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Abstract

Convolutional neural networks (CNNs) are increasingly widely used in psychology and neuro-
science to predict how human minds and brains respond to visual images. Typically, CNNs represent
these images using thousands of features that are learned through extensive training on image datasets.
This raises a question: How many of these features are really needed to model human behavior? Here,
we attempt to estimate the number of dimensions in CNN representations that are required to capture
human psychological representations in two ways: (1) directly, using human similarity judgments and
(2) indirectly, in the context of categorization. In both cases, we find that low-dimensional projections
of CNN representations are sufficient to predict human behavior. We show that these low-dimensional
representations can be easily interpreted, providing further insight into how people represent visual
information. A series of control studies indicate that these findings are not due to the size of the dataset
we used and may be due to a high level of redundancy in the features appearing in CNN representations.

Keywords: Similarity judgments; Categorization; Psychological representations; Neural networks;
Deep learning; Interpretability

1. Introduction

Over the last decade, convolutional neural networks (CNNs) have been extremely suc-
cessful in the field of computer vision, resulting in good performance on image clas-
sification and related tasks (He, Zhang, Ren, & Sun, 2016; Krizhevsky, Sutskever, &
Hinton, 2012; Simonyan & Zisserman, 2015). The ability of CNNs to construct useful
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representations of images from large image datasets has been of particular interest to cognitive
scientists. CNN representations have been demonstrated to be highly predictive of multiple
aspects of human visual perception (Kubilius, Bracci, & Op de Beeck, 2016; Lake, Zaremba,
Fergus, & Gureckis, 2015). This utility has led to their representations being increasingly used
to understand cognitive processes (Cichy & Kaiser, 2019; Kriegeskorte, 2015). For example,
Sanders and Nosofsky (2020) show that CNNs can be trained to predict psychologically rel-
evant dimensions of images identified through multidimensional scaling.

The representations of images used in these analyses are based on the activation of hidden
units in extremely large artificial neural networks, typically resulting in thousands of poten-
tial features. This rich feature space is often thought to be the reason behind the success of
CNNs in reproducing high-level cognitive phenomena. However, another possibility is that
the large feature sets of CNNs contain psychological features— those learned by humans in
the same task settings—as a subset. Recent work by Peterson, Abbott, and Griffiths (2018)
and Battleday, Peterson, and Griffiths (2020) has shown that CNN representations are capable
of encoding psychological information in the context of similarity and categorization tasks.
A natural question that follows is whether this psychologically relevant information spans
the entire set of CNN features or only a smaller subset. If psychological features are only a
subset of CNN features, the remaining CNN features could be encoding redundant or irrel-
evant information. This would suggest that CNN representations may be compressible into
lower dimensional representations while capturing psychologically relevant information. Typ-
ically, CNN representations are very high dimensional making it very hard to interpret them.
However, compressing them into low-dimensional representations would enable us to easily
interpret them and gain scientific insights into how humans represent visual stimuli.

Here, we examine how the dimensionality of representations derived from CNN features
influences predictions of human behavior in two tasks. We first study similarity judgments,
which are classically used in cognitive science to derive psychological representations. Peter-
son et al. (2018) showed correspondences between similarities in CNN representations and
human similarity judgments for natural images, suggesting that CNN representations can be
adapted to reflect human psychological representations. In the current work, we propose a
method inspired by previous work by Rumelhart and Todd (1993) that allows us to find the
low-dimensional projections of CNN representations that best capture human similarity judg-
ments. Surprisingly, our method reveals that human similarity judgments can be predicted
with two orders of magnitude fewer dimensions than those typically contained in CNN repre-
sentations, indicating that psychological information is encoded by a small number of dimen-
sions. To further study these low-dimensional psychological representations, we probe their
individual dimensions, finding that most of them are interpretable. In particular, we show that
broad visual categories are given more importance by our model than finer ones captured
in subsequent dimensions, in line with the hierarchical structure often found to characterize
human cognition (Cohen, 2000; Rogers & McClelland, 2004).

The second task we consider is categorization, another central cognitive function that has
been studied for decades. The two classic modeling frameworks for human categorization are
prototype models (Reed, 1972) and exemplar models (Medin & Schaffer, 1978; Nosofsky,
1984). Recent works (Battleday, Peterson, and Griffiths, 2020; Singh, Peterson, Battleday, &
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Griffiths, 2020) have found that incorporating CNN representations into exemplar and proto-
type models can predict human categorization behavior for natural images. Building on their
approach, we develop a framework for obtaining low-dimensional projections of CNN rep-
resentations which also capture this behavior. Our analysis reveals that human categorization
on the commonly used CIFAR-10 dataset can be predicted using representations with fewer
than 10 dimensions.

To better understand the ability of low-dimensional representations derived from CNNs in
predicting human similarity judgments and categorization, we conduct three control studies,
each designed to control for a specific factor. First, we address the concern that our results may
reflect the fact that the similarity datasets we used must necessarily focus on a relatively small
number of images (in this case, each dataset contains 120 images). To rule out this possibility,
we conduct a simulation in which we apply the same analysis to similarity scores derived
directly from CNN representations themselves, showing that the inferred dimensionality of
the resulting representations does not scale significantly with an increase in the number of
images. Our analysis shows that low-dimensional representations are sufficient even in this
case, suggesting that there is a high level of redundancy in CNN representations in general—
that they are highly compressible. Our second control study follows up on this observation
by evaluating the dimensionality of CNN representations required to perform standard image
classification on the CIFAR-10 dataset. We find that fewer than 10 dimensions are sufficient
to obtain comparable classification accuracy to full CNN representations. We then analyze
the effect of class diversity and the number of basic-level categories on the dimensionality of
CNN representations to ensure that low dimensionality is not merely a function of a number of
categories. We find that fewer than 10 dimensions encode images sufficiently well to preserve
classification accuracy (within 1%) on CIFAR-100 which has 100 classes, and 64 dimensions
are sufficient to preserve classification information on ImageNet-100 which is more diverse
at the level of basic categories. Finally, we show that this compressibility is not a function of
our model but of the CNN representations. We observe that if we use word vectors as inputs
to our model, we are not able to find low-dimensional representations of the inputs that are
just as predictive of similarity judgments as the original input.

Overall, our results suggest that CNN representations contain a high level of redundancy,
when using them to understand perceptual representations in humans. We show that we can
find low-dimensional representations that can generate meaningful predictions about human
behavior. Such low-dimensional representations overcome the interpretation barrier that
typical CNN representations pose and can be probed to better understand the features that
people use to solve visual cognitive tasks. Obtaining a succinct psychological representation
of visual stimuli also makes several downstream analyses computationally less demanding,
including correlating psychological representations with neural representations in the brain
(Kriegeskorte, Mur, & Bandettini, 2008; Mur et al., 2013).

2. Convolutional neural networks

CNNs are a class of artificial neural networks tailored to process visual data. The goal
of CNNs is to generate rich features from the input images, which can then be used to
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perform a range of downstream tasks. CNNs assume a specific structure in the input and are
designed to exploit spatial correlations in images as well as to provide translation-invariant
representations.

One defining feature of CNNs is the convolutional filter, which slides along the input image
creating a new feature map of the image. This operation is mathematically equivalent to per-
forming a convolution between the filter and the image. Typically, filters serve as feature
detectors (such as edge detectors, blob detectors, or more complex object detectors), where
the output feature map represents how strongly a feature is detected in a certain region of
the image. Each convolutional layer contains multiple such filters, where each filter slides
along the image providing its corresponding feature map. This is the first operation on an
input image. Convolutional layers are typically followed by pooling layers, which perform a
downsampling operation on the generated feature map. The most popular form of pooling is
called max-pooling, where the feature map is downsampled such that the maximum unit in
a specific region of the feature map (say of size 2 × 2) represents the entire region. An alter-
native to max-pooling is average pooling where small regions are represented by their means
in the output feature map. The pooling filters are much smaller than the image itself, thus
helping in generating translation invariant representations. The first few convolutional layers
detect simple features (such as lines, texture), while the deeper layers detect more complex,
high-level features (such as objects). After several stages of convolution and pooling, CNNs
often employ fully connected layers at the end. Fully connected layers, where every node in
a layer is connected to every other node in the next layer, contain a certain number of nodes,
each with an activation value for the image. They are often followed by task-specific layers
which use the image embedding for specific visual tasks, such as image classification. CNNs
are trained to optimize performance on this visual task, and in the process they derive features
that can be used to represent the input image in a diverse set of tasks.

Formally, for an input image x, the last fully connected layer’s (also called the embedding
layer) representation F (x) contains a multidimensional feature representation of the image.
This representation is rich, invariant to translations and can be used for downstream tasks.
In all our experiments, we use this embedding layer representation for our images extracted
from specific CNNs.

3. Analyzing similarity judgments

Similarity judgments have traditionally been used to study human psychological repre-
sentations (Shepard, 1980). In a recent work, Peterson et al. (2018) showed correspondences
between similarities in CNN representations and human similarity judgments for natu-
ral images. They found that while out-of-the-box CNN representations are only partially
reflective of human psychological representations, they can be adapted to support a more
fine-grained correspondence. The best performance was obtained with a representation that
has 4,096 dimensions. In this section, we will determine how many of these dimensions are
required to capture human similarity judgments.
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Our approach is inspired by the classic work of Rumelhart and Todd (1993), who con-
structed a neural network to predict human similarity judgments. The model takes vectors
representing two stimuli as input and outputs a similarity judgment. The hidden layer is of a
lower dimensionality than the input, resulting in a compressed representation. Extending this
idea to modern CNNs, our method—which we call Similarity-driven Dimensionality Reduc-
tion (SimDR)—reduces the CNN representations of images to a low-dimensional space which
is optimal for predicting human similarity judgments.

3.1. Methods

3.1.1. Stimuli
Peterson et al. (2018) collected six human similarity datasets for natural images drawn

from the following domains: animals, vehicles, vegetables, fruits, furniture, and a dataset
encompassing a variety of domains (“various”). Participants rated each pair of images on
a scale of 0–10 (where higher numbers imply greater similarity). For each domain, there
are approximately 10 human similarity ratings for each pair of images. With a total of 120
images per domain, this results in approximately 71,400 similarity judgments per domain
(( 120

2 )pairs × 10 trials per pair).

3.1.2. Similarity-driven dimensionality reduction
Peterson et al. (2018) showed that the final, fully connected representation layer of VGG-

19 (Simonyan & Zisserman, 2015) is most predictive of human similarity judgments; hence,
we use the same 4096-dimensional (4096-d) VGG-19 representations for all our experiments.
The task of obtaining low-dimensional representations of images which capture factors under-
lying human similarity judgments is thus a matter of projecting VGG-19 representations to a
low-dimensional space that still predicts human similarity judgments.

We solve this problem by constructing a simple linear neural network. We use a linear
network since we only want to extract the useful dimensions out of CNN representations,
not to modify them in any way. For two input images, xi and x j , we first obtain their
corresponding 4096-d VGG-19 representations, F (xi) and F (x j ). For compactness, we will
refer to them as Fi and Fj , respectively. They are passed through a single linear layer, B,
of small width (i.e., a bottleneck layer) which projects them to a lower dimensional space,
with B(F ) = WBF , where WB are the weights of the bottleneck layer. The weights of this
bottleneck layer are shared, such that we obtain the vectors B(Fi) and B(Fj), respectively,
for the two images. The inner product of the outputs of the bottleneck layer is then used to
predict similarity rating for the input pair (Fig. 1), ŝi, j = B(Fi)�B(Fj ). The inner product is
our representational similarity measure, which contrasts with Rumelhart and Todd (1993),
and more directly generalizes the method of Peterson et al. (2018). We refer to the mean
human similarity judgment between the given pair of images as si, j . The weights of the
bottleneck layer are learned by back-propagating the loss incurred during the prediction of
human similarity judgments, hence optimizing the projected representations to predict human
similarity judgments (the CNN representations of the images Fi and Fj are held fixed). This
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Image 1

Image 2
CNN rep.

Low-d layer

Shared
weights

Predicted
Similarity

Fig. 1. Overview of SimDR. CNN representations for an image pair are down-projected using a shared low-
dimensional bottleneck layer. An inner product of the outputs gives predicted similarity rating for the input pair.

results in the following loss function for a given image pair (i, j):

Li, j = ||̂si, j − si, j||2 = ||B(Fi)
�B(Fj ) − si, j||2, (1)

which is optimized with respect to the weights in the bottleneck layer B.
The loss function in Eq. 1 is equivalent to ||F�

i W �
B WBFj − si, j||2. In other words, we are

learning a low-rank matrix (W �
B WB) to map the feature vectors to similarity judgments. This

contrasts with the method of Peterson et al. (2018), which learns a weight for each of the
4,096 input dimensions (i.e., a diagonal matrix in place of any general W �

B WB). Gershman and
Tenenbaum (2015) used a similar approach to learn phrase similarity, using a full matrix W in
place of W �

B WB, without a low-rank constraint. Our low-rank formulation allows us to specify
the dimensionality of the weight matrix WB and learn a low-dimensional representation for
images, which is our core objective. Our approach is also distinct from principal component
analysis (PCA; Pearson, 1901), which focuses on capturing variation in the inputs rather than
just the information that is relevant to human similarity judgments (and thus may inflate the
estimated dimensionality).

We trained a separate model for each dataset. CNN feature vectors were normalized such
that their norms were one. We used mean squared error as the loss function with L2 regular-
ization on the weights of the bottleneck layer, WB to train each model:

L = 1

2

∑
i

∑
j

||B(Fi)
�B(Fj ) − si, j||2 + λ||WB||2. (2)

L2 regularization adds the additional term λ||WB||2, which drives the weights to small values
such that the overall similarity prediction function is smooth and consequently avoids over-
fitting. We selected the L2 coefficient, λ, between 10−3 and 103 by six-fold cross-validation.
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Table 1
R2 scores for all datasets (SimDR and PCA values are for the bottleneck layer of size 64, the results from Peterson
et al. (2018) reflect the CV (cross-validation) control values from their Table 1)

Dataset Raw Peterson et al. (2018) SimDR PCA

Animals 0.58 0.74 0.64 0.47
Vehicles 0.51 0.58 0.57 0.51
Fruits 0.27 0.36 0.30 0.27
Furniture 0.19 0.35 0.33 0.28
Various 0.37 0.54 0.50 0.31
Vegetables 0.27 0.34 0.30 0.32

Abbreviations: PCA, principal component analysis; SimDR, Similarity-driven Dimensionality Reduction.

We measured the accuracy of the similarity predictions as compared to human similarity rat-
ings using the coefficient of determination, R2. Finally, we varied the number of nodes in the
bottleneck layer, B, in the range of 1–64. For each setting of the bottleneck layer’s width,
we report the average validation R2 score using six-fold cross-validation over the full set of
120 images (and at the best λ selected by a separate run of six-fold cross-validation over the
same set of images due to the small size of our datasets). We also compare this approach
with a simple unsupervised baseline that obtains low-dimensional representations by running
PCA over the input VGG-19 representations. These low-dimensional representations are then
transformed using the method of Peterson et al. (2018) to best predict similarity ratings. As
above, we vary the number of principal components in the range of 1–64.

3.2. Few dimensions predict similarity judgments

For all datasets, we observe that the proportion of variance in similarity scores accounted
for by the model (R2) obtained using SimDR score at 64 dimensions is higher than that of
the raw (untransformed) CNN representations (Table 1). The PCA-based model performed
worse than SimDR for all datasets (except for the vegetables dataset), suggesting that super-
vision is much more selective of the human-relevant dimensions. We also observe that the
prediction performance of SimDR quickly saturates as the number of dimensions increases
beyond 10–20, approaching the prediction performance obtained using all VGG-19 features
(Fig. 2; dashed lines). Notably, the animals dataset requires only six dimensions to achieve
an R2 score of 0.6 while the various dataset achieves an R2 of 0.49 at six dimensions. These
results strongly suggest that human similarity judgments can be captured by considerably
fewer dimensions (by at least two orders of magnitude) than those comprising VGG-19 rep-
resentations, and more generally that psychological representations as measured by similarity
experiments are much lower dimensional than CNN representations. Additional evidence for
this can be seen in the intrinsic dimensionality of the CNN representations themselves without
respect to human judgments. Fig. 3 illustrates this using PCA: cumulative variance explained
is shown as a function of the number of components for each dataset. Notably, the dimension-
ality elbow is both longer and later than those in Fig. 2. Interestingly, CNNs also appear to
assign equal dimensionality to all datasets (except vehicles), apparently much unlike humans
(Fig. 2).
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Fig. 2. Explained variance (R2) of our models in predicting human similarity judgments on each dataset. The
dashed lines correspond to the prediction performance in Peterson et al. (2018) when all input dimensions are used.
(A) shows the R2 score (averaged over 10 runs, error bars reflect the 95% confidence interval over the 10 runs)
for our end-to-end similarity prediction model, SimDR. (B) shows the R2 score (also averaged over 10 runs, with
a 95% confidence interval) when we used PCA to obtain low-dimensional representations of images from their
corresponding VGG-19 representations, and measured similarity between these low-dimensional representations.
In both cases, for each run, we report the mean validation R2 score using six-fold cross-validation.

Fig. 3. Cumulative variance explained in the VGG-19 representations as a function of the number of principal
components used to reconstruct them, for each dataset. Unlike Fig 2, the amount of variance captured in these rep-
resentations does not saturate at a small dimensionality. Hence, the inherent variance in VGG-19 representations
is captured by a large number of dimensions.

3.3. Interpretation of low-dimensional features

Now that we have demonstrated that low-dimensional representations are sufficient to pre-
dict similarity judgments, we can attempt to interpret the reduced set of dimensions. For this
experiment, we focus on the top three datasets based on an R2 score—animals, vehicles, and
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Fig. 4. Image embeddings visualized along the top four principal components of low-dimensional SimDR repre-
sentations. Several of these dimensions capture meaningful concepts. Most notably, the first PC of the animals
dataset distinguishes between mammals and non-mammals, and the first PC of the various dataset separates inan-
imate objects from dogs and humans.

various. As mentioned above, SimDR achieves an R2 score of 0.6 on the animals dataset
using six dimensions, an R2 score of 0.49 on the various dataset using six dimensions, and
an R2 score of 0.45 on vehicles dataset using 16 dimensions. We fix these as the bottleneck
layer sizes for each of these datasets. The aforementioned dimensions for each of the three
datasets are chosen by visually identifying an elbow in performance (Fig. 2) such that the rate
of increase in an R2 score is small beyond this point. We want to understand these individual
dimensions; however, they may not be orthogonal. To address this, we further orthogonal-
ize our low-dimensional representations using PCA to ensure that each dimension encodes
unique information. We then take the top few dimensions which explain most of the variance
for each dataset. This contrasts with the use of PCA above to produce a baseline-reduced
feature set in that it is performed after supervised dimensionality reduction and is only for the
sake of rotating the resulting set of factors.

For each of the three datasets, we visualize image embeddings along the top four prin-
cipal dimensions of the low-dimensional features learned via SimDR (Fig. 4). We visualize
validation images for a single fold (out of the six cross-validation folds), though we observe
that the dimensions were consistent across all folds in terms of capturing the same concepts
(see the Appendix). We observe that the first dimension for each dataset appears to be largely
continuous and captures broad categories. In the animals dataset, this dimension goes from
non-mammals to mammals. The first dimension of the various dataset goes from inanimate
objects to dogs and humans. Finally, the first dimension of the vehicles dataset shows a gra-
dation from vehicles with two or no wheels (e.g., sled, wheelchair) to those with four wheels
(e.g., trucks, buses), though the interpretation in this case is not as evident, which may stem
from the low variance (12%) captured by the top component. Some of the other principal com-
ponents are also apparently interpretable and interesting. For example, the second principal
component of the vehicles dataset distinguishes water transport from land transport, the third
principal component of the various dataset distinguishes natural things from artificial ones,
while the fourth dimension in the animals dataset distinguishes birds from non-birds. Each of
these individual dimensions captures a different taxonomic relationship, suggesting that such
relationships are important factors in determining similarity judgments of natural images.
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Fig. 5. Examples of image embeddings for three datasets using the top principal components (PCs) of the SimDR
representations. Here, the image embeddings are visualized along two PCs (PC1 vs. PC2 and PC3 vs. PC4). These
plots reflect meaningful clusters formed by projecting images along a pair of PCs. Some examples are birds in the
animals dataset (see PC3 vs. PC4, top), animals in the various dataset (see PC1 vs. PC2, top center), and airplanes
in the vehicles dataset (see PC3 vs. PC4, bottom right).

As an alternative visualization strategy, we explore two-dimensional projections of the
image representations along two of the top four principal components in Fig. 5. These plots
are useful in observing clusters of images formed by a combination of principal components,
where each cluster tells us what kinds of images are considered similar by the model. Echoing
(Peterson et al., 2018), we observe clusters for herpetiles (reptiles and amphibians), primates,
birds, wild cats, rodents, and grazers in the animals dataset.

We see clusters for human faces and body parts, animals, vegetables, houses, and natural
things in the various dataset. The vehicles dataset shows distinct clusters for trains, bikes,
horses, airplanes, and tanks.

3.4. Hierarchical similarity and bottleneck effects

Next, we analyze the effect of changing the width of the bottleneck layer. We know that
increasing the width improves prediction performance. Here, we are interested in interpreting
the information captured by different bottleneck sizes.

To visualize this, we explore hierarchical clustering (Shepard, 1980) of judgments from the
animals dataset. Fig. 6 shows via dendrograms that when the bottleneck layer in SimDR has
two dimensions, two clusters—primates and non-primates—are formed. This suggests that
belonging to the primate group is the most important trait influencing similarity judgments in
the animals dataset, which is encoded in as little as two dimensions. At a bottleneck size of 6,
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Two dimensions Six dimensions

Primates Non-primates H B P R WC G E

Fig. 6. Dendrograms produced by hierarchical clustering for two-dimensional representations and six-dimensional
representations on the animals dataset. The representations were obtained from SimDR. We find a hierarchical
organization for the image representations, where two–dimensional representations capture high-level categories
while the six-dimensional representations capture finer distinctions within these categories. H: Herps, B: Birds, P:
Primates, R: Rodents, WC: Wild cats, G: Grazers, E: Dogs, Bears and Large animals.

however, a further hierarchical structure can be seen where many more categories are present.
At intermediate sizes between 2 and 6, additional clusters continue to emerge (not shown).
The hierarchical structure formed by the six-dimensional representations is closely related to
that formed using human similarity data in Peterson et al. (2018).

We further observe that increasing the bottleneck width introduces additional categorical
distinctions in other datasets too. For the various dataset, at a bottleneck width of four, we
observe distinct clusters for animals and humans (and their body parts). In the case of the vehi-
cles dataset, four-dimensional bottleneck layer representations preserve distinctions based on
wheels. Hence, these are primary traits influencing similarity judgments which are captured at
small bottleneck widths. These results motivate a hierarchical organization of factors under-
lying human similarity judgments in our model, providing empirical results consistent with
mathematical theories of hierarchical semantic knowledge organization in neural networks
(Saxe, McClelland, & Ganguli, 2019).

3.5. Shared features across domains

We have seen that each of the six individual SimDR models can discover low-dimensional
representations which are predictive of similarity judgments separately for each domain. A
natural question that follows from this is whether the dimensions learned by these models
trained on specific domains are also shared across domains. Translating this into the frame-
work of human judgments, the question we pose is the following: Do different domains share
factors underlying human similarity judgments?
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Fig. 7. Interdomain relatedness (R2) as measured by regularized CCA, between all pairs of image domains. Higher
R2 between a pair of domains suggests a higher degree of shared information between the domains, as captured by
representations obtained from SimDR. In particular, the representations of fruits and vegetables share information,
the same is also true for the animals and the vehicles datasets.

