any notches  



Psychological Science 34(11) 1285

(Fig. 1c). Crucially, if participants planned by adopting 
a blocks-only construal strategy, they should have taken 
the long route. Conversely, if they planned by adopting 
a blocks-and-notches construal strategy, they should 
have taken the short route. The eight test mazes were 
pseudorandomly sampled from a set of 64 mazes con-
structed from four distinct base mazes that were trans-
formed in the same way as the training mazes (see the 
Supplemental Material available online for base mazes).

Results

Behavioral results. We analyzed data for test trials 
that met preregistered exclusion criteria—not more than 
25,000 ms or 1,000 ms spent at the initial state or a non-
initial state, respectively. In addition, we excluded par-
ticipants who had more than half of their test trials 
excluded, which resulted in a total of 377 for the behav-
ioral analyses (212 male, 160 female, four nonbinary, one 
gave no response; age: M = 38 years, range = 18–75).

The main behavioral results support the hypothesis 
that people adopt simplified but rigid construal strate-
gies, as summarized in Figure 2. In particular, Figure 2a 
shows that participants trained on notch-unnecessary 
mazes were more likely to take longer, notch-free paths 
on test mazes; this indicates that they initially adopted 
the blocks-only construal strategy to plan (consistent 
with avoiding complexity) but then persisted in using 
this even when it led to a less optimal solution in the 
test mazes (consistent with avoiding switching). Addi-
tionally, Figure 2b shows that across both conditions, 
taking a longer, notch-free path was associated with 
faster first-move reaction times, consistent with the 
assumption of our account that the blocks-only con-
strual strategy is less cognitively effortful (i.e., costly) 
than the blocks-and-notches strategy.

To test the statistical significance of these observed 
effects, we conducted two sets of analyses. We first 
compared whether participants in the two conditions 
visited the critical notch on a maze, defined as the 
unique notch that lies along the optimal path when 
considering blocks and notches but not when only 
considering blocks. Four logistic regression models 
with critical notch visitation as a binary dependent vari-
able were fitted by starting with an intercept-only 
model and then progressively adding the following four 
regressors: training condition (sum coded: notch neces-
sary = .5, notch unnecessary = −.5), test-trial number, 
and an interaction term. Adding training condition sig-
nificantly increased fit according to a log likelihood-
ratio test, χ2 701 313 83 3 2 10( ) . , .= = × −p , as did including 
test-trial number, χ2 101 41 72 1 1 10( ) . , .= = × −p . The inter-
action term was not significant after Bonferroni correc-
tion, χ2 1 4 59 032( ) . , .= =p , uncorrected. The estimated 
weights on the final model were consistent with  

less visitation after notch-unnecessary training 
( . , . )β = =1 90 0 17SE , increasing notch visitation over 
time ( . , . )β = =0 11 0 02SE , and a sharper increase in visi-
tation following notch-unnecessary training mazes 
( . , . )β = − =0 09 0 04SE . These results suggest that partici-
pants in the notch-unnecessary condition adopted a 
blocks-only construal strategy and persisted in this 
strategy even when it led to suboptimal task perfor-
mance (longer paths).

We also examined first-move reaction times on test 
mazes as a proxy for time spent planning and cognitive 
effort. In an intercept-only model, adding whether a 
critical notch was visited on a trial as a regressor (sum 
coded: visited = .5, not visited = −.5) led to a significant 
increase in fit, χ2 221 96 22 1 10( ) . ,= = × −p . Including train-
ing condition as a regressor did not significantly 
increase fit, χ2 1 2 19 14( ) . , .= =p , but including trial num-
ber did, χ2 1 12 68 00037( ) . , .= =p , uncorrected. Finally, 
including critical-notch visitation and trial number as 
regressors indicated that visiting a notch predicted 
slower reaction times ( . , .β = =0 35 0 03SE ), whereas res-
ponses became faster over time ( . , . )β = − =0 02 0 01SE . 
These results suggest that planning a shorter path by 
using the optimal blocks-and-notch construal required 
more time (e e7 77 0 5 0 35 7 77 0 5 0 35 833. . . . . .+ × − ×− ≈  ms more based 
on the estimated coefficients), consistent with requiring 
greater cognitive effort, as predicted by our account.

