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Abstract

Human concept learning is surprisingly robust, allowing for
precise generalizations given only a few positive examples.
Bayesian formulations that account for this behavior require
elaborate, pre-specified priors, leaving much of the learning
process unexplained. More recent models of concept learning
bootstrap from deep representations, but the deep neural net-
works are themselves trained using millions of positive and neg-
ative examples. In machine learning, recent progress in meta-
learning has provided large-scale learning algorithms that can
learn new concepts from a few examples, but these approaches
still assume access to implicit negative evidence. In this paper,
we formulate a training paradigm that allows a meta-learning
algorithm to solve the problem of concept learning from few
positive examples. The algorithm discovers a taxonomic prior
useful for learning novel concepts even from held-out supercat-
egories and mimics human generalization behavior—the first
to do so without hand-specified domain knowledge or negative
examples of a novel concept.
Keywords: concept learning; deep neural networks; object
taxonomies

Introduction
One of the hallmarks of human intelligence is the ability to
rapidly learn new concepts given only limited information
(Lake et al., 2016). This task is difficult because we are often
presented with only a handful of (positive) examples of a new
concept, and no examples outside of the concept (negative
examples). Quine (1960) was the first to recognize that this
poses a seemingly crippling problem for induction: hearing
only the word “gavagai” as a rabbit passes by, we have no way
of knowing with certainty whether the new word applies to all
animals, all rabbits, one pet rabbit, potential food, or any other
of a nearly infinite number of likewise compatible hypotheses.

Nevertheless, humans appear to possess prior knowledge,
whether learned, innate, or both, that makes for effective gen-
eralizations even under such conditions. In some situations,
these constraints are simple and easy to model (Tenenbaum,
1999; Tenenbaum & Griffiths, 2001; Kemp et al., 2007). How-
ever, in general, modeling the rich prior knowledge that hu-
mans bring to bear on problems in complex domains such as
natural images is difficult and reliant on explicit domain knowl-
edge (Xu & Tenenbaum, 2007; Jia et al., 2013). A recent line
of follow-up work has made strides by using deep neural net-
works as a proxy for psychological representations (Campero
et al., 2017; Peterson, Soulos, et al., 2018). Although these
representations are largely perceptual, they are nevertheless an
improvement over hand-specified features given that they are

less prone to experimenter bias and have been shown to ex-
plain some aspects of human visual representations (Peterson,
Abbott, & Griffiths, 2018). However, unlike most cognitive
models of concept learning and unlike humans, these networks
are trained on millions of both positive and negative examples
of mutually exclusive categories. Moreover, they fail to cap-
ture the taxonomic biases that humans bring to bear in concept
learning (Peterson, Abbott, & Griffiths, 2018).

Challenged by the cognitive science community (Lake et
al., 2015), machine learning researchers have developed a
number of their own improvements to deep learning algo-
rithms to tackle the problem of learning from few examples
(e.g., Vinyals et al., 2016; Ravi & Larochelle, 2017). These
approaches constitute impressive new candidate accounts of
human concept learning from naturalistic stimuli, but differ
from human learning scenarios in that they (1) rely on negative
evidence to infer the extent of a novel concept, and (2) ignore
the overlapping and hierarchical structure of real-world con-
cepts that humans use to inform their generalization judgments
(Rosch et al., 1976; Xu & Tenenbaum, 2007).

In the following paper, we aim to address many of the short-
comings of previous work by demonstrating how a deep meta-
learning algorithm combined with a novel stimulus sampling
procedure can provide an end-to-end framework for model-
ing human concept learning, for the first time with no hand-
specified prior knowledge or negative examples of a novel
concept. We introduce a new, taxonomically structured dataset
of concepts compiled by sampling from both internal nodes
and leaf nodes within the ImageNet hierarchy (Deng et al.,
2009). Our method learns concepts at different levels of this
hierarchy, but the hierarchical structure itself is never provided
to the model explicitly at any point. To evaluate our model
against human behavior, we present a new human benchmark
inspired by Rosch’s classic object taxonomies (Rosch et al.,
1976). Our model not only mimics human generalization be-
havior, reproducing classic generalization gradients (Shepard,
1987; Xu & Tenenbaum, 2007), but also encompasses a gen-
eral taxonomic prior that allows for human-like generalization
even when presented with novel concepts from different image
taxonomies (i.e., held-out supercategories).

