Original Articles

A rational reinterpretation of dual-process theories*

Smitha Millia,*, Falk Liederb, Thomas L. Griffithsc,d

a Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA 94704, USA
b Max Planck Institute for Intelligent Systems, Max-Planck-Ring 4, 72076 Tübingen, Germany
c Department of Psychology, Princeton University, Princeton, NJ 08544, USA
d Department of Computer Science, Princeton University, Princeton, NJ 08544, USA

ABSTRACT

Highly influential “dual-process” accounts of human cognition postulate the coexistence of a slow accurate system with a fast error-prone system. But why would there be just two systems rather than, say, one or 93? Here, we argue that a dual-process architecture might reflect a rational tradeoff between the cognitive flexibility afforded by multiple systems and the time and effort required to choose between them. We investigate what the optimal set and number of cognitive systems would be depending on the structure of the environment. We find that the optimal number of systems depends on the variability of the environment and the difficulty of deciding when which system should be used. Furthermore, we find that there is a plausible range of conditions under which it is optimal to be equipped with a fast system that performs no deliberation (“System 1”) and a slow system that achieves a higher expected accuracy through deliberation (“System 2”). Our findings thereby suggest a rational reinterpretation of dual-process theories.

1. Introduction

Starting in the 1960s, a number of findings began to suggest that people’s judgments and decisions systematically deviate from the predictions of logic, probability theory, and expected utility (Gilovich, Griffin, & Kahneman, 2002; Kahneman & Tversky, 1979; Tversky & Kahneman, 1974; Wason, 1968). These deviations are often referred to as cognitive biases and have fueled the heated debate about human rationality (Gigerenzer, 1991; Kahneman & Tversky, 1996; Stanovich, 2009). It is commonly assumed that cognitive biases result from people’s use of rather arbitrary heuristics (Gilovich et al., 2002; Tversky & Kahneman, 1974), thus leading some to conclude that people are fundamentally irrational (Ariely, 2009; Marcus, 2009; Sutherland, 2013). However, others have argued that many apparent errors in human judgment can be understood as rational solutions to a different construal of the problem participants were presumably trying to solve (Austerweil & Griffiths, 2011; Griffiths & Tenenbaum, 2001; Hahn & Oaksford, 2007; Hahn & Warren, 2009; Oaksford & Chater, 1994, 2007; Parpart, Jones, & Love, 2017; Tenenbaum & Griffiths, 2001).

These rational explanations build on the methodology of rational analysis (Anderson, 1990; Chater & Oaksford, 1999), which aims to explain the function of cognitive processes by assuming the human mind is well-adapted to the structure of the environment and the problems people are trying to solve. In other words, rational analysis assumes that the human mind implements a (near) optimal solution with respect to the underlying computational problem the mind is trying to solve. Anderson (1990) original formulation of rational analysis directed practitioners to “Make the minimal assumptions about computational limitations” (p. 29). More recent approaches refine rational analysis by exploring the consequences of the fact that the mind is constrained by having limited computational resources (Gershman, Horvitz, & Tenenbaum, 2015; Griffiths, Lieder, & Goodman, 2015; Howes, Lewis, & Vera, 2009; Lewis, Howes, & Singh, 2014; Lieder & Griffiths, 2020b).

For instance, resource-rational analysis extends this idea and assumes that the human mind is well-adapted to problems after taking into account the constraint of limited time or cognitive resources (Griffiths et al., 2015; Lieder & Griffiths, 2020b). In other words, resource-rational analysis assumes that the human mind rationally trades-off the benefit of accurate solutions against the time and cognitive resources required to achieve them. Under this framework, when time or cognitive

* A preliminary version of Simulations 1 and 2 was presented at the Thirty-First AAAI Conference on Artificial Intelligence and appeared in the proceedings of that conference (Milli, Lieder, & Griffiths, 2017). The work presented in this article was supported by grant number ONR MURI N00014-13-1-0341 and a grant from the Future of Life Institute.

E-mail addresses: smilli@berkeley.edu (S. Milli), falk.lieder@tuebingen.mpg.de (F. Lieder), tomg@princeton.edu (T.L. Griffiths).

https://doi.org/10.1016/j.cognition.2021.104881

Received 12 January 2019; Received in revised form 30 July 2021; Accepted 13 August 2021

Available online 15 September 2021

0010-0277/© 2021 Elsevier B.V. All rights reserved.
resources are abundant, then it is rational to perform more computation, and when time or cognitive resources are limited, then it is rational to do less computation. In this way, many supposedly ad-hoc heuristics have been reinterpreted as being rational solutions when resources are limited (Bhui & Gershman, 2017; Howes, Warren, Farmer, El-Deredy, & Lewis, 2016; Khaw, Li, & Woodford, 2017; Lieder, Griffiths, & Hsu, 2018; Lieder, Griffiths, Huys, & Goodman, 2018a, 2018b; Sims, 2003; Tsetsos et al., 2016). Furthermore, people appear to adaptively choose between their fast heuristics and their slower and more deliberate strategies based on the amount of resources available (Lieder & Griffiths, 2017).

However, an issue still remains unsolved in the push for the resource-rational reinterpretation of these heuristics. Since the exact amount of computation to do for a problem depends on the particular time and cognitive resources available, a larger repertoire of reasoning systems should enable the mind to more flexibly adapt to different situations (Gigerenzer & Selten, 2002; Payne, Bettman, & Johnson, 1993). In fact, achieving the highest possible degree of adaptive flexibility would require choosing from an infinite set of diverse cognitive systems. However, this is not consistent with behavioral and neuroscientific evidence for a small number of qualitatively different decision systems (Dolan & Dayan, 2013; van der Meer, Kurth-Nelson, & Redish, 2012) and similar evidence in the domain of reasoning (Evans, 2003, 2008; Evans & Stanovich, 2013).

One reason for a smaller number of systems could be that as the number of systems increases it becomes increasingly more time-consuming to select between them (Lieder & Griffiths, 2017). This suggests that the number and nature of the mind’s cognitive systems might be shaped by the competing demands for the ability to flexibly adapt one’s reasoning to the varying demands of a wide range of different situations and the necessity to do so quickly and efficiently. In our work, we formalize this explanation, allowing us to derive not only what the optimal system is given a particular amount of resources, but what the optimal set of systems is for a human to select between across problems.