Model-based results. Value-guided construal provides 
an account of how complexity costs within mazes and 
switch costs between mazes interact to shape measured 
behavior. To more directly assess the interactions posited 
by the theory, we compared a series of computational 
models fitted to participant movements across the experi-
ment. These analyses revealed that low-level movements 
executed by participants are best explained by a version 
of the model that includes both complexity and switch 
costs rather than either one alone. Additionally, we found 
that the maze-specific construal complexity costs esti-
mated by the model can be used to predict first-move 
reaction times on trials, despite being fitted only to maze 
movements. By explicitly formalizing how complexity 
and switch costs affect decision-making, these results 
provide a quantitative account of functional fixedness in 
terms of people’s adoption of simplified but rigid task 
representations during planning.

We began by formalizing complexity and switch 
costs and relate these quantities to planning and action 
selection. Value-guided construal (Ho et al., 2022) pro-
vides an account of how people form task construals, 
simplified task representations used during planning. 
For example, in the maze task, different construals cor-
respond to attending to different sets of blocks and 
notches, and planning with a construal involves finding 
the optimal path assuming only the blocks and notches 
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included in a construal. The value of a construal for a 
particular task then depends on its behavioral utility—
that is, the performance of the plan induced by the 
construal when applied to the actual problem—and its 
representational complexity—here, the total number of 
blocks and notches included in the construal (note that 
we assume that attending to a notch requires attending 
to the block of which it is a part). Formally, the value 
of a construal c  on task τ  is

 value utility complexity( , ) ( , ) ( ),c ccτ π τ= −    (1)

where pc is the unique optimal stochastic plan for con-
strual c , utility( , )π τc  is the behavioral utility of the plan 

computed by the construal when evaluated on the 
actual task, and complexity SizeComplexity( ) ( )c c= ×λ  is the 
complexity cost, which is the size of the construal mul-
tiplied by a constant weight. As in other computational 
work on sequential decision-making (Dayan & Niv, 
2008; Sutton & Barto, 2018), tasks and construed tasks 
are modeled as Markov decision processes and plans 
as policies that map states (locations on the grid) to 
distributions over actions (cardinal directions). For fur-
ther details, see the Supplemental Material.

In this work, we extend the original value-guided 
construal formulation by making explicit the idea of a 
construal strategy, which corresponds to how a decision-
maker selects a family of construals—for example, the 
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Fig. 2. Experiment 1 results. (a) Participants ( )N = 377  received 12 training mazes whose shortest paths required traversing a notch (notch 
necessary) or not traversing a notch (notch unnecessary). Both groups then received eight test mazes that could be solved without traversing 
any notches or by taking a shortcut through a critical notch. Participants in the notch-unnecessary group were less likely to take shortcuts, 
consistent with our account. (b) When participants took shortcuts on test trials, they were slower to begin moving, regardless of training 
condition. If first-move reaction times (RTs) reflect planning costs, this result is consistent with a higher cost for more complex construals 
(i.e., attending to more blocks and/or notches to plan). (c) By fitting complexity and switching cost parameters (see Model-Based Results in 
the text), we were able to estimate latent planning processes. The plot shows that complexity costs estimated only from movements predicted 
reaction times on individual training mazes (circles) and test mazes (triangles; direction indicates whether a shortcut was taken). See the text 
for more detailed analyses. Error bars are bootstrapped 95% confidence intervals.
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family of block-only versus the family of block-and-
notch construals. Formally, a construal strategy σ is a 
function from a maze to a set of contruals. Given the 
construal set generated from a construal strategy, σ τ( ), 
choosing a specific construal on a particular task is mod-
eled as a softmax (Luce, 1959) over the values of construals 
(Equation 1) in that set, π τ σ σ τ( | , ) [ ( )]( , )c e cc∝ ∈value τ 1 ,  
where 1[ ]X  is an indicator function that equates to 1 
when X  is true and 0 otherwise.