Background
Computational models of concept learning in cognitive science
have historically focused on the problem of density estima-
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tion (Ashby & Alfonso-Reese, 1995). Under this paradigm,
learning about a category C amounts to the estimation of the
density p(x |C), where x represents the space of stimuli. This
modeling framework assumes that a density can be learned for
each of a set of mutually exclusive categories, where positive
examples from one category implicitly serve as negative ex-
amples for all other categories. However, the conditions under
which humans learn concepts are rarely this straightforward.

Learning concepts from few positive examples. More re-
cent work has begun to examine how humans learn concepts in
more natural settings where often only a few positive examples
of a single concept are provided. Despite this impoverished
learning environment, even young children are able to gener-
alize surprisingly well (Carey, 1978; Markman, 1991). Ex-
tending Shepard (1987), Tenenbaum (1999) and Tenenbaum
and Griffiths (2001) formalize the concept learning problem
as follows: Given n positive examples x = {x1, ...,xn} of a
concept C, the learner estimates the probability p(x∗ ∈C | x)
that a new stimulus x∗ is also an example of that concept. The
challenge the learner faces in making such a generalization is
that the extension of C is underspecified (i.e., it could include
only the present examples, all possible stimuli, or anything
in between). To address this challenge, the authors propose a
Bayesian generalization model that averages the predictions
made by a number of hypotheses about the extent of C. By
making the plausible assumption that learners expect examples
to be randomly sampled from concepts, the authors show that
smaller hypotheses will be preferred, thus deriving constraints
on the expected extent of C.

Armed with this framework, Xu and Tenenbaum (2007) con-
ducted an extensive analysis of human generalization behavior
through word learning experiments. Participants were given
either one or three examples of a new concept such as “dax”
and asked to pick out other instances of that concept from a
set of test stimuli. The examples of each concept were unique
images that could be drawn from either a subordinate-level
(e.g., Dalmatian), basic-level (e.g., dog), or superordinate-
level (e.g., animal) category, and the test stimuli were sampled
from all three levels. An example of this task is shown in
Figure 1. Replicating Shepard (1987), the authors found that
generalization from a single example of a concept to a test
stimulus decreases with psychological similarity. However,
their experiments also yielded two new insights into human
concept learning:

1. Given multiple examples of a concept, generalization goes
only as far at the most specific level that contains those ex-
amples. For example, shown three examples from different
dog breeds, other dog breeds are included in the concept at
test time, but not other animals.

2. There is a bias towards generalizing to test items at the
basic level, in particular when only a single subordinate
example is shown. For example, given a single example of
a Dalmatian, participants predictably generalize the concept
to other Dalmatians, but also generalize to other breeds.

Test Phase - Pick everything that is a dax

Training Conditions - Possible examples of a dax
basicsubordinate superordinate

Figure 1: The word learning paradigm from Xu and Tenenbaum
(2007). In each trial, participants see a few instances exemplifying a
novel word such as “dax” and are asked to select other instances that
fall under the same word from a test array. The training conditions
vary by the levels of the underlying image taxonomy from which the
instances are drawn, e.g., Dalmatians (subordinate) vs. dogs (basic)
vs. animals (superordinate).

The only modification to the Bayesian concept learning model
required to capture these data was a structured, taxonomic
prior computed from human similarity judgments over the set
of objects used in the experiments. While this work constitutes
one of the first successful attempts to explain concept learning
in realistic contexts, it arguably leaves much of the structured,
taxonomic representation assumed and raises questions about
how this knowledge is acquired.

The role of prior knowledge. Given the aforementioned
dependence on highly structured priors in explaining people’s
robust generalization behavior, subsequent work has focused
on incorporating this information into the modeling of human
concept learning. Jia et al. (2013) provided an automated
framework for modeling human generalization behavior by
leveraging perceptual stimulus features provided by a com-
puter vision algorithm along with information contained in the
WordNet taxonomy (Fellbaum, 1998), but gave no account for
how this information is learned by humans. Kemp et al. (2007)
provided the first account of how such knowledge could be
acquired: The authors start with an unstructured representa-
tion and apply a structured hierarchical Bayesian model that
learns taxonomic abstractions from data. Despite its elegance,
the method does not immediately scale to high-dimensional
stimuli such as the images used in Jia et al. (2013).

Deep neural networks (LeCun et al., 2015) have served as
both candidate models of object perception and rich image rep-
resentations that can be used for cognitive modeling. However,
these model do not capture even coarse taxonomic information
out-of-the-box (Peterson, Abbott, & Griffiths, 2018). Despite
this, Peterson and Griffiths (2017) found that the sampling
assumptions of Bayesian concept learning could be verified in
human generalization judgments when modeling stimuli using
deep feature representations. Campero et al. (2017) deployed
a hierarchical model similar to Kemp et al. (2007) over a deep
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Superordinate Basic Subordinates

Musical
Instrument

Guitar Acoustic guitar Electric guitar
Piano Grand piano Upright piano
Drum Tambourine Bass drum

Fruit
Apple Delicious apple Mackintosh apple
Currant Black currant Red currant
Grapes Concord grapes Thompson seedless grapes

Tool
Hammer Ball-peen hammer Carpenter’s hammer
Saw Hack saw Cross-cutting saw
Screwdriver Phillips screwdriver Flat tip screwdriver

Clothing
Trousers Jeans Sweat pants
Socks Athletic socks Knee-high socks
Shirt Dress shirt Polo shirt

Furniture
Table Kitchen table Dining-room table
Lamp Floor lamp Table lamp
Chair Armchair Straight chair

Vehicle
Car Sports car Sedan car
Airplane Airliner plane Fighter jet plane
Truck Pickup truck Trailer truck

Fish
Snapper Grey snapper Red snapper
Trout Rainbow trout Lake trout
Salmon Atlantic salmon Chinook salmon

Bird
Owl Barn owl Great gray owl
Eagle Bald eagle Golden eagle
Sparrow Song sparrow Field sparrow

Table 1: The eight taxonomies adapted from Rosch et al. (1976).

feature space and found both good one-shot learning perfor-
mance as well as the ability to recover some stimulus clusters
representative of human categorization judgments. Noting that
most deep networks are trained using subordinate-level labels,
Peterson, Soulos, et al. (2018) trained a deep neural network
with coarser, basic-level labels to more closely mimic the su-
pervision children receive. A relatively simple generalization
model over the resulting representation reproduced both the
basic-level bias and the gradient of generalization from Xu
and Tenenbaum (2007).

Few-shot learning in machine learning. The problem fac-
ing cognitive models of concept learning is closely related to
one- or few-shot classification in machine learning, in which
the aim is to learn to discriminate between classes given only
a few labeled examples from each class (Fei-Fei et al., 2003;
Vinyals et al., 2016). A powerful solution to few-shot learn-
ing is meta-learning, where learning episodes—themselves
consisting of training and testing intervals—are used to train a
model to adapt quickly to solve a new task given only a small
amount of labeled task data (Schmidhuber, 1987). The learn-
ing episodes are leveraged in the form of a data-driven prior
that is combined with a small amount of test-time evidence
(i.e., a few “shots” of labeled data from a novel task) in order
to make a test-time inference.

Modeling Approach
We propose to bridge cognitive science and machine learn-
ing by formulating concept learning as a few-shot learning
problem. As we will see, the meta-learning problem formula-
tion allows a machine learning model to estimate a decision
boundary from only positive samples of a class, similarly to
how people learn concepts from only a few positive exam-
ples. Moreover, the use of a meta-learning algorithm provides
a principled way to present entirely novel concepts at test
time as held-out test tasks. As such, we can investigate the

taxonomic priors encoded in a neural network embedding
function, as compared to prior work that examines the repre-
sentations of images from categories observed during training
time (Peterson, Soulos, et al., 2018).

Concept learning as meta-learning. Meta-learning algo-
rithms aim to learn how to learn by extracting task-general
knowledge through the experience of solving a number of
specific tasks (Thrun & Pratt, 1998; Hochreiter et al., 2001).
In the case of concept learning, the jth task corresponds to
learning a decision boundary for the jth concept using only
positive examples, and meta-learning corresponds to learning
how to estimate decision boundaries for arbitrary unseen con-
cepts. We can thus formalize the concept learning problem as
the task of predicting a target label y (which indicates whether
or not the input belongs to a given category) from an input ob-
servation x (i.e., an image). Note that this formulation differs
from the standard discriminative classification problem, where
the task corresponds to a K-way discriminative classification
task in which each of the K class labels are mutually exclusive.

Formally, let T j = (X trn
j ,Y trn

j ,Xval
j ,Y val

j ) denote a task
drawn from a given task distribution p(T ), where X trn

j and
Y trn

j are a small collection of training inputs and labels, dis-
joint from validation samplesXval

j and Y val
j but belonging to

the same task T j. A meta-learning algorithm (e.g., Vinyals et
al., 2016; Ravi & Larochelle, 2017) aims to estimate parame-
ters θ that can be adapted to solve an unseen task T j ∼ p(T ),
using only the training samples (X trn

j ,Y trn
j ), to ensure the

updated model achieves good performance on the validation
samples (Xval

j ,Y val
j ) according to some loss function L .

In this work, we use the model-agnostic meta-learning
(MAML; Finn, Abbeel, & Levine, 2017) algorithm, which
formulates meta-learning as estimating the parameters θ of
a model so that when one or a few gradient descent steps
are taken from the initialization at θ on the training data
(X trn

j ,Y trn
j ), the updated model has good generalization per-

formance on that task’s validation set, (Xval
j ,Y val

j ). At test
time, a new task from the test set is presented to the model for
few-shot adaptation, i.e., gradient descent with (X trn

j ,Y trn
j ),

and computation of test-time performance metrics, e.g., accu-
racy on (Xval

j ,Y val
j ). The training examples in the inner gradi-

ent computation are strictly positive examples (i.e., Y trn
j = 1)

of a particular concept j, whereas validation examples in the
outer gradient computation include both positives and nega-
tives (i.e., Y val

j ∈ {0,1}); thus, at test time, the meta-learning
algorithm is able to estimate a decision boundary for a novel
concept from only positive examples of that concept.

Behavioral Experiment
In order to compare our method directly to human behavior,
we conducted a large-scale human generalization experiment
using a test set of naturalistic stimuli used for the simulations
in the next section. We assess generalization behavior using
a concept learning experiment that follows previous work on
Bayesian concept and word learning (Xu & Tenenbaum, 2007;
Abbott et al., 2012; Jia et al., 2013).
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Stimuli. We mapped a subset of the graph structure embed-
ded in the ImageNet dataset used for the ImageNet Large Scale
Visual Recognition Competition (ILSVRC; Russakovsky et
al., 2015) to the classic taxonomy used by cognitive scientists
and developed by Rosch et al. (1976). ILSVRC is a commonly
used object-classification dataset that contains more than 1
million images distributed across 1000 categories. Instead of
using the leaf classes as categories, we create concepts by pick-
ing a node in the ImageNet hierarchy and sampling images
from leaves dominated by the given node. Note that, in this
case, concepts are not necessarily mutually exclusive in the
sense that a single image may belong to one or more classes
(e.g., a Dalmatian may be labeled as both a dog and an animal).
If the exact subordinate node from Rosch et al. (1976) was not
available in ImageNet, we found a close semantic match via
the WordNet (Fellbaum, 1998) taxonomy. We provide the full
taxonomy for this dataset in Table 1.

Task. In each of 8 trials, participants observed 5 images
of a single concept, sampled from one of the three levels of
taxonomic abstraction. For instance, in a subordinate training
condition, the examples could be all Dalmatians; in a basic-
level training condition, all dogs; in a superordinate training
condition, all animals. To test generalization behavior, partici-
pants were then given a test array of 24 images and were asked
to pick which images also belonged to the learned concept.
The test array comprised 2 subordinate matches (e.g., other
Dalmatians), 2 basic-level matches (e.g., other breeds of dog),
4 superordinate matches (e.g., other animals), and 16 out-
of-domain items (e.g., inanimate objects), following Xu and
Tenenbaum (2007). See Figure 2 for an example set of training
and test stimuli. In total, we collected data for 180 unique
trials and 1 180 unique images.

Participants. We recruited 900 unique participants from
Amazon Mechanical Turk to each complete 8 trials as de-
scribed above, one randomly sampled for each of the superor-
dinate categories. The test sets were fixed within a superordi-
nate category. Participants were paid $0.40 each.

Results. Figure 3 (a) presents the results of the behavioral
experiment for each of the three taxonomic levels. As ex-
pected on the basis of previous work, there is an exponentially
decreasing generalization gradient as the level of taxonomic
abstraction of the test matches (bar color) increases. How-
ever, this effect diminishes as the intra-class variation of the
few-shot examples (x-axis) increases: Moving from the sub-
ordinate condition to the basic-level condition, we find an
increase in the number of basic-level matches selected from
the test set. The condition in which there is greatest intra-class
variation–the superordinate condition–exhibits only a small
generalization gradient.

(a)

(b)

(c)

(d)

Figure 2: Examples
of training stimuli for
the (a) subordinate, (b)
basic-level, and (c) su-
perordinate level train-
ing conditions, as well
as (d) a subset of the
stimuli from the test
array for a specific
concept learning task
(here, learning the con-
cept black currant (a),
currant (b) or fruit (c)).
The test array (d) dis-
plays, from left to right,
a subordinate match, a
basic-level match and
a superordinate match.

Meta-Learning Simulations
Our modeling goal is to investigate whether we can use meta-
learning to learn new concepts from only few positive exam-
ples, even though these concepts are potentially overlapping
and therefore not mutually exclusive. Furthermore, we aim
to investigate whether a meta-learning algorithm is able to
use information about the underlying concept taxonomy that
generates observations of the extension of a concept in order
to generalize to novel concepts in a human-like manner.

Meta-learning formalism. Our model observes K positive
examples x= {x1, . . . ,xK} of a concept C , and must learn
the generalization function p(x∗ ∈ C ) to correctly identify
whether a novel example x∗ is also a member of the concept.
Training proceeds as follows: A concept index j is sampled
from the meta-training set. Then, for K-shot learning, 2K
positive examples of the concept and K negatives are sampled.
The parameters θ are adapted using K of the positives, and
then the model is optimized with a loss computed using the
remaining positive and negative examples of the concept. At
test time, the model with trained parameters θ is presented
with K positive examples from a new concept in the test set;
the model adapts θ and is evaluated on its ability to distinguish
new positive examples of that concept from negatives.

Taxonomic dataset construction. For training and valida-
tion, we created a large-scale taxonomy of classes by using
the graph structure embedded in the subset of the ImageNet
dataset used for the ImageNet Large Scale Visual Recognition
Competition (ILSVRC; Russakovsky et al., 2015), similar to
the behavioral experiment described earlier, but using the en-
tirety of the ImageNet hierarchy. We then created few-shot
concept learning tasks for training by sampling positive and
negative examples for each concept, where negative examples
of a concept are generated by sampling from the complement
set of leaf nodes. Superordinate-level nodes are not shared
between training, validation, and test to ensure that test-time
generalization is measured on novel concepts. We use 494,
193, and 223 leaf nodes in the training, validation, and test
sets, respectively (c.f., 80, 20, and 20 in the few-shot classifi-
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Figure 3: Human behavioral data (a) and flat (b) and hier (c)
modeling results on the concept generalization task. The horizontal
axis identifies the training condition (i.e., the level of taxonomic
abstraction from which the few-shot examples are drawn). The
vertical axis identifies, for each type of match in {subordinate, basic-
level, superordinate}, the proportion of selections from the test array
(a), or the average probability of generalization (b, c).

cation dataset miniImageNet (Vinyals et al., 2016)). The train-
ing, validation, and test node sets do not comprise all of the
nodes in the ImageNet hierarchy, as some nodes are redundant
(i.e., have a single parent) or are too abstract to appropriately
define a visual concept (e.g., physical entity, substance, equip-
ment). We make use of the training and validation dataset
for training and hyperparameter selection, respectively; the
test set is not used in this work but reserved for future works
that may wish to perform large-scale evaluation of concept
learning. Instead, the evaluations reported in this work are
performed on the Rosch-inspired human benchmark described
above. We also wish to emphasize that while we make use of
the ImageNet hierarchy, we do so only to generate a natural
distribution of concepts to learn from, and never present the
explicit hierarchical relations to the model at any time.

We consider two dataset conditions in our simulations: In
the hier dataset condition, the meta-learning algorithm ob-
serves concepts sampled from the internal and leaf nodes of
the ImageNet hierarchy, and thus can learn a taxonomic prior;
in the flat dataset condition, the algorithm observes only leaf-
node concepts, and thus has no access to such information.

Hyperparameters. The base model that is optimized by
model-agnostic meta-learning (MAML) is a binary classifier
consisting of a convolutional neural network with a sigmoid
output.1 In our experiments, we downsample the images to

1The architecture of the model is similar to prior work in meta-
learning (e.g., Ravi & Larochelle, 2017) with 4 convolutional layers

each have a width and height of 84 pixels, as is common in
the use of miniImageNet (Vinyals et al., 2016) as a few-shot
learning dataset. We select hyperparameters on the same hi-
erarchically structured validation set for both the hier and
flat dataset conditions and evaluate algorithms after a fixed
number of training iterations (40K with a batch size of 4). We
take the value of the scalar output of the network evaluated on
a test example as the generalization probability and average
this quantity across all test examples from a specific level
of taxonomic match to produce the average generalization
probability. When reporting the average generalization proba-
bility metric, we standardize each set of probabilities for each
training condition by treating the distractor (out-of-domain)
generalization probability as a baseline of zero and further
dividing by the largest probability in the set. In line with prior
work (Peterson, Abbott, & Griffiths, 2018), this highlights the
quantity of interest: the relative differences in average gener-
alization probabilities across the subordinate, basic-level, and
superordinate levels of the taxonomy.

Results. The generalization gradient observed in humans
is also exhibited by the hier dataset condition in Figure 3
(c): When the few-shot examples are taken from a basic-level
category (the basic condition; e.g., different breeds of dog)
as opposed to a subordinate category (the subord. condition;
e.g., Dalmatians), the model generalizes to more basic-level
matches (e.g., different dog breeds) from the test array. In the
plot, this can be seen by comparing the ratio of subordinate
generalization (black column) to basic-level generalization
(blue column) within each training condition (i.e., the gap
between the black and blue bars is diminished in the basic
condition vs. the subord. condition). Furthermore, when the
few-shot examples are taken from a superordinate category
(superord. condition), both the model in the hier dataset
condition and humans are equally likely to pick subordinate,
basic-level, or superordinate matches from the test array. In
Figure 3 (a, c), this can be seen as the generalization to all
levels of the taxonomy (black, blue, and yellow bars) being
close to equal.

One notable departure of Figure 3 (c), from the human gen-
eralization behavior in Figure 3 (a), is overgeneralization to the
superordinate category in the subordinate training condition,
and to a lesser extent, in the basic-level training condition,
suggesting that it is difficult for the algorithm to discriminate
between basic-level and superordinate matches given only sub-
ordinate examples of a concept. Nevertheless, in comparison
to the flat dataset condition in Figure 3 (b), which does not
change generalization behavior on the basis of the training
condition, the behavior of the algorithm exposed to the hierar-
chically structured hier dataset suggests a learned sensitivity
to the underlying taxonomic organization of new concepts.

each with 32 3× 3 filters, leaky ReLU activation functions with a
slope of 0.2, and 2×2 max-pooling, all followed by a linear layer
with sigmoid activation. We do not employ batch normalization be-
cause of strong batch interdependence, as all of the training examples
for a concept are of the same (positive) class.
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Discussion
When humans are presented with an example from a new con-
cept, they can quickly infer which other instances belong to
that same concept even without the strong constraints provided
by negative examples. In order to achieve this feat, humans
bring to bear information about the taxonomic structure of
natural categories. Targeting the robustness of human gener-
alization even in highly novel domains (Schmidt, 2009), we
investigated the extent to which taxonomically structured bi-
ases for complex, naturalistic stimuli taken from the ImageNet
Large Scale Visual Recognition Challenge (ILSVRC) could
be acquired and leveraged to learn the extent of novel concepts
from only a few positive examples. In contrast to previous
work (Peterson, Abbott, & Griffiths, 2018), we validate the
generalization behavior of our model using unseen supercate-
gories drawn from the superordinate levels of Rosch’s classic
taxonomy (Rosch et al., 1976).

While our method is successful in both learning a general
taxonomic prior and exhibiting human-like generalization be-
havior, there is room for improvement as the quantitative gra-
dients are not a perfect match to humans. However, it should
be noted that our model faces the atypically challenging task
of both learning a highly structured representation for complex
stimuli and making use of it to generalize to entirely novel
concepts. As such, this framework draws on many of the
strengths of both cognitive models and deep neural networks
in machine learning, and constitutes the most comprehensive
account of human visual concept learning to date. Lastly, we
note that we do not build in any explicit preference for simple
concepts or attention to the number of examples (Tenenbaum,
1999; Peterson, Soulos, et al., 2018), although this may be an
interesting avenue for improvement in future work.
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