Such an explanation may provide a rational reinterpretation of dual-process theories, the theory that the mind is composed of two distinct types of cognitive systems: one that is fast, intuitive, and fallible and one that is deliberate, slow, and accurate (Evans, 2008; Kahneman & Frederick, 2002, 2005). Similar dual-process theories have independently emerged in research on decision-making (Dolan & Dayan, 2013) and cognitive control (Diamond, 2013). While recent work in these areas has addressed the question of how the mind arbitrates between the two systems (Boureau, Sokol-Hessner, & Daw, 2015; Daw, Niv, & Dayan, 2005; Keramati, Dezfooli, & Piray, 2011; Lieder & Griffiths, 2017; Shenhab, Botvinick, & Cohen, 2013), it remains normatively unclear why the mind would be equipped with these two types of cognitive system, rather than another set of systems.

The existence of the accurate and deliberate system, commonly referred to as System 2 (following Kahneman & Frederick, 2002), is easily justified by the benefits of rational decision-making. By contrast, some authors have characterized the fast and fallible system, known as System 1, as a set of kluges that lead to dreadful mistakes (Ariely, 2009; Marcus, 2009; Sutherland, 2015). This raises the question why this system exists at all. Recent theoretical work provided a normative justification for some of the heuristics of System 1 by showing that they are qualitatively consistent with the rational use of limited cognitive resources (Griffiths et al., 2015; Lieder et al., 2018a, 2018b; Lieder, Griffiths, & Heu, 2018) – especially when the stakes are low and time is scarce and precious. Thus, System 1 and System 2 appear to be optimal for different kinds of situations. For instance, you might want to rely on System 1 when you are about to get hit by a car and have to make a split-second decision about how to move. But, you might want to employ System 2 when deciding whether or not to quit your job.

Here, we formally investigate what set of systems would enable people to make the best possible use of their finite time and cognitive resources. We derive the optimal tradeoff between the cognitive flexibility afforded by multiple systems and the cost of choosing between them. To formalize this problem, we draw inspiration from the artificial intelligence literature on designing intelligent agents that make optimal use of their limited-performance hardware by building upon the mathematical frameworks of bounded optimality (Russell & Subramanian, 1995) and rational metareasoning (Hay, Russell, Tolpin, & Shimony, 2012; Russell & Wefald, 1991b). We study this problem in four different domains where the dual systems framework has been applied to explain human decision-making: binary choice, planning, strategic interaction, and multi-alternative, multi-attribute risky choice. We investigate how the optimal cognitive architecture for each domain depends on the variability of the environment and the cost of choosing between multiple cognitive systems, which we call metareasoning cost.

This approach allows us to extend the application of resource-rational analysis from a particular system of reasoning to sets of cognitive systems, and our findings provide a normative justification for dual-process theories of cognition. Concretely, we find that across all four domains the optimal number of systems increases with the variability of the environment but decreases with the costliness of determining which of these systems should be in control. In addition, when it is optimal to have two systems, then the difference in their speed-accuracy tradeoffs increases with the variability of the environment. In variable environments, this results in one system that is accurate but costly to use and another system that is very fast but sometimes less accurate. These predictions mirror the assertions of dual-process accounts of cognition (Evans, 2008; Kahneman, 2011). Our findings cast new light on the debate about human rationality by suggesting that the apparently conflicting views of dual-process theories and rational accounts of cognition might be compatible after all.

The remainder of this paper is structured as follows: We start by summarizing previous work in psychology and artificial intelligence that our article builds on. We then describe our mathematical methods for deriving optimal sets of cognitive systems. The subsequent four sections apply this methodology to the domains of binary choice, planning, strategic interaction in games, and multi-alternative risky choice. We conclude with the implications of our findings for the debate about human rationality and directions for future work.

2. Background

Before delving into the details of our analysis, we first discuss how our approach applies to the various dual-process theories in psychology, and how we build on the ideas of bounded optimality and rational metareasoning developed in artificial intelligence research.

2.1. Dual-process theories

The idea that human minds are composed of multiple interacting cognitive systems first came to prominence in the literature on reasoning (Evans, 2008; Stanovich, 2011). While people are capable of reasoning in ways that are consistent with the prescriptions of logic, they often do not. Dual-process theories suggested that this is because people employ two types of cognitive strategies: fast but fallible heuristics that are triggered automatically and deliberate strategies that are slow but accurate.

Different dual-process theories vary in what they mean by two cognitive systems. For example, Evans and Stanovich (2013) distinguish between dual processes, in which each process can be made up of multiple cognitive systems, and dual systems, which corresponds to the literal meaning of two cognitive systems. Because our work abstracts these cognitive systems based on their speed-accuracy tradeoff our analysis applies both at the level of systems or processes as long as the systems or processes accomplish speed-accuracy tradeoffs. Thus, our theory still applies to both dual “processes” and dual “systems”.

There is also debate over how the two systems would interact. Some
theories postulate the existence of a higher-level controller that chooses between the two systems (Norman & Shallice, 1986; Shenav et al., 2013), some of the two systems run in parallel, and others that the slower system interrupts the faster one (Evans & Stanovich, 2013). The analysis we present simply assumes that there is greater metareasoning cost incurred for each additional system. This is clearest to see when a higher-level controller needs to make the decision of which system to employ. Alternatively, if multiple cognitive systems operated in parallel, the cost of arbitrating between these systems would also increase with the number of systems – just like the metareasoning cost. So, we believe our analysis would also apply under this alternative assumption.

Since their development in the reasoning literature, dual-process theories have been applied to explain a wide range of mental phenomena, including judgment and decision-making, where it has been popularized by the distinction between System 1 and System 2 (Kahneman, 2011; Kahneman & Frederick, 2002, 2005), and moral reasoning, where the distinction is made between a fast deontological system and a slow utilitarian system (Greene, 2015). In parallel with this literature in cognitive psychology, research on human reinforcement learning has led to similar conclusions. Behavioral and neural data suggest that the human brain is equipped with two distinct decision systems: a fast, reflexive, system based on habits and a slow, deliberative system based on goals (Dolan & Dayan, 2013). The mechanisms employed by these systems have been mapped onto model-based versus model-free reinforcement learning algorithms. A model-free versus model-based distinction has also been suggested to account for the nature of the two systems posited to underlie moral reasoning (Crockett, 2013; Cushman, 2013).

The empirical support for the idea that the human mind is composed of two types of cognitive systems raises the question of why such a composition would evolve from natural selection. Given that people outperform AI systems in most complex real-world tasks despite their very limited cognitive resources, we ask whether being equipped with a fast but fallible and a slow but accurate cognitive system can be understood as a rational adaption to the challenge of solving complex problems with limited cognitive resources (Griffiths et al., 2015).