3.5.1. Canonical correlation analysis
We use L2-regularized canonical correlation analysis (CCA; Bilenko & Gallant, 2016) to

evaluate the degree of shared information or factors between low-dimensional representations
belonging to any two domains. From each of the six models trained on individual domains, we
obtain 64-dimensional representations for all pairs of images (from all six datasets). We then
perform regularized CCA on 64-dimensional representations from every pair of domains.

We observe in Fig. 7 that the R2 score is highest for fruits and vegetables, followed by
animals and vehicles. This implies that the representations formed for fruits and vegetables
overlap. The same is true for animals and vehicles datasets. While it seems reasonable for
fruits and vegetables to share common factors for similarity, the relationship between animals
and vehicles is less clear, although we suspect it may have something to do with common
backgrounds (which often contain scene information such as grass, sky, and water, unlike our
other categories).

3.5.2. Domain-agnostic SimDR
To determine whether a more general set of dimensions could be learned that generalizes

across domains, we trained a SimDR model on image pairs from all six datasets using six-
fold cross-validation. We compared this to models trained on individual domains and tested
on all others to assess how they generalize on their own. The results, shown in Fig. 8 (panel
A), reveal that the pooled model nears saturation at a few hidden dimensions. Hence, even
with a diverse dataset, few dimensions are enough to predict similarity judgments. Next, we
see that the domain-specific models do not generalize well when tested on all datasets, lend-
ing credibility to our earlier claim that these models learn dimensions which are specific to
individual domains. Lastly, Fig. 8 (panel B) shows the performance of the pooled model in
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Fig. 8. Evaluation of SimDR on a pooled set of images from all of the six datasets. (A) Performance of models
tested on all domains (with varying bottleneck layer size). (B) Performance of pooled model tested on individual
domains and on all domains (with varying bottleneck layer size). The dashed line shows the performance of the
model trained on all domains in Peterson et al. (2018). Solid lines correspond to the pooled model tested on
different datasets; they are averaged over 10 runs and the error bars reflect 95% confidence intervals over the 10
runs.

predicting individual domains and reveals that certain domains (animals, vehicles, various)
are well-explained by general features learned from the pool of all domains, while others
require more domain-specific features (vegetables, fruits, furniture).

These results show that CNN representations can be transformed to lower dimensional
representations—where interpretation is far less cumbersome—while still being predictive of
human similarity judgments. We observe that only a few dimensions are required to predict
psychological representations as opposed to the thousands of dimensions for a full set of CNN
features. This suggests that CNN representations contain only a subset of features that are
directly relevant to capturing psychological information, and many of the features discovered
by CNNs may be redundant.

4. Analyzing human categorization

Categorization is a central and extensively studied cognitive task, with an extensive
literature providing models of categorization evaluated with simple visual stimuli (Medin
& Schaffer, 1978; Nosofsky, 1984; Reed, 1972). In a recent work, Battleday et al. (2020)
explored categorization involving complex natural images by combining CNN representa-
tions with existing cognitive models. They used the CNN representations of natural images
as input to classic categorization models (prototype and exemplar models) and were able
to predict human categorization behavior. In this section, we complement the analysis of
similarity data presented above by developing a pipeline to reduce the dimensionality of
CNN representations while training them simultaneously to predict human categorization.
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 Categorization
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Bottleneck 
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Fig. 9. Overview of CatDR. CNN representation, F (x) (shortened to Fx), for an image, x is down-projected using
a low-dimensional bottleneck layer, B(Fx ). This serves as input to a categorization model (prototype or exemplar),
which outputs the posterior probabilities of classes.

4.1. Methods

4.1.1. Stimuli
To train our categorization models, we used the CIFAR-10H behavioral dataset devel-

oped by Peterson, Battleday, Griffiths, and Russakovsky (2019) and used by Battleday et al.
(2020). This dataset contains 511,400 human categorization decisions made over 10,000 natu-
ral images. The images were taken from the test set of CIFAR-10 which encompass 10 classes:
airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck. Participants were asked
to categorize every image as accurately as possible. Approximately 50 judgments per image
were collected, resulting in a probability distribution over the 10 classes for each image.

4.1.2. Categorization-driven dimensionality reduction
We extracted CNN representations for the 10,000 images from a ResNet-18 (He et al.

,2016) model trained on CIFAR-10. We used ResNet-18 because its parameter space is just
constrained enough to allow easy training but also provides high accuracy on the CIFAR-10
dataset. Moreover, related work by Singh et al. (2020) demonstrates the ability of ResNet-18
to predict human categorization decisions. After obtaining CNN representations correspond-
ing to our stimuli, the task of extracting low-dimensional representations that are predictive
of human categorization can be carried out in two steps: a linear low-dimensional projection
of the CNN representation followed by categorization using prototype and exemplar models.
Hence, the categorization models receive a low-dimensional projection of the CNN repre-
sentations as input, which we also refer to as the bottleneck layer. This entire framework
can be optimized together such that the bottleneck layer captures dimensions that are predic-
tive of human categorization decisions. Fig. 9 shows an illustration of the model, which we
refer to as Categorization-driven Dimensionality Reduction (CatDR). The CNN representa-
tion, F (x), of an image x, is passed through a fully connected bottleneck layer resulting in
a low-dimensional representation, B(F (x)) (shortened to B(Fx )). This is a linear projection,
such that B(Fx ) = WBFx, where WB are the weights of the bottleneck layer. This bottleneck
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representation serves as input to a categorization model which outputs per-class probability
given the bottleneck representation, p(ci | B(Fx )). CatDR is trained simultaneously to learn
the parameters of the categorization model as well as down-projection weights for the bottle-
neck layer.

Prototype models Categorization models (Anderson, 1991; Ashby & Alfonso-Reese,
1995) aim to compute the probability that a stimulus x belongs to a class ci ∈ C, where C
represents the set of classes. For a prototype model (Reed, 1972), this is computed by com-
paring the stimuli x to the prototypes or summary representations for each class μi. This
similarity measure S(x, μi) is usually taken to be an exponentially decreasing function of the
distance between the stimulus and the prototype such that

S(x, μi) = e−d (x, μi ). (3)

Here, d (x, μi) represents the distance between x and μi, which can simply be the squared
Euclidean distance. More generally, one can think of each class as following a Gaussian
distribution with mean μi and covariance �i, resulting in the more general expression

S(x, μi) = e−d (x; μi,�i ), (4)

where d (x; μi, �i) = (x − μi)�−1
i (x − μi)� or the Mahanabolis distance between the stim-

uli and the class mean, given the class covariance. Similarity can then be related to the prob-
ability distribution over classes, p(ci | x), using the Luce–Shepard choice rule (Luce, 1959)

p(ci | x) = S(x, μi)γ∑
j∈CS(x, μ j )γ

, (5)

where γ is a learnable parameter.
Applying CatDR in this model, we start with CNN representations of the image and then try

to learn the low-dimensional or bottleneck layer. The probability distribution over classes is
now given by p(ci | B(Fx )), where B(Fx ) ∈ R

d is the bottleneck representation of the stimulus
x. For a prototype CatDR model, we have

p(ci | B(Fx ) ∝ S(B(Fx ), μi)
γ . (6)

Also, the class mean μi and �i are now low-dimensional, μi ∈ R
d , and �i ∈ R

d×d . Our objec-
tive is to learn the bottleneck weights WB and the categorization parameters: γ , μi, and �i

simultaneously. A fully expressive covariance �i is hard to learn, and so often categoriza-
tion models make assumptions about �i. In this paper, we test linear and quadratic prototype
models. Linear prototype models assume that all classes share the same covariance matrix
and fix �i to be a diagonal, which means that each feature varies independently. Quadratic
prototype models also assume �i to be diagonal, but it is allowed to vary over classes. Further,
the means μi are initialized as random projections of the training class means to R

d .

Exemplar models In classic exemplar models (Nosofsky, 1984), the probabilities of
choosing each category are computed by comparing the stimulus, x, with all stored examples,
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x′ for a given category. This results in

p(ci | x) ∝ (
∑
x′∈ci

S(x, x′))
γ
, (7)

where S(x, x′) = e−βd (x,x′ ). We fix d (x, x′) to represent the squared Euclidean distance
between the stimulus x and an exemplar x′. β is called the specificity parameter and is learned
during training. The exemplar model does not restrict the class-structure to be Gaussian
but instead allows for arbitrarily shaped class distributions by approximating them using
multiple samples. In our low-dimensional approach, the inputs to the exemplar model are the
bottleneck representations of the stimulus. Hence, we can modify the choice probabilities as
follows:

p(ci | B(Fx )) ∝ (
∑
x′∈ci

S(B(Fx ), B(Fx′ )))
γ
, (8)

where again B(Fx ) ∈ R
d is the output of the bottleneck layer with dimension d . Here, the

exemplars are also passed through the bottleneck layer, such that now they are low dimen-
sional. We set x′ to be the training examples from the given category ci. Hence, the exemplars
that the categorization model works with are low-dimensional projections of these training
samples x′. In this model, the objective is to learn the parameters γ , β, and the bottleneck
layer weights WB simultaneously.

4.1.3. Training and evaluation details
To train the models, we set the size of the bottleneck layer ∈ [1, 128]. We use the CIFAR-

10H dataset and minimize cross-entropy loss using the Adam optimizer (Kingma & Ba, 2015)
with a learning rate of 1e − 4 and a batch size of 256 for gradient updates. We perform five-
fold cross-validation and report the averaged validation loss as well as the averaged validation
classification accuracy. To compute classification accuracy, the category with maximum prob-
ability is selected as the predicted category.

4.2. Few dimensions are sufficient for predicting human categorization

We trained and evaluated prototype and exemplar versions of the CatDR model on CIFAR-
10H using ResNet-18 representations which are in R

512 . We varied the size of the bottleneck
layer in the range of 1–64 and observed that the validation loss as well as the classification
accuracy start saturating after just eight dimensions in case of both prototype and exemplar
models (Fig. 10). This means that only eight dimensions are sufficient for human categoriza-
tion in the case of CIFAR-10 images. We also compared our results to the deep categorization
models developed by Battleday et al. (2020), that is, without any bottleneck layer. We observe
that with much fewer dimensions, our low-dimensional categorization models achieve a sim-
ilar loss and accuracy. This is an important result, as it opens doors for interpretation of each
of these dimensions in the future to infer the underlying criterion used by people to catego-
rize images.
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Category-driven dimensionality reduction

Fig. 10. Cross-entropy loss and classification accuracy (computed by selecting the highest probability class) as a
function of the size of the bottleneck layer for variants of CatDRs. The dashed lines correspond to performance of
the categorization model in Battleday et al. (2020), with all input dimensions and no bottleneck layer. Solid lines
are averaged over 10 runs, with a narrow error bar reflecting the 95% confidence interval over these runs.

We also observe that in alignment with Battleday et al. (2020) prototype models tend to
perform better than exemplar models. As they note, this can be a consequence of the fact that
the CNN representations are designed specifically to be classified using linear boundaries
which puts prototype models at an advantage as some are restricted to linear boundaries,
unlike exemplar models. We also observe that low-dimensional quadratic prototype models,
despite being more expressive, do not show any improvement over low-dimensional linear
prototype models. This could, in part, be due to overfitting of the model parameters. Since the
categorization models are being trained on far-lower dimensional inputs than if trained on raw
CNN representations themselves, quadratic prototype models might be over-parameterized
resulting in overfitting while training. Overall, the key takeaway here is the ability of low-
dimensional CNN projections to predict human categorization behavior.

5. Control studies

Our results so far suggest that low-dimensional projections of CNN representations are
sufficient to predict human similarity judgments and categorization behavior. We performed
three control studies to further validate these findings. These studies suggest that CNN rep-
resentations are inherently compressible, allowing us to identify low-dimensional projections
which capture human behavior.

5.1. Similarity prediction on large datasets

Our experiments using SimDR are based on small datasets (120 images each), and so we
wanted to rule out the possibility that our results could be due to dataset size. We performed
a sanity check to do so. We randomly sampled images for each of the six categories used in
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Fig. 11. Number of dimensions in the bottleneck layer at which the explained variance of our model in predicting
similarity between CNN representations saturates.

our previous analysis (animals, vehicles, vegetables, fruits, furniture, and “various”) from the
larger Imagenet dataset (Deng et al., 2009) to create datasets with sizes ranging from 120 to
1920 images for each category. We then used similarity scores based on CNN representations
of these images as a proxy for human similarity ratings to examine how dataset size affects
inferred dimensionality. Specifically, we obtained pairwise similarity ratings for images in
these datasets by computing cosine similarity between their corresponding VGG-19 repre-
sentations. We then trained SimDR at varying bottleneck layer widths (1–64) to predict the
pairwise similarity ratings for each of the six datasets. To visualize the results, we plotted
the bottleneck layer size at which the validation R2 score saturates (which we refer to as
the saturation point) as a function of dataset size in Fig. 11. We observe that the saturation
point for all datasets lies between 10 and 20 across varying dataset sizes. The fact that the
saturation point does not significantly increase as a function of dataset size indicates that the
low-dimensional solution that we found when predicting human similarity judgments is not
due to the dataset size.

5.2. Dimensionality constrained image classification at varying number of classes

Our results on categorization motivated us to further investigate whether low-dimensional
representations are unique to capturing human categorization, or if similarly low-dimensional
representations can be used in the image classification tasks that CNNs were originally
designed to solve. If this is the case, it would imply that some of the dimensions in CNN
representations are redundant even for classification purposes.

To this end, we added a bottleneck layer between the final representation layer and softmax
layer of ResNet-18. We varied the width of this bottleneck layer between 8 and 64 dimensions
and trained these models from scratch on CIFAR-10’s training dataset with 50,000 images
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Fig. 12. Classification accuracy of ResNet-18 models with an additional bottleneck layer (added b/w the sec-
ond last and the last layer) as a function of the width of this layer, on CIFAR-10 (blue), CIFAR-100 (gray) and
ImageNet-100 (black). The stars correspond to the performance of ResNet-18 without any bottleneck (the layer
before softmax in this case is 512-dimensional) on the two datasets.

and 10 classes. Surprisingly, we observed that the classification accuracy did not suffer
(Fig. 12, blue trace) when compared to ResNet-18 without a bottleneck layer which has a
512-dimensional layer before the last classification layer (Fig. 12, blue star). This implies
that even eight-dimensional representations are sufficient to encode classification information
for CIFAR-10 images.

Next, we also wanted to analyze if the number of classes in a dataset has an effect on
the number of dimensions needed to sufficiently encode the corresponding images. To do
this, we repeated the above experiment for the CIFAR-100 dataset. CIFAR-100 has the same
set of images as CIFAR-10, but with finer image categories resulting in 100 classes. We
again trained our modified ResNet-18 model with varying bottleneck widths (between 8 and
64) on 50,000 images and tested them on the remaining 10,000 images. We compared the
classification accuracy of these models with that of vanilla ResNet-18 trained and tested on
the same set of images. We find that the classification accuracy drops only by 1% when
using a bottleneck width of 8 (Fig. 12, gray trace) as compared to the model without any
bottleneck (Fig. 12, gray star). At higher bottleneck sizes of 32 and, beyond, we see no drop
in performance. This suggests that even when using datasets with much higher class diversity,
we can obtain succinct low-dimensional representations of visual stimuli that are equally good
for classification as the images themselves.

Furthermore, we also tested whether the number of basic-level categories in a dataset
influences the number of dimensions needed to encode the images. We repeated the above
experiments on ImageNet-100 (Chun-Hsiao Yeh, 2022), which is a subset of ImageNet-1k
(Russakovsky et al., 2015), containing 100 random classes with 1300 training images and 50
test images per class. We find that the test classification accuracy of ResNet-18 saturates at a
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Table 2
Cross-entropy loss of categorization models using 8t-dimensional representations extracted from modified ResNet-
18 (with a bottleneck) and, of CatDR with an 8-dimensional bottleneck layer when trained on 512-dimensional
ResNet-18 representations

Model Type With 8-Dimensional Input With 8-Dimensional Bottleneck Layer

Linear prototype 0.63 0.62
Quadratic prototype 0.65 0.64
Exemplar 0.71 0.65

Note. Results are averaged over 10 runs.

bottleneck of 64 dimensions and is comparable to what we obtain using the full embedding
space (512 dimensions). At smaller bottleneck sizes, we do observe a drop in performance but
the slope is very small. For example, at eight dimensions, we obtain an accuracy of 81.1% as
compared to 86.7% at 512 dimensions. This indicates that while including more basic-level
categories does require a higher dimensional representation to encode all classification-
related information, performance is still high using < 10 dimensions and levels off at only
64-dimensional representations.

Finally, to examine whether the inferred low-dimensional representations can be used to
predict human categorization behavior, we also used the eight-dimensional CNN representa-
tions extracted from the modified ResNet-18 as inputs to our categorization models (without
any bottleneck layer). We found that the prototype models perform comparably to the models
where the bottleneck layer was specifically trained to be predictive of human categorization.
Hence, representations learned by the modified ResNet-18 for classification are also capable
of predicting categorization decisions using prototype models (see Table 2). However, for
exemplar models, the eight-dimensional representations fall short of being as predictive of
human categorization decisions as CatDR trained on full CNN representations. This suggests
that the exemplar models are able to capitalize on more customized bottleneck representa-
tions, as opposed to representations learned for image classification.

5.3. Predicting word similarity ratings

Our results suggest that CNN representations may contain a high level of redundancy in
their inferred features. To evaluate whether this property is specific to these models, we con-
ducted another set of experiments using models trained on language tasks rather than vision.
Specifically, we used word embeddings to predict similarity ratings between pairs of words
using the SimLex-999 dataset (Hill, Reichart, & Korhonen, 2015). We used the SimDR mod-
eling framework for this task but used word embeddings as input instead of CNN represen-
tations. We used the Word2Vec (Mikolov, Chen, Corrado & Dean, 2013) embeddings as well
as the GloVe (Pennington, Socher, & Manning, 2014) embeddings as inputs to the model.
We show in Fig. 13 that as the size of the bottleneck layer increases, the prediction per-
formance of our model increases until the full dimensionality of word embeddings (300).
This indicates that, unlike CNN representations, word embeddings cannot be compressed
into low-dimensional spaces that are still predictive of similarity ratings. This result suggests
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Fig. 13. Explained variance (R2) of our model in predicting word similarity ratings using GloVe and Word2Vec
embeddings at varying bottleneck sizes. The explained variance curve saturates at a much higher value (50–100
dimensions) than that for image representations. Hence, word embeddings cannot be compressed further into
low-dimensional representations while capturing human similarity judgments.

that the low dimensionality of extracted psychological representations is a property of the
CNN representations as opposed to being a consequence of the supervised dimensionality
reduction itself.

6. Discussion

CNNs are popular in the field of computer vision because of their ability to replicate
or exceed human-level performance in several visual tasks. CNN representations of natu-
ral images are also used as components of cognitive models. We developed a framework
for transforming CNN representations to lower dimensions—where interpretation is far less
cumbersome—while still being predictive of human behavior. Our findings are based on two
cognitive tasks: similarity judgments and categorization. Through this framework, we have
shown that only a few dimensions are sufficient to predict human behavior. This finding has
implications for two major directions in cognitive science. First, the deep feature sets that are
currently being used in both cognitive modeling (Ma & Peters, 2020) and neuroscience (Cichy
& Kaiser, 2019; Kriegeskorte, 2015; Kietzmann, McClure, & Kriegeskorte, 2019) are much
higher dimensional. Our results suggest that a far small smaller projection of these high-
dimensional representations is sufficient for capturing human behavior. Second, our work
reinforces the idea of human similarity judgments being able to be captured using relatively
few features of images (as also recently shown by Hebart, Zheng, Pereira, & Baker, 2020)
and extends this further by demonstrating the same for human categorization.
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Furthermore, the low-dimensional spaces identified by our approach can also be used to
visualize individual dimensions and show that they code for unique concepts. Hence, they
provide insight into potential factors that influence human representations of visual stimuli.
We find that as we increase the dimensionality of our model’s representations, these repre-
sentations capture finer levels of distinctions. Since we also find that categorization behavior
can also be encoded in a small number of dimensions (on the order of ∼ 10 dimensions), our
results suggest that CNN representations contain large numbers of features that are redundant
for predicting human behavior. Our findings are, however, limited to visual stimuli and do not
take into account other forms of perception that may shape people’s representations of objects.
Future work can leverage richer and multimodal stimuli (such as videos, three-dimensional
models, and words) to study the dimensionality of human representations.

We further probed these observations using a set of control studies, each designed to con-
trol for a specific factor. Through these studies, we showed that our results are neither a
consequence of dataset size nor the modeling approach, but rather of the CNN representa-
tions themselves. Our control study on word similarity judgments opens the door for future
research on understanding if the number of psychological dimensions required for language
are inherently different for language as compared to vision, or if word embeddings from
deep networks such as transformers (Devlin, Chang, Lee, & Toutanova, 2019) exhibit the
same low dimensionality as that exhibited by CNN representations. Further, the fact that low-
dimensional representations are sufficient to predict similarity judgments derived from CNN
representations themselves as well as for standard image classification, suggests that CNN
representations might inherently be compressible for perceptual tasks. This means that while
typical CNNs have thousands of dimensions in their embedding layers only a small subset
of these are useful. These findings have far-reaching implications for the field of computer
vision; future work should evaluate whether it also holds on larger datasets. Another direction
for future investigation could entail analyzing the complementary set of dimensions to get a
better handle on why only a small set of dimensions are sufficient to perform standard visual
tasks. These other dimensions could contain low-level visual information, such as the orien-
tation or color of an image, which are not essential for performing high-level visual tasks.
Finally, while analyzing similarity judgments is a typical and widely used task for studying
human representations, it is possible that these other features are a component of psycholog-
ical representations that are not tapped by similarity judgments, suggesting that exploring a
wider range of tasks may be another valuable direction for future research.
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Supporting Information

Additional supporting information may be found
online in the Supporting Information section at the end
of the article.

Supplementary Material

APPENDIX A

A.1Image embeddings along top principal components

In Fig. 4, we visualized image embeddings for three datasets by projecting them along the
top principal components of the low-dimensional representations learned by SimDR for one
validation fold (out of six folds in all). We found that these dimensions encode interpretable
concepts. Here, we visualize image embeddings projected along the top principal components
for three other validation folds, but for the same datasets (animals, various, and vehicles), to
substantiate our claim that these concepts are captured consistently across all cross-validation
folds. In the case of the animals dataset, we find that the first dimension consistently cap-
tures non-mammals versus mammals across all folds shown in Fig. A1. Similarly, the first
dimension of the various dataset goes from inanimate objects to living beings and their parts
(Fig. A2). Finally, PC1 of the vehicles dataset goes from manually operated or two-wheeler
vehicles to trucks and buses, as shown in Fig. A3.

Fig. A1. Image embeddings visualized along the top four principal components of low-dimensional SimDR rep-
resentations learned on the animals dataset. Each plot corresponds to a different validation set (on a 6-fold CV
analysis), and consistently shows a distinction between mammals and non-mammals along PC1.
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Fig. A2. Image embeddings visualized along the top four principal components of low-dimensional SimDR rep-
resentations learned on the various dataset. Each plot corresponds to a different validation set (on a 6-fold CV
analysis). The first PC in all cases separates inanimate objects from living beings.

Fig. A3. Image embeddings visualized along the top four principal components of low-dimensional SimDR rep-
resentations learned on the vehicles dataset. Each plot corresponds to a different validation set (on a six-fold CV
analysis), where the first PC consistently goes from manually operated or two-wheeler vehicles to buses and trucks.
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