For the blocks-and-notches mazes, we considered 
two construal strategies: block-only construals and 
block-and-notch construals (Fig. 1). The intrinsic value 
of a construal strategy depends on the expected behav-
ioral utilities and complexity costs of construals con-
sistent with that strategy on a task. Thus, for instance, 
the block-and-notch construal strategy will tend to have 
higher complexity costs because attending to notches 
necessarily requires attending to blocks (notches are 
parts of blocks). To characterize the dynamics of con-
strual strategy selection across mazes, we calculated 
the value of a construal strategy on a particular maze 
as the sum of its intrinsic value applied to that problem 
and the cost of switching strategies. That is, formally, 
the value of adopting a construal strategy σt on a task 
τt  when the previous strategy is σt−1 is

 value value switch( , , ) ( , ) ( , ),σ τ σ σ τ σ σt t t t t t t− −= −1 1  (2)

where value value( , ) ( | , ) ( , )σ τ π τ σ τt t c t t t t tt
c c= ∑  is the 

intrinsic value of adopting the construal strategy for the 
new task, and switch Switch( , ) [ ]σ σ λ σ σt t t t− −= × ≠1 11  is the 
switch cost, which is determined by whether the new 
construal strategy is different from the previous one 
and a constant weight.

Using Equation 2, we defined a construal strategy 
transition system, P et t t

t t t( | , ) ( , , )σ τ σ σ τ σ
− ∝ −
1

1value , which 
represents the probability of transitioning to a new 
construal strategy given the old strategy and current 
task. From a cognitive-modeling perspective, we could 
then treat estimation of the representational complexity 
cost weight (λcomplexity) and construal-strategy switch-cost 
weight (λswitch) as learning the parameters of a hidden 
Markov model (Russell & Norvig, 2009). Specifically, 
the model consisted of a sequence of latent construal 
strategies (i.e., blocks-only vs. blocks-and-notches strat-
egies) that output a sequence of observed paths on 
each maze. The transition and output probabilities of 
this hidden Markov model were highly nonlinear, as 
they involved construal selection, planning, and execu-
tion of a plan in a maze on each trial. Nonetheless, our 
implementation exactly marginalized out all latent vari-
ables using dynamic programming (see the Supplemen-
tal Material), allowing us to calculate the maximum 
marginal likelihood parameters.

By comparing model fits in the absence of a cost 
(i.e., fixing its coefficient to 0) with costs in its presence 
(letting its coefficient range from 0 to 10), we could 
assess whether those costs played a role in shaping 
decision-making. Thus, we fitted four models in which 
λcomplexity and λswitch were either set to 0 or allowed to 
range from 0 to 10. To allow additional flexibility in 
how the dynamics of switching construals relate to 
low-level movements, we fitted an ε-greedy action pol-
icy (Sutton & Barto, 2018) using the optimal value func-
tion associated with plans computed by a construal 
with a εmove parameter. All the models were imple-
mented in the msdm Python package, and a single set 
of parameter estimates were calculated by minimizing 
the negative log likelihood of all participant movements 
on all mazes (both training and test) using the L-BFGS-
B algorithm in scipy.optimize (Virtanen et al., 2020).

Estimated parameters for the four models on partici-
pant data, shown in Table 1, reveal that the model that 
included both complexity and switch costs provided a 
better fit to movement responses across trials than 
when either or both costs were absent. Additionally, 
we applied the forward-backward algorithm (Russell & 
Norvig, 2009) to the dynamics of the model fit with 
both costs to calculate a marginal probability of the 
blocks-only versus blocks-and-notches construal strat-
egy being used by each participant on each trial t, P t( )σ . 

This allowed us to calculate the expected complexity on 

each trial, ∑ ∑σ σ π τ σ
t t
P c ct c t t t t( ) ( | , ) ( )complexity , which 

we can compare with first-move reaction times, a mea-
sure of time spent planning (Fig. 2c). To assess the 
relationship between costs in the model and reaction 
times, we fitted a hierarchical linear regression with 
by-participant random effects as well as trial number 
and expected complexity as fixed effects to reaction 
times. This analysis showed a significant effect of add-
ing both—trial number: χ2 81 31 48 6 1 10( ) . , .= = × −p ; 
expected complexity: χ2 231 102 37 1 4 10( ) . , .= = × −p —as 
well as decreasing reaction times over trials 
( . , . )β = − =0 007 0 001SE  and a positive relationship with 
expected complexity ( . , . )β = =0 065 0 006SE . Thus, our 
model fitted to participant movements predicted par-
ticipant reaction times as a function of expected com-
plexity costs. This provided additional confirmation of 
the representational complexity costs posited by our 
account.

Experiment 2: Controlling  
for Simple Rules

Experiment 1 suggests that people avoid complexity 
and switching, which leads to functional fixedness. 
However, this conclusion depends on the contrast with 
behavior in the notch-necessary condition and assumes 
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that those participants were engaged in the more costly 
blocks-and-notches construal strategy. Could mecha-
nisms other than construal explain why they were more 
likely to visit critical notches? One alternative is that 
rather than adopting the more complex construal strat-
egy, participants trained on notch-necessary mazes 
learned to apply a simple rule such as “go to the closest 
notch” to solve each maze. This possibility would 
undercut the evidence supporting our hypothesis, so 
we designed Experiment 2 to rule it out. Specifically, 
we leveraged the fact that simple procedural heuristics 
such as “go to the closest notch” are insensitive to 
whether following them makes sense given the overall 
structure of a maze, whereas value-guided construal 
will lead to visiting a notch only if it is useful in the 
context of other maze objects. Thus, for Experiment 2, 
we examined participants’ behavior on modified vari-
ants of the original test mazes that were designed to 
dissociate the predictions of a construal-based account 
from following simple rules.

Method

We recruited 300 participants from the Prolific experi-
mental platform. The instructions, payment scheme, 
practice, and posttask questions were the same as in 
Experiment 1, but all participants received notch- 
necessary training sequences followed by one of the 
three test sequences: the original test mazes in which 
the shortest path passed through a critical notch (notch 
optimal), ones in which an equally short path was avail-
able that did not pass through a notch (notch optional), 
and ones in which the shortest path did not pass 
through any notch (notch suboptimal). All the mazes 
were designed such that the block containing the criti-
cal notch from the original test mazes was unchanged 
(Fig. 3). This allowed us to separate the effect of the 
critical notch on its own from its role in the overall 
context of the other blocks. A simple rule would be 
insensitive to this distinction because it would produce 

a plan to satisfy a local criterion (such as “get to the 
closest notch”), whereas value-guided construal would 
be sensitive to these modifications because the optimal 
construal and plan are a function of the global structure 
of each maze. Additionally, although participants 
received randomly flipped or rotated versions of the 
test mazes, we did not include mazes where start/goal 
states were swapped to ensure that the critical notch 
in notch-suboptimal mazes would be directly accessible 
from the start state.

Results

Although the specific motivation for Experiment 2 was 
to rule out the use of simple rules, we also wanted to 
assess whether the model could capture movements 
and reaction times even in this modified setting. To 
generate quantitative predictions based on our account, 
we simulated construal selection, planning, and maze 
behavior on trials using the model described in Experi-
ment 1. Specifically, we used the best-fitting set of 
parameters from Experiment 1 that included nonzero 
complexity and switch costs to simulate 20 runs for 
each of the 294 participants in Experiment 2 (the exclu-
sion criteria were the same as in Experiment 1; 162 
male, 131 female, one nonbinary; age: M = 36 years, 
range = 18–75). For each run, we recorded whether a 
notch was visited as well as the complexity cost. The 
results, averaged over all simulations by trial and test 
condition, are plotted in Figure 4. The analysis of par-
ticipant notch visitation and first-move reaction times 
reveals a qualitative correspondence between data and 
predictions.

Our first statistical analysis examined critical notch 
visitation in the different test conditions to assess  
the presence of a simple heuristic strategy in the  
notch-necessary training mazes. Using a logistic regres-
sion model, we found that, consistent with value- 
guided construal and inconsistent with a simple heu-
ristic strategy, participants were more likely to visit 

Table 1. Results of Value-Guided Construal Models Fitted to Movements Over the 
Course of 12 Training and Eight Test Mazes for All Participants in Both Conditions of 
Experiment 1

Model λcomplexity λswitch εmove df AIC AIC

No complexity or switch cost 0.00 0.00 0.1 1 132,094 2,804
Only complexity cost 5.42 0.00 0.1 2 130,535 1,245
Only switch cost 0.00 8.54 0.1 2 130,057 767
Both complexity and switch cost 1.69 5.33 0.1 3 129,289 0

Note: We compared the fit of models with or without nonzero complexity or switch cost coefficients. 
Responses were best explained by a model that included both costs, based on lowest Aikaike 
information criterion (AIC) score, which penalizes for number of parameters. All models were also fitted 
with separate ε-greedy policies to capture variation in maze movements.
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critical notches in notch-optimal compared with notch-
optional test mazes—likelihood-ratio test with notch- 
optimal/notch-optional factor sum-coded as . / .5 5− : 
χ β2 1571 715 71 1 1 10 3 16 0 14( ) . , . ; . , .= = × = =−p SE . Similarly, 
participants were more likely to visit critical notches in 
notch-optimal compared with notch-suboptimal test 
mazes—likelihood-ratio test with notch-optimal/notch-
suboptimal factor sum-coded as . / .5 5− : χ β2 161 1 485 27 2 0 10 7 27 0 51( ) , . , . ; . , .= < × = =−p SE

χ β2 161 1 485 27 2 0 10 7 27 0 51( ) , . , . ; . , .= < × = =−p SE . These results 
confirm that following a simple rule such as “go to the 
closest notch” does not explain behavior in the notch-
necessary training condition of Experiment 1. Moreover, 
as can be seen in Figure 4, the overall qualitative pat-
terns in the data are captured by model simulations.

Our second set of statistical analyses examined log-
transformed first-move reaction times as a proxy for 
planning time and complexity cost. These analyses did 
not directly address the possibility of simple rule con-
found but could further corroborate the complexity 
costs posited by value-guided construal model, as in 
the analyses for Experiment 1. Additionally, by compar-
ing reaction times between the different test conditions, 
we could determine whether participants in the notch-
optional or notch-suboptimal conditions shifted away 
from a blocks-and-notches strategy to a blocks-only 
strategy. In particular, if participants in these conditions 
had faster first-move reaction times compared with 
those in the notch-optimal condition, this would indi-
cate a shift away from a blocks-and-notches strategy to 

a less costly blocks-only construal strategy, which is 
another distinctive prediction of our account.

Using a linear model, we found that participants 
spent more time on their first move in the notch-optimal 
test mazes compared with the notch-optional mazes—
likelihood-ratio test with notch-optimal/notch-optional 
factor sum-coded as . / .5 5− : χ β2 111 42 96 5 6 10 0 25 0 04( ) . , . ; . , .= = × = =−p SE

χ β2 111 42 96 5 6 10 0 25 0 04( ) . , . ; . , .= = × = =−p SE . Similarly, participants spent more 
time planning in the notch-optimal compared with the 
notch-suboptimal test mazes—likelihood-ratio test with 
notch-optimal/notch-suboptimal factor sum-coded as 
. / .5 5− : χ β2 321 139 24 3 9 10 0 47 0 04( ) . , . ; . , .= = × = =−p SE . 
These results provide additional evidence that planning 
over more complex representations is costly (at least 
in terms of time spent planning).

General Discussion

Here, we evaluated the hypothesis that functional fixed-
ness reflects the avoidance of complexity and switching 
costs during planning. To do so, we developed a novel 
paradigm in which participants navigated mazes that 
could be represented simply as blocks or more com-
plexly as blocks and notches. Experiments revealed that 
people simplify problems (e.g., by adopting a blocks-
only construal strategy if navigating through notches 
was unnecessary) and that they persist in these strate-
gies (e.g., continuing to ignore notches even when 
attending to a notch would lead to a better solution). 

Notch-Optimal Test Maze Notch-Optional Test Maze Notch-Suboptimal Test Maze

Fig. 3. Test mazes in Experiment 2. After completing the notch-necessary training sequence from Experiment 1, each participant completed 
one of three sets of eight test mazes: the original test mazes with the critical notches (notch optimal), test mazes modified so that an equally 
short path could be taken without visiting the critical notch (notch optional), and test mazes modified so that the critical notch was on a 
path that was longer than the shortest (optimal) path (notch suboptimal). The red star marks the position of the critical notch from the 
original test maze used for this example and its equivalent notches in the new conditions. Black lines indicate the shortest paths using a 
blocks-and-notches construal strategy, whereas red lines indicate the shortest paths using a blocks-only construal strategy. Note that in the 
notch-optional and notch-suboptimal conditions, there are equally good paths without using any notches (critical notch included); however, 
in the notch-optional condition, there is also an equally good path with the critical notch that can be used to assess any biases toward its 
use when pathway lengths are equal.
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Additionally, our computational analyses using the 
value-guided construal framework (Ho et al., 2022) con-
firmed that the avoidance of complexity and switching 
costs explains observed patterns of optimal behavior, 
suboptimal behavior, and reaction times under different 
experimental manipulations. Overall, these results sup-
port our proposal and help clarify the computational 
principles that underlie functional fixedness.

This work integrates ideas from task switching and 
planning, considering them within a single, formally 
rigorous framework. It also highlights important, as yet 
not fully answered questions, such as the mechanistic 
underpinnings of switch costs. Previous work suggests 
several possible sources of switch costs, including pro-
cessing specific to engagement of a new task set and/
or interference from the previously active one (Grange 
& Houghton, 2014; Vandierendonck et al., 2010). Alter-
natively, switch costs may reflect delayed adaptation of 

model-free reinforcement-learning mechanisms (Dayan 
& Niv, 2008; Sutton & Barto, 2018; see Cushman &  
Morris, 2015, for this idea applied in the context of 
subgoal choice). We hope that by exploring task switch-
ing in the context of construals and planning, the work 
presented here can facilitate efforts to understand 
switch costs in other settings.

Additionally, we note several limitations of the cur-
rent work. In particular, we tested only online partici-
pants from the United States and United Kingdom on 
maze-navigation tasks in which functional fixedness 
could be experimentally detected at a specific point in 
the trial sequence. Further studies with other popula-
tions, on more varied sequences of tasks (e.g., those 
that require more switching between construal strate-
gies), and with more varied tasks (e.g., complex physi-
cal and social problem-solving tasks) will be essential 
for testing the generalizability of our account.
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The current work also demonstrates a new approach 
to studying classic problem-solving phenomena such as 
functional fixedness. From an experimental perspective, 
our paradigm overcomes several limitations of standard 
tasks that have been used to study these effects, such 
as the candle task (Duncker, 1945) or nine-dot problems 
(Maier, 1930), where functional fixedness effects rely on 
idiosyncracies of how problems are initially presented 
to participants (Metcalfe, 1986; Sternberg & Davidson, 
1995). In contrast, our blocks-and-notches design per-
mits better experimental control using a trial-based 
design congruent with approaches used in contempo-
rary learning and decision-making research (Daw et al., 
2005; Dayan & Niv, 2008; Wilson & Collins, 2019). From 
a theoretical perspective, our results demonstrating con-
ceptual rigidity can be contrasted with procedural rigid-
ity, embodied in studies of Einstellung effects (Binz & 
Schulz, 2023; Luchins & Luchins, 1959), action chunking 
(Huys et al., 2015), and policy priors (Allen et al., 2020). 
In cases of conceptual rigidity, the problem-solver limits 
which causal affordances of a problem they are attend-
ing to when planning, whereas in cases of procedural 
rigidity, they limit themselves to precompiled action 
routines or a prior plan to solve a problem. A key direc-
tion for future work will be characterizing the interac-
tion of these varied manifestations of rigidity. We hope 
that our account provides a useful perspective on these 
phenomena and deeper insights into the peculiar com-
bination of flexibility and rigidity that comprise people’s 
problem solving.
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