2.2. Bounded optimality and resource-rational analysis

Recent work has illustrated that promising process models of human cognition can be derived from the assumption that the human mind makes optimal use of the cognitive resources that are available to it (Griffiths et al., 2015; Howes et al., 2009; Lewis et al., 2014). This idea can be formalized by drawing on the theory of **bounded optimality** which was developed as a foundation for designing optimal intelligent agents. In contrast to expected utility theory (von Neumann & Morgenstern, 1944), bounded optimality takes into account the constraints imposed by performance-limited hardware and the requirement that the agent has to interact its environment in real time (Horvitz, 1987; Russell & Subramanian, 1995). The basic idea is to mathematically derive a program that would enable the agent to interact with its environment as well as or better than any other program that its computational architecture could execute. Critically, the agent’s limited computational resources and the requirement to interact with a potentially very complex, fast-paced, dynamic environment in real-time entail that the agent’s strategies for reasoning and decision-making have to be extremely efficient. This rules out naive implementations of Bayes’ rule and expected utility maximization as those would take so long to compute that the agent would suffer a decision paralysis so bad that it might die before taking even a single action.

The fact that people are subject to the same constraints makes bounded optimality a promising normative framework for modeling human cognition (Griffiths et al., 2015). **Resource-rational analysis** applies the principle of bounded optimality to derive optimal cognitive strategies from assumptions about the problem to be solved and the cognitive architecture available to solve it (Griffiths et al., 2015), building on previous work on computationally bounded rational analysis (Howes et al., 2009; Lewis et al., 2014). Recent work illustrates that this approach can be used to discover and make sense of people’s heuristics for judgment (Lieder et al., 2018a), decision-making (Lieder et al., 2018a; Lieder, Griffiths, & Hsu, 2018), goal pursuit (Prystawski, Mohr, Howes, & Hsu, 2018), and memory and cognitive control (Horvitz et al., 2016). The resulting models have shed new light on the debate about human rationality (Griffiths et al., 2015; Lieder et al., 2018a, 2018b; Lieder, Griffiths, & Hsu, 2018; Lieder, Krueger, & Griffiths, 2017).

Previous work applying bounded optimality to human cognition has focused on the question of what kind of cognitive system or strategy is optimal for a specific task and environment. In this paper, we take a different approach. Rather than considering individual systems or strategies, we ask what sets of systems or strategies are most beneficial to an agent in a particular environment, where that agent is assumed to then intelligently choose which of these options to deploy when solving a specific task. To do so, we use the theory of rational metareasoning as a foundation for modeling how the agent should decide when to rely on which system or strategy.

2.3. Rational metareasoning as a framework for modeling the adaptive control of cognition

Previous research suggests that people flexibly adapt how they decide to the requirements of the situation (Payne, Bettman, & Johnson, 1988). Recent theoretical work has shown that this adaptive flexibility can be understood within the **rational metareasoning** framework developed in artificial intelligence (Lieder & Griffiths, 2017). Rational metareasoning (Hay et al., 2012; Russell & Wefald, 1991b) formalizes the problem of selecting computations so as to make optimal use of finite time and limited-performance hardware. The adaptive control of computation afforded by rational metareasoning is critical for intelligent systems to be able to solve complex and potentially time-critical problems on performance-limited hardware (Horvitz, Cooper, & Heckerman, 1989; Russell & Wefald, 1991b). For instance, it is necessary for a patient-monitoring system used in emergency medicine to metareason in order to decide when to terminate diagnostic reasoning and recommend treatment. (Horvitz & Rutledge, 1991). This example illustrates that rational metareasoning may be necessary for agents to achieve bounded-optimality in environments that pose a wide range of problems that require very different computational strategies. However, to be useful for achieving bounded-optimality, metareasoning has to be done very efficiently.

In principle, rational metareasoning could be used to derive the optimal amount of time and mental effort that a person should invest into making a decision (Shenav et al., 2017). Unfortunately, selecting computations optimally is a computation-intensive problem itself because the value of each computation depends on the potentially long sequence of computations that can be performed afterwards. Consequently, in most cases, solving the metareasoning problem optimally would defeat the purpose of trying to save time and effort (Hay et al., 2012; Lin, Kolobov, Kamar, & Horvitz, 2015; Russell & Wefald, 1991a). Instead, to make optimal use of their finite computational resources bounded-optimal agents (Russell & Subramanian, 1995) must optimally distribute their resources between metareasoning and reasoning about the world. Thus, studying bounded-optimal metareasoning might be a way to understand how people manage to allocate their finite computational resources near-optimally with very little effort (Gershman et al., 2015; Keramat et al., 2011).

Recent work has shown that approximate metareasoning over a discrete set of cognitive strategies can save more time and effort than it takes and thereby improve overall performance (Lieder et al., 2014). This approximation can drastically reduce the computational complexity of metareasoning while achieving human-level performance (Lieder et al., 2014; Lieder & Griffiths, 2017).
metareasoning over all possible sequences of mental operations to determine the exact amount of time to think, humans may simply metareason over a finite set of cognitive systems that have different speed and accuracy tradeoffs. This suggests a cognitive architecture comprising multiple systems for reasoning and decision making and a cognitive control system that arbitrates between them—which is entirely consistent with extant theories of cognitive control and mental effort (Norman & Shallice, 1986; Shenhav et al., 2013, 2017). Dual-process theories can be seen as a special case of this cognitive architecture where the number of decision systems is two.

According to this perspective, the executive control system selects between a limited number of cognitive systems by predicting how well each of them would perform in terms of decision quality and effort and then selects the systems with the best predicted performance (Lieder & Griffiths, 2017). Research on voluntary task switching has found that choosing between alternative cognitive processes requires time and effort (Arrington & Logan, 2004). Based on Hick’s law (Hick, 1952) one should expect that the more options the executive control system can choose between, the more time and mental effort it will take to make those choices. Our model of how people choose between cognitive processes (Lieder & Griffiths, 2017) suggests this cost would be roughly proportional to the number of available processes. At the same time, increasing the number of systems also increases the agent’s cognitive flexibility thereby enabling it to achieve a higher level of performance across a wider range of environments. Conversely, reducing the space of computational mechanisms the agent can choose from entails that there may be problems for which the optimal computational mechanisms will be no longer available. This dilemma necessitates a tradeoff that sacrifices some flexibility to increase the speed at which cognitive mechanisms can be selected. This raises the question of how many and which computational mechanisms a bounded-optimal metareasoning agent should be equipped with, which we proceed to explore in the following sections.

3. Deriving bounded-optimal cognitive systems

We now describe our general approach for extending resource-rational analysis to the level of cognitive architectures. The first step is to model the environment. For the purpose of our analysis, we characterize each environment by the set of decision problems \mathcal{D} that it poses to people and a probability distribution P over \mathcal{D} that represents how frequently the agent will encounter each of them. The set of decision problems \mathcal{D} could be quite varied, for example, it could include deciding which job to pick and deciding what to eat for lunch. In this case P would encode the fact that deciding what to eat for lunch is a more common type of decision problem than deciding which job to pick. Associated with each decision problem d is a utility function $U_d(a)$ that represents the utility gained by the agent for taking action a in decision problem d.

Having characterized the environment in terms of decision problems, we then model how people might solve them. We assume that there is a set of reasoning and decision-making systems \mathcal{M} that the agent could potentially be equipped with. The question we seek to investigate is what subset $\mathcal{M} \subseteq \mathcal{M}$ is optimal for the agent to actually be equipped with. The optimal set of systems \mathcal{M} is dependent on three costs: (1) the action cost: the cost of taking the chosen action, (2) the reasoning cost: the cost of using a system from \mathcal{M} to reason about which action to take, (3) the metareasoning cost: the cost of deciding which system to use to decide which action to take. For simplicity, we will describe each of the costs in terms of time delays, although they also entail additional costs, including metabolic costs.

As an example, consider the scenario of deciding what to order for lunch at a restaurant. The diner has a fixed amount of time she can spend at lunch until she needs to get back to work, so time is a finite resource. The action cost is the time required to eat the meal. A person might have multiple systems for deciding which items to choose. For example, one system may rely on habit and order the same dish as last time. Another system may perform more logical computation to analyze the nutritional value of each item or what the most economical choice is. Each system has an associated reasoning cost, the time it takes for that system to decide which item to order.

It is clear that the diner has to balance the amount of time spent thinking about what meal to pick (reasoning cost) with the amount of time it will take to actually eat the meal (action cost), so that she is able to finish her meal in the time she has available. If the diner is extremely time-constrained, perhaps because of an urgent meeting she needs to get back to, then she may simply heuristically plop items onto her plate. But, if the diner has more time, then she may think more about what items to choose.

In addition to the cost of reasoning and the cost of acting, having multiple decision systems also incurs the cost of selecting and arbitrating between them. Drawing on previous work in cognitive psychology, we formalize the function of selecting between multiple decision systems as rational metareasoning (Lieder & Griffiths, 2017). That is, we formalize the problem solved by whatever mechanisms the mind might use to select and arbitrate between its decision systems using the mathematical framework of rational metareasoning developed in artificial intelligence (Russell & Wefald, 1991b) without making any assumptions about what those mechanisms might be. Our only assumption about those mechanisms is that they are costlier when the number of decision systems is larger. One of the mechanisms that people might sometimes use to select between multiple decision systems is reasoning about costs and benefits.

In our restaurant example, the metareasoning cost might then correspond to how much time it takes the diner to decide how much to think about whether to rely on her habits, an analysis of nutritional value, or any of the other decision mechanisms she may have at her disposal. If the diner only has one system of thinking, then the metareasoning cost is zero. But as the number of systems increases, the metareasoning cost of deciding which system should be in control increases. This raises the question of what is the optimal ensemble of cognitive systems, how many systems does it include, and what are they? We can derive the answer to these questions by computing minimizing the expected sum of action cost, reasoning cost, and metareasoning cost over the set of all possible ensembles of cognitive systems.

In summary, our approach for deriving a bounded-optimal cognitive architecture proceeds as follows:

1. **Model the environment.** Define the set of decision problems \mathcal{D}, the distribution over them P, and the utility for each problem $U_d(a)$.
2. **Model the agent.** Define the set of possible cognitive systems \mathcal{M} the agent could have.
3. **Specify the optimal mind design problem.** Define the metric that the bounded agent’s behavior optimizes, i.e., a tradeoff between the utility it gains and the costs that it incurs; the action cost, reasoning cost, and metareasoning cost.
4. **Solve the optimal mind design problem.** Solve (3) to find the optimal set of systems $\mathcal{M} \subseteq \mathcal{M}$ for the agent to be equipped with.

Once we have done this, we can begin to probe how different parts of the simulation affect the final result in step (4). For example, we expect that the optimal cognitive architecture for a variable environment should comprise multiple cognitive systems with different characteristics. But at the same time, the number of systems should not be too high, or else the time spent on deciding which system to use, the metareasoning cost, will be too high. In other words, we hypothesize that the number of systems will depend on a tradeoff between the variability of the environment and the metareasoning cost. Our simulations show that this is indeed the case.

4. **Simulation 1: Two-alternative forced choice**

Our first simulation focuses on the widely-used two-alternative forced choice (2AFC) paradigm, in which a participant is forced to select...
between two options. For example, categorization experiments often require their participants to decide whether the presented item belongs to the category or not, and psychophysics experiments often require participants to judge whether two stimuli are the same or different. Even in simple laboratory settings, judgments made within a 2AFC task seem to stem from systematically different modes of thinking. Therefore, 2AFC tasks are a prime setting to start in evaluating our theory for dual process systems. But before describing the details of our 2AFC simulation, we first review evidence of dual-process accounts of behavior in the 2AFC paradigm.

A very basic binary choice task presents an animal with a lever that it can either press to obtain food or decide not to press (Dickinson, 1985). It has been shown that early on in this task rodents’ choices are governed by a flexible brain system that will stop pressing the lever when they no longer want the food. By contrast, after extensive training their choices are controlled by a different, inflexible brain system that will continue to press the lever even when the reward is devaluated by poisoning the food. Interestingly, these two systems are preserved in the human brain and the same phenomenon has been demonstrated in humans (Balhine & O’Doherty, 2010).

Another example of two-alternative forced-choice is the probability learning task where participants repeatedly choose between two options, the first of which yields a reward with probability \(p_1 \) and the second of which yields a reward with probability \(p_2 = 1 - p_1 \). It has been found that depending on the incentives people tend to make these choices in two radically different ways (Shanks, Tunney, & McCarthy, 2002): When the incentives are low then people tend to use a strategy that chooses option one with a frequency close to \(p_1 \) and option two with a frequency close to \(p_2 \) – which can be achieved very efficiently (Vul, Goodman, Griffiths, & Tenenbaum, 2014). By contrast, when the incentives are high then people employ a choice strategy that maximizes their earnings by almost always choosing the option that is more likely to be rewarded – which requires more computation (Vul et al., 2014).

The dual systems perspective on 2AFC leaves open the normative question: what set of systems is optimal for the agent to be equipped with? To answer this question, we apply the methodology described in the previous section to the problem of bounded-optimal binary-choice.

4.1. Methods

As in the 2AFC probability learning task used by Shanks et al. (2002), the agent receives a reward of +1 for picking the correct action and 0 for picking the incorrect action. An unboundedly rational agent would always pick the action with a higher probability of being correct. Yet, although simple in set-up, computing the probability of an action being correct generally requires complex inferences over many interconnected variables. For example, if the choice is between turning left onto the highway or turning right to smaller backroads, estimating the probability of which action will lead to less traffic may require knowledge of when rush hour is, whether there is a football game happening, and whether there are accidents in either direction.

To approximate these often intractable inferences people appear to perform probabilistic simulations of the outcomes, and the variability and biases of their predictions (Griffiths & Tenenbaum, 2006; Lieder et al., 2016a) and choices (Lieder, Griffiths, & Hsu, 2018; Vul et al., 2014) match those of efficient sampling algorithms. Previous work has therefore modeled people as bounded-optimal sample-based agents, which draw a number of samples from the distribution over correct actions and then picks the action that was sampled most frequently. (Griffiths et al., 2015; Vul et al., 2014). In line with this prior work, we model probabilistic reasoning as sampling (see below).

Let \(\theta_0 \) and \(\theta_1 \) be the actions available to the agent where \(\theta_1 \) has a probability \(\theta \) of being the correct action and \(\theta_0 \) has a probability \(1 - \theta \) of being correct. The probability \(\theta \) that \(\theta_1 \) is correct varies across different environments, reflecting the fact that in some settings it is easier to tell which action is correct than in others. For example, it is obvious between the choice of a two-month old tomato and a fresh orange that the more nutritious choice is the latter. In this case, it is clear that the fresh orange is correct with probability near one. On the other hand, it may be quite difficult to decide between whether to attend graduate school at two universities with similar programs. In this case, the difference between the probabilities of each being correct may be quite marginal, and both might have close to a 0.5 chance of being correct. We model the variability in the difficulty of this choice by assuming that \(\theta \) is equally likely to be any value in the range \((0.5, 1)\), i.e., \(\theta - P_\theta = \text{Unif}(0,5, 1) \). We consider the range \((0.5, 1)\) instead of \((0, 1)\) without loss of generality because we can always rename the actions so that \(\theta_0 \) is more likely to be correct than \(\theta_1 \).

To make a decision the sample-based agent draws some number of samples \(k \) from the distribution over correct actions, \(i \sim \text{Bern}(\theta) \), and picks the action \(\theta_i \) that it sampled most. If the agent always draws \(k \) samples before acting, then its expected utility across all environments is

\[
E[U|k] = \int \left[P(\theta_i | \text{incorrect}) \cdot P(\text{Agent picks } \theta_1 | k) + P(\theta_i | \text{correct}) \cdot P(\text{Agent picks } \theta_0 | k) \right] P_\theta(\theta) \, \text{d}\theta.
\]

(1)

Appendix A provides a detailed derivation of how to calculate the quantity in Eq. (1). If there were no cost for samples, then the agent could take an infinite number of samples to ensure choosing the correct action. But this is, of course, impractical in the real world because drawing a sample takes time and time is limited. Vul et al. (2014) show how the optimal number of samples changes based on the cost of sampling in various 2AFC problems. They parameterize the cost of sampling as the ratio, \(r_c \), between the time for acting and the execution time of taking 1 sample. Suppose acting takes one unit of time, then the amount of time it takes to draw \(k \) samples is \(k/r_c \). The total amount of time the agent takes is \(1 + k/r_c \). Thus, the optimal number of samples the agent should draw to maximize its expected utility per unit time is

\[
k^* = \arg\max_{k \leq k_0} E[U|k] \quad \frac{1}{1 + r_c}.
\]

(2)

When the time it takes to generate a sample is at least one tenth of the time it takes to execute the action (\(r_c \leq 10 \)), then the optimal number of samples is either zero or one. In general, the first sample provides the largest gain in decision quality and the returns diminish with every subsequent sample. The point where the gain in decision quality falls below the cost of sampling depends on the value of \(r_c \). Since this value can differ drastically across environments, achieving a near-optimal tradeoff in all environments requires adjusting the number of samples. Even a simple heuristic-based metareasoner that adapts the number of samples it takes based on a few thresholds on \(r_c \) does better than one which always draws the same number of samples (lcard, 2014).

Here, as well as in Simulations 2 and 3, we use the speed-accuracy tradeoffs achieved by drawing different numbers of samples to model how fast and how accurate additional cognitive systems could be. In doing so, we make no assumptions about which kinds of mechanisms those systems might use. Instead, we use sampling as an as-if model of the speed-accuracy tradeoffs of those hypothetical cognitive systems. The actual mechanisms of those systems would likely be qualitatively different decision strategies. The only think that they might have in common is that all of them are assumed to perform some amount of computation during the choice. For brevity we refer to these systems as “deliberate” systems without making any claims about their mechanisms.

An even simpler mechanism that people are known to employ is to

1. If there is a tie, then the agent picks either \(\theta_0 \) or \(\theta_1 \) with equal probability. However, for odd \(k \), the agent’s expected utility after drawing \(k \) samples, \(E[U|k+1] \), is equal to its expected utility after drawing \(k+1 \) samples, \(E[U|k+1] \). Thus, we can restrict ourselves to odd \(k \) where no ties are possible.
learn simple stimulus-response reflexes (Dolan & Dayan, 2013; Thorn-dike, 1927). These reflexes will generate the correct decision in some percentage of situations regardless of how difficult it is to reason about them (p). Instead, the accuracy of the resulting reflexes depends on the decision maker’s learning history with the cues that are available in the current situation. This mechanism is qualitatively different from probabilistic reasoning because it does not involve any deliberation. Its decisions are instantaneous and sometimes less accurate than probabilistic decision maker - learn simple stimulus-response reflexes (Dolan & Dayan, 2013; Thorn-dike, 1927). These reflexes will generate the correct decision in some percentage of situations regardless of how difficult it is to reason about them (p). Instead, the accuracy of the resulting reflexes depends on the decision maker’s learning history with the cues that are available in the current situation. This mechanism is qualitatively different from probabilistic reasoning because it does not involve any deliberation. Its decisions are instantaneous and sometimes less accurate than probabilistic decision maker.

We therefore model the accuracy of this mechanism as the probability of choosing the action with the highest expected utility minus ε (i.e., T∫t=0 p(θ) e (θ−ε) dθ = 0.75 − ε) and assume that it doesn’t cost the decision-maker any time (i.e., k = 0). For instance, ε = 0.1 means that the expected accuracy of the reflexive system is about 10% lower than the accuracy of always choosing the action that is more likely to be correct. We interpret these assumptions as a proxy for the speed-accuracy tradeoff of System 1 without making any claims about what the mechanisms of System 1 might be. To keep our equations simple, we will refer to the performance of this system as E(k[I] = 0] even though its mechanisms and speed-accuracy tradeoff are qualitatively different from those of the deliberate systems.

Here, we study an agent that chooses its decision system from a finite subset M of all conceivable cognitive systems that comprises our model of System 1 and multiple systems that perform varying amounts of computation during the decision with speed-accuracy tradeoffs resembling those of drawing different numbers of samples. Furthermore, we assume that the time spent metareasoning increases linearly with the number of systems. By analogy to Vul et al. (2014), we formalize the cost of selecting and arbitrating between these various cognitive systems in terms of the ratio rm of the time it takes to act over the time it takes to predict the performance of a single system.

We can again calculate the total cost of arriving at a decision while now taking into account the cost of selecting and arbitrating between its various decision systems. Just as before, the agent spends one unit of time executing its action, and either 0 (System 1) or k/r systems of time (deliberate systems) to arrive at a decision. But now, we also account for the time it takes the agent to predict the performance of a system: 1/\(r_m\). The total amount of time it takes the agent to metareason, that is to predict the performance of all systems, is |M|/r_m. Therefore, the total amount of time is 1 + \(\frac{E(k[I]}{r} + \frac{|M|}{r_m}\). We assume the agent picks the optimal system out of the set of possible systems M:

\[
k' = \arg \max_{k \in \mathcal{M} \cup \{0\}} \frac{E(k[I]}{1 + \frac{1}{r} + \frac{|M|}{r_m}}
\]

where \(k = 0\) corresponds to System 1 and \(k \geq 1\) corresponds to one of the “deliberate” systems.

Given this formulation of the problem, we can now calculate the optimal set of cognitive systems. The set of cognitive systems that results in the optimal expected utility per time for the bounded sampling agent is

\[
\mathcal{M}^* = \arg \max_{\mathcal{M} \subseteq \mathcal{C} \subseteq \mathcal{N}} \left[\max_{k \in \mathcal{C}} \frac{E(k[I]}{1 + \frac{1}{r} + \frac{|\mathcal{M}|}{r_m}} \right]
\]

Eq. (4) resembles Eq. (3) because both optimize the agent’s expected utility per time. The difference is that Eq. (3) calculates the optimal number of samples for a fixed cost of sampling, while Eq. (4) calculates the optimal number of systems for a distribution of costs of sampling.

Note that the optimal set of systems depends on the distribution of the sampling cost \(r_s\) across different environments. Since sampling an action generally takes less time than executing the action, we assume that \(r_s\) is always greater than one. We can satisfy this constraint on \(r_s\) by modeling \(r_s\) as following a shifted Gamma distribution, i.e. \(r_s - 1 \sim \Gamma(\alpha, \beta)\).

4.2. Results

Fig. 1 shows a representative example of the expected utility per time as a function of the number of systems for different metareasoning costs. Under a large range of metareasoning costs the optimal number of systems is just one, but as the costliness of selecting a cognitive system decreases, the optimal number of systems increases. However even when the optimal number of systems is more than one, each additional system tends to only result in a marginal increase in utility, suggesting that one reason for few cognitive systems may be that the benefit of additional systems is very low.

Fig. 2 shows that the optimal number of systems increases with the variance of \(r_s\) and decreases with the cost of selecting between cognitive systems (i.e., \(\frac{1}{r_s}\)). Interestingly, there is a large set of plausible combinations of variability and metareasoning cost for which the bounded-optimal agent has two cognitive systems. In addition, when the optimal number of systems is two, then the gap between the values of the two systems picked increases with the variance of \(r_s\) (see Table 1), resulting in one system that has high accuracy but high cost and another system that has low accuracy and low cost, which matches the characteristics of the systems posited by dual-process accounts. Importantly, as illustrated in Table 1, we found that when it is optimal to have two cognitive systems and the variability of the environment exceeds some threshold then the bounded optimal cognitive architecture comprises System 1 and a deliberate system. Thus, the conditions under which we would most expect to see two cognitive systems like the ones suggested by dual-process theories are when the environment is highly variable and arbitrating between cognitive systems is costly.

We also found that as the sub-optimality (\(\epsilon\)) of the reflexive system \(\left(k = 0\right)\) increases from 5% to 10% and from 10% to 20% an increasingly higher amount of environmental variability \(\sigma^2(r_s)\) is required for the bounded-optimal system to take the second system.

Fig. 1. The reward rate in two-alternative forced choice (Simulation 1) usually peaks for a moderately small number of decision systems. The expected utility per time of the optimal choice of systems, \(\mathcal{M}^*\), as a function of the number of systems (\(|\mathcal{M}|\)). As the costliness of metareasoning, \(\frac{1}{r_s}\) decreases, the optimal number of systems increases. In this example \(E[r_s] = 100, \sigma(r_s) = 100\), and the expected accuracy of the reflexive system is about 10% lower than the accuracy of choosing the action with the highest expected utility (\(\epsilon = 0.1\)).

\(^2\) For all experiments reported in this paper, we found that alternative values for \(E[r_s]\), \(\epsilon\), or \(\sigma(r_s)\) did not change the qualitative conclusions, unless otherwise indicated.

\(^3\) The results shown in Fig. 1 confirm that it is indeed bounded-optimal to have two systems in this scenario.
Costliness of metareasoning (1/\(r_m\))

Table 1
The optimal set of cognitive systems (\(\mathcal{M}\)) for the 2AFC task of Simulation 1 with \(\varepsilon = 0.1\) as a function of the number of systems (\(|\mathcal{M}|\)) and the variability of the environment (Var(\(r_e\))) for \(E[r_e] = 100\) and \(r_m = 1000\).

| \(|\mathcal{M}|\) | Var(\(r_e\)) | 10^3 | 10^4 | 10^5 |
|-------------------|-------------|------|------|------|
| 1 | 3 | 0 | 0 | 0 |
| 2 | 3, 5, 7 | 0.3 | 0.7 | 0.3 |
| 3 | 0, 3, 5, 7 | 0.3 | 0.7 | 0.3 |
| 4 | 0, 3, 5, 7 | 0.3 | 0.7 | 0.3 |

\(\varepsilon\) Any set of four systems that includes 3, 5, and 7 is optimal.

reflexive system to be included in the optimal pairs and triples of cognitive systems (i.e., less than 10\(^2\)) for \(\varepsilon = 0.05\) between 10\(^3\) and 10\(^4\) for \(\varepsilon = 0.1\) and between 10\(^4\) and 10\(^5\) for \(\varepsilon = 0.2\).

Finally, we observed that the proportion of situations in which a resource-rational dual-process architecture relies on System 1 increases with the variability of the environment. For instance, as the variance of \(r_e\) increases from 10\(^3\) to 10\(^5\), the proportion of times that the resource-rational dual-process architecture relies on System 1 increases from 39.1\% to 79.2\%. This appears to be optimal for two reasons. The first reason is that the proportion of situations where the cost of reasoning is high compared to the cost of acting increases with the variability of the cost of reasoning. This is a mathematical consequence of increasing the variance of the Gamma distribution on \(r_e\) while keeping its mean constant. The second reason is that the range of situations for which System 1 is optimal widens as the optimal amount of deliberation performed by System 2 increases with the variability of the environment.

5. Simulation 2: Sequential decision-making in novel environments

Complementing our analysis of which cognitive architectures are bounded-optimal in simple, binary decisions where the reflexive system can draw on prior experience with informative cues (Simulation 1), we now analyze which cognitive architectures are optimal for handling more complex problems in a new environment. More concretely, Simulation 2 focuses on sequential decision problems, in which the agent needs to choose a sequence of actions over time in order to achieve its goal in a novel environment. In these problems, the best action to take at any given point depends on future outcomes and actions. Since actions only affect the environment probabilistically, solving such problems requires *planning under uncertainty.*

Although planning often allows us to make better decisions, planning places high demands on people’s working memory and time (Kotovsky, Hayes, & Simon, 1985). This may be why research on problem solving has found that people’s cognitive repertoire comprises not only strategies that plan many steps ahead but also simpler heuristic planning strategies (Atwood & Polson, 1976; Kotovsky et al., 1985; Newell & Simon, 1972). Likewise, models of problem solving often assume that the mind is equipped with a highly accurate, but effortful, planning strategy, such as means-ends analysis, and one or two simple heuristic planning strategies, such as hill-climbing (Anderson, 1990; Gunzelmann & Anderson, 2003; Newell & Simon, 1972). Consistent with our modeling framework, Anderson’s rational analysis of problem solving assumed that people select between intensive planning by means-ends-analysis versus heuristic planning via hill climbing according to a rational cost-benefit analysis (Anderson, 1990). Here, we aim to derive a normative theory of what set of planning mechanisms the mind should be equipped with in the first place. We study this question for novel problems where the reflexive system cannot draw on prior experiences.

5.1. Methods

Like Daw et al., 2005, we model the challenge of finding a sequence of actions that achieves the goal as a finite-horizon Markov decision problem (MDP; Sutton & Barto, 2018) with an absorbing goal-state. This type of MDP is formally defined by a set of states \(S\), a set of actions \(A\), a cost function \(c : S \times A \rightarrow \mathbb{R}_{\geq 0}\) that measures how costly each action \(a\) is depending on the current state \(s\), a transition probability model \(p : S \times A \times S \rightarrow [0, 1]\) that defines the probability of the next state given the current state and the action taken, an absorbing goal state \(g\), and a time horizon \(h\). Experience in these MDPs can be thought of as a set of trials or episodes. A trial ends once the agent reaches an absorbing goal-state or it exceeds the maximal number of time steps allowed by the time horizon \(h\).

In the standard formulation, at each time step, the agent takes an action, which depends upon its current state. The agent’s action choices can be concisely represented by a policy \(\pi : S \rightarrow A\) that returns an action for each state. An optimal policy minimizes the expected sum of costs across the trial:

\[
\pi^* = \arg \min_{\pi} \mathbb{E}_s \left[\sum_{t=0}^{N} c(s_t, \pi(s_t)) | \pi \right]
\]

where \(s_t\) is the state at time step \(t\) and \(N\) is the time step that the episode ends (either once the agent reaches the goal state \(g\) or the time horizon \(h\) is reached). The expectation is taken over the states at each time step, which are stochastic according to the transition model \(p\).

However, this formulation of the problem ignores the fact that the agent needs to think to decide how to act, and that thinking also incurs cost. We extend the standard MDP formulation to account for the cost of thinking. At each time step, the agent has a thinking stage, followed by an acting stage. We analyze the performance of a set of bounded agents that differ in how many and which processes they can choose between at the beginning of the thinking stage. For each planning problem, each agent is assumed to let its most suitable planning process (stochastically) decide on an action \(a\). In the acting stage, the agent executes the chosen action. In addition to the cost \(c(s, a)\) of acting, there is also a cost \(f(t)\) that measures the cost of thinking about the problem for \(t\) units of time. We seek to determine how many qualitatively different planning processes (or strategies) the mind’s cognitive architecture should be designed to support. What exactly those processes should be is an important question. Yet, for the purpose of our analysis, it only matters that they...
achieve different speed-accuracy tradeoffs. We therefore abstract away from the qualitative differences between the strategies and represent each hypothetical planning strategy by a single number \(t \) that represents how much planning it performs. Under these assumptions, an optimal planning strategy is one that minimizes the total expected cost of acting and thinking:

\[
t' = \arg \min_t \mathbb{E}\left[\sum_{i=0}^{N} c(s_i, a_i) + f(t)|t| \right].
\]

where \(a_0, \ldots, a_N \) are the actions chosen by the strategy investing \(t \) units of time into planning at each time step and \(s_0, \ldots, s_N \) are the states at each time step. The expectation is taken over states and actions, which are stochastic because the transition model \(p \) and the process of planning are not necessarily deterministic.

Abstracting away from the actual planning mechanisms allows us to simulate the performance of each planning strategy by the performance that a single planning algorithm achieves with varying numbers of simulations. For this purpose, we use bounded real-time dynamic programming (BRTDP; McMahan, Likhachev, & Gordon, 2005), a planning algorithm from the artificial intelligence literature. That is, we simulate the performance of planning strategy \(t \) by the performance that BRTDP can achieve with \(t \) simulations. BRTDP simulates potential action sequences, and then uses these simulations to estimate an upper bound and lower bound on how good each action in each possible state. It starts with a heuristic bound, and then continuously improves the accuracy of its estimates. Depending on the number of simulations chosen, it can be executed for an arbitrarily short or long amount of time. Fewer simulations result in faster but less accurate solutions, while more simulations result in slower but more accurate solutions, making BRTDP particularly well-suited for studying the adaptive control of planning (Lin et al., 2015). Since we are simulating planning in novel environments we assume that the instantaneous choices of the reflexive system would be essentially random. This is equivalent to the performance of BRTDP with \(t = 0 \) simulations.

During the thinking stage, the agent chooses the number of action sequences to simulate \(k \). Then, based on these simulations, the agent uses BRTDP to update its estimate of how good each action is in each possible state. During the acting stage, the agent takes the action with the highest upper bound on its value. Thus the agent’s policy is defined entirely by \(k \), the number of action sequences it simulates. This type of policy corresponds to the Think*Act policy from Lin et al., 2015.

We consider environments in which there is a constant cost per action \(c_o \) from all non-goal states: \(c(s, a) = c_o \). The cost of planning is linear in the number of simulated action sequences \(k \): \(f(k) = c_e \cdot k \), where \(c_e \) is the cost of each mental simulation. We reparameterize the costs by the ratio of the cost of acting over the cost of thinking, \(r_e = \frac{c_o}{c_e} \).

Having defined the agent policy and the cost of planning, Eq. (6) simplifies to

\[
k' = \arg \min_{k \in [0, N]} \left(1 + \frac{k}{r_e} \right) \mathbb{E}[N|k],
\]

where \(N \) is the number of time steps until the trial ends, either by reaching the goal state or the time horizon. See Appendix B for a derivation.

Eq. (7) defines the optimal planning process for the agent to use for a particular decision problem, but we seek to investigate what set of processes is optimal for the agent to be equipped with for a range of decision problems. We assume that there is a distribution of MDPs the agent may encounter, and while \(r_e \) is constant within each problem, it varies across different problems. Therefore, optimally allocating finite computational resources requires selecting among the available planning processes. We assume that this incurs a cost that is linear in the number of systems: \(c_m |M| \), where \(c_m \) is the cost required to predict the performance of a single system. Similarly we can reparameterize this cost using \(r_m = c_d/c_m \), so that the cost of selecting between planning processes becomes \(|M|/r_m \).

Assuming that the agent chooses optimally from its set of planning processes, the optimal set of processes that it should be equipped with is

\[
\mathcal{M}^* = \arg \min_{\mathcal{M} \in \mathcal{N}} \left[\min_{k \in [0, N]} \left(1 + \frac{k}{r_e} \right) \mathbb{E}[N|k] \right] + \frac{|M|}{r_m}
\]

We investigated the size and composition of the optimal set of planning processes for a simple 20 × 20 grid world where the agent’s goal is to get from the lower left corner to the upper right corner with as little cost as possible. The horizon was set to 500, and the maximum number and length of simulated action sequences at any thinking stage were set to 10. BRTDP was initialized with a constant value function of 0 for the lower bound and a constant value function of 100 for the upper bound. This means that the agent’s initial policy prior to any deliberation was to act randomly—which is highly suboptimal. For each environment, the ratio of the cost of action over the cost of planning \(r_e \) was again drawn from a Gamma distribution and shifted by one, that is \(r_e - 1 \sim \Gamma(a, \beta) \). The expected number of steps required to achieve the goal \(\mathbb{E}[N|k] \) was estimated via simulation (see Fig. 3).

5.2. Results

Because the agent rarely reached the goal with zero planning (\(\mathbb{E}[N|k = 0] = 500 \)) one system provided the largest reduction in expected cost with each additional system providing at most marginal reductions (Fig. 4). The optimal number of systems increased with the variance of \(r_e \) and decreased with the metareasoning cost \(c_e \). This resulted in the optimal number of cognitive systems being two for a range of plausible combinations of variability and metareasoning cost (Fig. 5). When the number of systems was two, the difference between the amount of planning performed by the two optimal systems increased with the variance of \(r_e \). This resulted in one system that does a high amount of planning but is costly and another system that plans very little

Fig. 3. Performance of agents with different numbers of cognitive systems in planning under uncertainty (Simulation 2). The number of actions it takes an agent to reach a goal as a function of the number of simulated paths before each action. For 0 simulated paths the expected number of actions was 500 (the maximum allowed).
but is computationally inexpensive. This supports Anderson (1990) assumption that when people are confronted with a novel problem, they choose between two processes, an intensive planning strategy, such as means-ends-analysis, and a simple heuristic, such as hill-climbing.

Unlike in Simulation 1, reflexive processes that perform zero plan- ning were never included in the optimal set of processes. This is because we modelled planning in a new environment where reflexive processes cannot draw on any prior experience. Interestingly, across a range of different scenarios, the optimal number of processes was still two. The only difference was that the reflexive process was replaced by a heuristic planning process. This suggests that dual-process architectures can be bounded-optimal not only for familiar environments where it is adaptive to have a reflexive system but also for novel environments where reflexive processes are not adaptive.

6. Simulation 3: Strategic interaction in a two-player game

Starting in the 1980s, researchers began applying dual-process theories to social cognition (Chaiken & Trope, 1999; Evans, 2008). One potential reason why heuristic processes exist is that exact logical or probabilistic reasoning is often computationally prohibitive. For instance, Herbert Simon famously argued that computational limitations place substantial constraints on human reasoning (Simon, 1972, 1982). Such computational limitations become readily apparent in problems involving social cognition because the number of future possibilities explodes once the actions of others must be considered. For example, one of Simon’s classic examples was chess, where reasoning out the best opening move is completely infeasible because it would require considering about 10^{120} possible continuations.

In this section, we show that our findings about the number of processes supported by bounded-optimal planning systems also apply to tasks that involve reasoning about decisions made by others. Specifically, we focus on strategic reasoning in Go, an ancient two-player game. Two-player games are the simplest and perhaps most widely used paradigm for studying strategic reasoning about other people’s actions (Camerer, 2011). Although seemingly simple, it is typically impossible to exhaustively reason about all possibilities in a game, making heuristic reasoning necessary. This is especially true in Go, which has about 10^{360} continuations from the first move (compare this to chess which has “only” 10^{120} possible continuations).

6.1. Methods

We now describe the details of our simulation deriving bounded-optimal architectures for strategic reasoning in the game of Go.

We model the speed-accuracy tradeoffs that different hypothetical processes for reasoning about strategic social interactions might achieve by varying the number of simulations performed by a single planning algorithm. In doing so, we deliberately abstract away from the qualitative differences between alternative processes and make no claims about what those processes are. As in Simulations 1 and 2 those details do not affect the qualitative results of our abstract resource-rational analysis. To simulation the speed-accuracy tradeoffs of hypothetical processes performing different amounts of reasoning, we employ a planning algorithm known as Monte Carlo tree search (MCTS) (Browne et al., 2012). Recently, AlphaGo, a computer system based on MCTS, became the first to defeat the Go world champion and achieve superhuman performance in the game of Go (Silver et al., 2016, 2017). