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Abstract

Humans can learn new concepts from a small number of ex-
amples by drawing on their inductive biases. These inductive
biases have previously been captured by using Bayesian mod-
els defined over symbolic hypothesis spaces. Is it possible to
create a neural network that displays the same inductive bi-
ases? We show that inductive biases that enable rapid concept
learning can be instantiated in artificial neural networks by dis-
tilling a prior distribution from a symbolic Bayesian model via
meta-learning, an approach for extracting the common struc-
ture from a set of tasks. We use this approach to create a neu-
ral network with an inductive bias towards concepts expressed
as short logical formulas. Analyzing results from previous be-
havioral experiments in which people learned logical concepts
from a few examples, we find that our meta-trained models are
highly aligned with human performance.
Keywords: inductive bias; concept learning; meta-learning

Introduction
People can make rich inferences from remarkably little data.
For instance, consider the domain that we focus on in this
work: concept learning. People can learn a new concept from
just a few examples (e.g., Bloom, 2002; Xu & Tenenbaum,
2007; Lake & Piantadosi, 2020). Figure 1 illustrates the con-
cept green or triangle; the objects are labeled yes if they are
an instance of this concept and no otherwise. Given such data,
people can rapidly infer what concept underlies the labeling,
for a wide range of concepts (Bruner, Goodnow, & George,
1956; Feldman, 2000; Goodman, Tenenbaum, Feldman, &
Griffiths, 2008; Piantadosi, Tenenbaum, & Goodman, 2016).

Bayesian models have successfully been used to capture
the human ability to learn from few examples (Goodman et
al., 2008; Piantadosi et al., 2016). Although such models are
effective at explaining human learning behavior, they are of-
ten built on explicitly symbolic hypotheses, which have been

Figure 1: Concept learning from examples. The concept un-
derlying the labels is green or triangle: objects are labeled yes
if they are green or a triangle and no otherwise. In our exper-
iments, learners are given a set of labeled examples such as
these and are then required to predict the labels for an addi-
tional set of examples.

argued against as components of mechanistic cognitive theo-
ries by advocates of artificial neural networks (McClelland et
al., 2010). Recent neural network models powered by deep
learning (LeCun, Bengio, & Hinton, 2015) have been shown
to be extremely effective at solving a variety of problems,
including learning to classify stimuli into categories. For
instance, for the popular ImageNet classification challenge
(Deng et al., 2009), the best-performing systems are neural
networks (e.g., Yu et al., 2022; Chen et al., 2023). How-
ever, the neural networks that are used for these tasks typi-
cally require far more training examples than humans need.
For instance, ImageNet contains approximately 1200 train-
ing examples per class. When standard neural networks are
instead trained on smaller amounts of data, they often gen-
eralize poorly (Lake, Salakhutdinov, & Tenenbaum, 2015;
Hoiem, Gupta, Li, & Shlapentokh-Rothman, 2021).

Can we use the symbolic representations from Bayesian
models to enable neural networks to acquire concepts from
smaller amounts of data? Answering this question is impor-
tant in order to evaluate the potential of artificial neural net-
works as models of human learning, providing a path towards
identifying more plausible cognitive mechanisms that are in-
formed by Bayesian modeling. This problem is at its core
about inductive biases—the factors that guide how a learner
generalizes. Bayesian models are effective at capturing hu-
man inductive biases (e.g., Goodman et al., 2008; Piantadosi
et al., 2016). Therefore, if neural networks can be given the
same inductive biases as Bayesian models, then they could
match human learning behavior as effectively as Bayesian
models do. How, then, can a Bayesian model’s inductive bi-
ases be given to a neural network?

In this work, we use meta-learning to distill the inductive
biases from a Bayesian model into a neural network. The
Bayesian model serves as our characterization of human in-
ductive biases; in the Bayesian framework, an inductive bias
can be characterized as a prior probability distribution over
hypothesized concepts. Meta-learning is then used to turn this
prior into a training regime for a neural network. In meta-
learning, a system is trained on many related tasks in order
to learn the underlying abstractions that are common across
these tasks, thereby giving it inductive biases that enable it
to readily learn new tasks (Thrun & Pratt, 1998; Schmidhu-
ber, 1987). In our application of meta-learning, each task is
a concept sampled from our Bayesian prior, such that meta-
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Figure 2: Learning a prior from a Bayesian model and distill-
ing it into a neural network

Figure 3: DNF grammar from Goodman et al. (2008).
i ∈ {1,2, ...number of features}

learning should result in the neural network internalizing this
Bayesian prior. In this way, meta-learning serves as a formal
framework for bridging probabilistic models of human con-
cept learning and deep neural networks (see Figure 2).

In our experiments, we used this approach to distill the
prior from the Rational Rules model (Goodman et al., 2008)
into a neural network. Across a range of previous behavioral
experiments, the resulting neural network displayed general-
ization behavior that was highly aligned with both humans
and the Rational Rules model. In contrast, a standard neu-
ral network fared poorly across these conditions. These re-
sults demonstrate that meta-learning can successfully be used
to integrate Bayesian and connectionist models of concept
learning, enabling the creation of models that combine the
complementary strengths of these two approaches.

Background
Bayesian concept learning
To define our target inductive bias, we use the prior from the
Bayesian model created by Goodman et al. (2008). This prior
is defined using the context-free grammar (CFG) shown in
Figure 3.1 CFGs are best known for being used to character-
ize the syntax of natural languages and to generate sentences
in a language; in the case of Goodman et al.’s model, the CFG
instead generates concept definitions.

The derivation of a concept definition starts with the sym-
bol S. This symbol is then recursively expanded using
the rules of the grammar until it has yielded a complete

1Goodman et al. (2008) denote their CFG in a different way that
does not include the rules subscripted with top. However, we reran
their experiments using the package Fleet (Yang & Piantadosi, 2022)
and were able to replicate their results only when including the top
rules. We therefore infer that Goodman et al.’s grammar included
something akin to the top rules that was omitted from their diagrams
for conciseness.

expression. For instance, the S would first be expanded
into ∀x l(x) ⇔ Dtop. We would then expand Dtop to yield
∀x l(x)⇔ Ctop ∨D, after which Ctop and D would each need
to be expanded. Eventually this would produce a definition
such as ∀x l(x)⇔ f3(x) = 1∧ f2(x) = 0∧True∨False. This
expression defines the concept characterized by feature 3 hav-
ing a value of 1 and feature 2 having a value of 0 (other parts
of the definition—∀x l(x), True, False—are included for for-
mal reasons but do not affect the definition).

In order to make these derivations probabilistic, each rule
in the grammar has a probability attached to it, and expan-
sions are then sampled according to those probabilities.

Neural network architectures for few-shot learning
Although standard neural network systems are not effective
at learning from few examples, some alternative model ar-
chitectures have been proposed that are tailored for this pur-
pose. Examples include Matching Networks (Vinyals, Blun-
dell, Lillicrap, Wierstra, et al., 2016) and Prototypical Net-
works (Snell, Swersky, & Zemel, 2017). Our approach dif-
fers from these in modifying the training regime rather than
the neural network’s architecture or processing mechanisms.

Meta-learning
Besides specially-designed architectures, the other main ap-
proach for enabling neural networks to learn from few exam-
ples is meta-learning. In this work, we adopt a type of meta-
learning called Model-Agnostic Meta-Learning (MAML)
(Finn, Abbeel, & Levine, 2017). MAML is a machine learn-
ing technique that focuses on training a model in such a way
that it can quickly adapt to new, unseen tasks with minimal
data. MAML aims to learn an effective initialization for a
neural network so that fine-tuning on a new task requires
fewer iterations or samples. The model is trained on a diverse
set of tasks (from the same task distribution) during a meta-
training phase, learning the set of initial parameters. Upon
encountering an unseen task, the model’s learned initializa-
tion can be rapidly fine-tuned with a small amount of data
from a new task. Meta-learning extracts common structure
from a set of tasks, resulting in a system that has inductive
biases aligned with those tasks.

MAML finds parameters θ that minimize the summed loss
over tasks:

argmin
θ

N

∑
i=1

Lval (θ−α∇θLtrain(θ)) , (1)

where θ represents the model parameters, N is the number of
tasks in the meta-training set, Lval is the validation loss used
to update the parameters, and α is the step size or learning
rate for the inner loop optimization.

Prior work has established that meta-learning is a promis-
ing tool for building models of human cognition. In some
cases, it is used to model ways in which humans themselves
meta-learn (Griffiths et al., 2019; Wang, 2021; Kumar, Das-
gupta, Cohen, Daw, & Griffiths, 2021). In other cases—as in



our work—meta-learning is used as a tool to create neural net-
works that have human-like inductive biases, without making
the claim that meta-learning is how humans arrived at those
biases; this framing has been used to improve how well neu-
ral networks can learn symbolic rules (Lake, 2019; McCoy,
Grant, Smolensky, Griffiths, & Linzen, 2020; Lake & Baroni,
2023). Meta-learning is also powerful for connecting neu-
ral networks to other research traditions in cognitive science:
Binz et al. (2023) discuss how meta-learning can connect
neural networks to rational analysis, and our goal here is to
connect neural networks and Bayesian models—an applica-
tion of meta-learning previously used by McCoy and Griffiths
(2023) in the domain of language, building upon a theoretical
connection between MAML and hierarchical Bayesian mod-
els (Grant, Finn, Levine, Darrell, & Griffiths, 2018). Note
that Prior-data Fitted Networks (Müller, Hollmann, Arango,
Grabocka, & Hutter, 2022) also inject Bayesian priors into
neural networks, but they do so in a different manner that
uses standard learning rather than meta-learning.

Distilling Priors into a Neural Network
To distill a Bayesian prior into a neural network, we use the
three-step approach illustrated in Figure 2. We first use a
probabilistic model to define the inductive bias that we wish
to give to a neural network. Specifically, this probabilistic
model is the component of a Bayesian model that defines
its prior, and it gives a distribution over possible concepts.
Internalizing this distribution would help a neural network
learn more efficiently by shaping the hypothesis space that
it searches over. In order to make this distribution accessible
to a neural network, we sample a large number of concepts
from the probabilistic model for use as training data. We then
have a neural network meta-learn from these sampled tasks
to give it an inductive bias that matches the prior distribution
we started with. This approach was first used in previous
work that modeled language learning (McCoy & Griffiths,
2023); the current paper applies the approach in a new do-
main, namely concept learning.

Sampling data
We sample many concepts from the grammar in Figure 3 in
order to serve as meta-learning data for a neural network.
For each concept, we first sample the production probabilities
from a Dirichlet distribution (note that, following Goodman
et al. (2008), the CFG production rules are fixed, but their
probabilities are not). We then sample a concept defini-
tion from the grammar with those probabilities. We must
next generate both a training set and test set for this con-
cept. The training set contains up to 20 examples, randomly
sampled from the 16 possible objects. We use multi-step
loss (Antoniou, Edwards, & Storkey, 2019), which has the
same effect as providing the learner with training sets of vari-
ous sizes, and we also allow examples to repeat within one
episode. The test set is made of all 16 possible objects.
Each example is labeled True if it obeys the rule defining
the concept or False otherwise, except that with probability

e−b/(1+ e−b) we flip the label of the example (this is how
Goodman et al.’s model incorporates the possibility of out-
liers). We denote this outlier parameter b ∈ {1,2, ..,8}.

The above procedure produces the data for a single con-
cept. We repeat this procedure to produce data for 10,000
concepts, which will serve as the data from which the neural
network will meta-learn.

Inductive bias distillation via meta-learning
The neural network internalizes the Bayesian prior by meta-
learning through experience with many similar tasks, each
corresponding to learning one concept. We framed the con-
cept learning problem as a binary classification task and as-
sumed the desired concept was learned if specific examples
were classified correctly. The architecture we used in our ex-
periments is a multi-layer perceptron (MLP). We generated
10,000 episodes for meta-training, 100 for meta-validation,
and 100 for meta-testing. We start with a baseline MLP which
uses hidden size 128 and 5 layers, dropout 0.1, 1 epoch, outer
learning rate 0.0005, and inner learning rate 0.1. We also use
a modified version which has hidden size 256 and skip con-
nections. We use the term prior-trained network to refer to
a network that has undergone this distillation process; a stan-
dard network is one that has not undergone this process.

Evaluating the Model
To evaluate the model we examined its performance in ac-
counting for a set of behavioral results from experiments that
had previously been used to assess the Rational Rules model
(Medin & Schaffer, 1978; Medin & Schwanenflugel, 1981;
Shepard, Hovland, & Jenkins, 1961; McKinley & Nosof-
sky, 1993). These experiments involve learning logical con-
cepts corresponding to objects that have three or four Boolean
features. For example, a concept could be represented by
“ f1(x) = 0 and f3(x) = 1” meaning that the first feature has
a value of 0 and the third feature, 1. The human experiments
required the participants to classify the objects into binary
categories, according to the rule they inferred. We test our
model against the Rational Rules model and human data.

Category structure of Medin and Schaffer (1978)
In Table 1, we consider the category structure of Medin and
Schaffer (1978), using human data from Nosofsky, Palmeri,
and Mckinley (1994), and compare the behavior of humans,
the Rational Rules model with b = 1, the prior-trained neural
network, and the standard neural network.

Each object has four binary features. An object can there-
fore be represented by a sequence of four zeroes or ones; e.g.,
“0111” means that the object has a value of 0 for feature 1, a
value of 1 for feature 2, a value of 1 for feature 3, and a value
of 1 for feature 4. Learners (whether humans or computa-
tional models) were trained on 9 of the 16 possible objects:
they were shown an object’s feature values along with a label
indicating whether the object belonged to category A or cat-
egory B. The training examples are the ones labeled “A” or
“B” in the Object column of Table 1. Participants were then



Table 1: The category structure of Medin and Schaffer
(1978), with the human data of Nosofsky et al. (1994), the
predictions of the Rational Rules model with b = 1, the pre-
dictions of the prior-trained MLP with b = 2, and the predic-
tions of a standard (non-prior-trained) MLP.

Object Feature
values Human RRDNF

Prior
trained Standard

A1 0001 0.77 0.82 0.71 0.52
A2 0101 0.78 0.81 0.76 0.52
A3 0100 0.83 0.92 0.84 0.52
A4 0010 0.64 0.61 0.69 0.52
A5 1000 0.61 0.61 0.70 0.52
B1 0011 0.39 0.47 0.40 0.52
B2 1001 0.41 0.47 0.45 0.52
B3 1110 0.21 0.21 0.22 0.52
B4 1111 0.15 0.07 0.14 0.52
T1 0110 0.56 0.57 0.56 0.52
T2 0111 0.41 0.44 0.34 0.52
T3 0000 0.82 0.95 0.84 0.52
T4 1101 0.40 0.44 0.41 0.52
T5 1010 0.32 0.28 0.39 0.52
T6 1100 0.53 0.57 0.60 0.52
T7 1011 0.20 0.13 0.19 0.52

shown all 16 concepts (the 9 they had been trained on, plus
the 7 they had not been—labeled T1 through T7).

The last 4 columns of the table show the probability that
the human or model assigned category A to a given object.
For instance, humans had 0.77 probability of labeling A1 as
belonging to category A. There are multiple possible rules
that a learner could consider when trained on this dataset.
For instance, the learner could learn a complicated rule that
captures all of the training data perfectly, or it could learn a
rule that misclassifies some of the training data but is simpler,
perhaps under the assumption that the misclassified examples
are outliers. One example of such a simpler rule would be
to assume that objects with a value of 0 for feature 1 are in
category A, while those with a value of 1 for feature 1 are in
category B. This rule correctly classifies 7 of the 9 training
examples. This interplay between multiple possible rules can
be seen in the varying probability levels that are assigned to
different training examples; e.g., even though learners have
seen A1 through A5 as training examples labeled A, not all
of them have the same probability of being labeled A by the
learners; presumably, this is because some of them are con-
sistent with more of the candidate rules than others.

The baseline architecture with a random initialization ob-
tains R2 = 0. Using the same model with the meta-learned
initialization, we find R2 = 0.95 for the prior-trained neural
network and humans and R2 = 0.92 for the prior-trained neu-
ral network and the Rational Rules model, demonstrating that
meta-trained models can closely match the human results;
R2 = 0.98 between the Rational Rules model and humans.
The specific testing examples as well as the error probability
for each model are shown in Table 1. Figure 4 shows that the
prior-trained neural network’s predictions are highly corre-
lated with the human predictions, while those of the standard
neural network are not.

Figure 4: Predictions of prior-trained and standard neural net-
works vs humans and vs Rational Rules (data from Table 1).

Linear Separability
We next consider the two concepts from Medin and Schwa-
nenflugel (1981) which have four binary features and are
shown in Table 2. Concept LS is linearly separable, mean-
ing that it admits a linear discriminant boundary, while Con-
cept NLS is not. Our model predicts that that Concept NLS
is easier to learn, in agreement with the human and Rational
Rules predictions. In Figure 5 we show the error probabil-
ity: 1−P(true label = predicted label) in the Rational Rules
model and two variations of our model; the output of our
model is P(Category A). The two setups we study are: the
modified model varying the outlier parameter b ∈ {1,2...8}
with one epoch per episode at test time and the baseline model
meta-trained with b = 1 varying N ∈ {1,2...8} epochs per
episode at test time. Both neural network variants show trends
similar to those found with the Rational Rules model, which
in turn behaved similarly to humans (Goodman et al., 2008).

Table 2: Two concepts in Medin & Schwanenflugel (1981).
Concept LS is linearly separable, Concept NLS is not.

Concept LS
Category A Category B

1000 0111
0001 1000
0110 1001

Concept NLS
Category A Category B

0011 1111
1100 1010
0000 0101

Table 3: The six three-feature concepts with four positive and
four negative examples, studied by Shepard et al. (1961).

I II III IV V VI
+000 +000 +000 +000 +000 +000
+001 +001 +001 +001 +001 -001
+010 -010 +010 +010 +010 -010
+011 -011 -011 -011 -011 +011
-100 -100 -100 +100 -100 -100
-101 -101 +101 -101 -101 +101
-110 +110 -110 -110 -110 +110
-111 +111 -111 -111 +111 -111



(a) Humans (b) RRDNF (c) Prior-trained (varying b) (d) Prior-trained (varying epochs)

Figure 5: Linearly and non-linearly separable concepts. Linearly separable Concept LS was more difficult to learn than Concept
NLS, which is not linearly separable. Error probability in: (a) Humans, (b) Rational Rules, (c) Prior-trained modified model
varying outlier parameter b, (d) Prior-trained baseline model varying number of epochs per episode during inference

(a) (b)

Figure 6: Error probability of the prior-trained model in learn-
ing concepts I-VI in Shepard et al. (1961). (a) Prior-trained
modified model varying outlier parameter b. (b) Prior-trained
baseline model varying number of epochs per episode.

Shepard, Hovland and Jenkins (1961)
Shepard et al. (1961) compared difficulty in learning the six
concepts shown in Table 3. The concepts have three Boolean
features and are divided into four positive and four negative
examples. The human performance in learning these concepts
indicates the following ranking of difficulty in learning six
concepts shown in Table 3: I < II < III = IV =V <V I. The
Rational Rules error rates are 0%,17%,24%,24%,25%,48%,
for b = 3. The ranking is consistent for all values of b other
than b = 1, where there is an inversion: II > III. Our prior-
trained model exhibits the same trend, including the inversion
II > III for b= 1 and b= 2, which we show in Figure 6 for the
modified model meta-trained varying b and for the baseline
model meta-trained with b = 1 and varying the number of
epochs per episode at test time.

Medin, Altom, Edelson, and Freko (1982)
This experiment follows the same setup as our experiment
based on Medin and Schaffer (1978), meta-training our mod-
ified model with b = 1 and b = 7. In Table 4, we test our
model on the category structure of Medin et al. (1982). The
RRDNF model explains most of the variance in human judg-
ments in the final stage of learning: R2 = 0.95 when b= 7 and
correlation with human judgments after one training block is
R2 = 0.69 when b = 1. Our model has R2 = 0.56 when b = 7

Table 4: The category structure of Medin et al. (1982), with
initial and final block mean human responses of McKinley
and Nosofsky (1993), and the predictions of the Rational
Rules model and our model at b = 1 and b = 7.

Object Feature
values

Human
initial
block

RRDNF
b = 1

MAML
b = 1

Human
final
block

RRDNF
b = 7

MAML
b = 7

A1 1111 0.64 0.84 0.84 0.96 1 0.98
A2 0111 0.64 0.54 0.67 0.93 1 0.97
A3 1100 0.66 0.84 0.83 1 1 0.98
A4 1000 0.55 0.54 0.66 0.96 0.99 0.96
B1 1010 0.57 0.46 0.32 0.02 0 0.03
B2 0010 0.43 0.16 0.15 0 0 0.02
B3 0101 0.46 0.46 0.31 0.05 0.01 0.03
B4 0001 0.34 0.16 0.15 0 0 0.02
T1 0000 0.46 0.2 0.22 0.66 0.56 0.14
T2 0011 0.41 0.2 0.26 0.64 0.55 0.32
T3 0100 0.52 0.5 0.45 0.64 0.57 0.3
T4 1011 0.5 0.5 0.48 0.66 0.56 0.38
T5 1110 0.73 0.8 0.72 0.36 0.45 0.66
T6 1101 0.59 0.8 0.74 0.36 0.44 0.79
T7 0110 0.39 0.5 0.49 0.27 0.44 0.53
T8 1001 0.46 0.5 0.51 0.3 0.43 0.63

and R2 = 0.66 when b = 1; see the Discussion for a poten-
tial explanation for why the b = 7 result does a poorer job of
replicating RRDNF than our other results do.

Discussion
Humans can learn logical concepts rapidly, but it is natural to
expect that this task will be difficult for artificial neural net-
works. First, these concepts are defined using discrete, sym-
bolic, compositional rules, but neural networks are not a nat-
ural fit for symbolic domains (Fodor & Pylyshyn, 1988). Sec-
ond, in the human experiments that we considered, such con-
cepts were learned from small numbers of examples, yet stan-
dard neural networks usually require large quantities of train-
ing data. Indeed, we found that standard neural networks did
a poor job at acquiring the concepts we considered. Nonethe-
less, we also found that inductive bias distillation made it pos-
sible for neural networks to perform well at learning logical



concepts: after we distilled a structured prior probability dis-
tribution into a neural network, it was able to learn logical
concepts from few examples and in ways that aligned closely
with human results across several experiments. These results
therefore show that it is possible to develop connectionist in-
stantiations of probabilistic models.

Potential additional biases
The prior that we distilled into a neural network encodes
a bias for simplicity: rules that can be expressed with a
short logical description have a higher prior probability than
rules that require a long description. Such a bias is well-
supported by human experiments (Feldman, 2000; Neisser
& Weene, 1962; Goodman et al., 2008), but it is far from
the only bias involved in human concept learning. For in-
stance, people also display a shape bias (Landau, Smith, &
Jones, 1988), a whole-object bias (Markman, 1994), a basic-
level bias (Rosch, Mervis, Gray, Johnson, & Boyes-Braem,
1976), and a mutual exclusivity bias (Markman & Wachtel,
1988). One direction for future work would be to incorpo-
rate these additional biases into our model, which could be
done by augmenting the probabilistic model from which we
sampled concepts such that the distribution of concepts that
it produces reflects these biases. For instance, a shape bias
could be instantiated by introducing an asymmetry between
features so that concepts based on the shape feature would be
sampled more often than concepts based on other features.

Modeling the timecourse of learning
When our neural network model learns a concept, it does so
incrementally, updating its parameters after each example it
encounters. This incrementality means that the neural net-
work can model the timecourse of learning more naturally
than the Rational Rules model, which considers the entire
set of training examples at once, such that modeling multiple
points during the course of learning requires creating multiple
separate instances of the model.

As one example, in some of the human experiments (Medin
& Schwanenflugel, 1981; Shepard et al., 1961), partici-
pants were trained on the category using a blocked learn-
ing paradigm: each example in the training set was presented
once per block, and blocks were repeated multiple times. To
replicate this experiment with the Rational Rules model, a
different instance of the model must be created for each step
in the learning process. Specifically, as shown in Figure 5b,
successive steps are modeled by increasing the b hyperparam-
eter, though the same result could also be achieved by fitting
each instance to differing numbers of copies of training ex-
amples: the Rational Rules model with outlier parameter b
presented with N identical blocks of examples is equivalent
to the model presented with only one block, but with param-
eter b′ = b ·N.

Like Rational Rules, the neural network can accommo-
date differences in b (Figure 5c), but unlike Rational Rules
it also accommodates an approach in which the same copy
of the model is incrementally trained on multiple repeats of

the training set (Figure 5d)—an approach that better captures
incremental concept learning in humans.

Challenges of learning a prior from data
One shortcoming of our approach arises from the fact that
the neural network model learns its inductive bias from data.
Therefore, the neural network is likely to have approxi-
mated this bias very well for the scenarios that were well-
represented in the data, but the approximation may be poor in
rarer scenarios. In our case, the frequency with which the net-
work encountered a given concept was equal to that concept’s
prior probability, so the degree to which our model approxi-
mates the Rational Rules model is likely to decrease when
a concept with a low prior probability is involved, since our
model has seen few examples of how Rational Rules would
generalize for such concepts.

We had one result where the neural network indeed pro-
vided a poor fit to Rational Rules, namely the b = 7 setting
in Table 4. The low performance in this case is likely due
to the fact that the rule to be learned, namely ( f3 = 1∧ f4 =
1)∨( f3 = 0∧ f4 = 0), has a low prior probability (because its
description needs to include a large number of feature spec-
ifications) and thus is outside the space in which the neu-
ral network’s parameters are well-estimated. In contrast, the
b = 1 setting in that table involves the same data but with a
higher outlier probability; increasing the outlier probability
leads Rational Rules to ignore some of the training examples
as outliers in order to learn a simpler (i.e., higher-prior) rule,
and having a high prior for the rule to be learned facilitates a
stronger performance from the neural network model.

Enabling neural networks to generalize to low-probability
scenarios is a challenging problem. Meta-learning is an active
area of research in machine learning, and technological ad-
vances in this area may provide ways to overcome this prob-
lem, but for now it remains an important limitation for data-
driven approaches to imparting inductive biases.

Conclusion
While Bayesian models excel in certain aspects of concept
learning, their traditional reliance on explicitly symbolic rep-
resentations limits their implementational and algorithmic
plausibility. On the other hand, neural networks do not re-
quire such representations but struggle to learn from small
numbers of examples. Our approach bridges this gap by dis-
tilling probabilistic models into neural networks, leveraging
the strengths of both paradigms. This integration enables
neural networks to learn structured, compositional concepts
from limited numbers of examples, providing new avenues
for developing theories of concept learning that merge in-
sights from Bayesian models and neural networks.
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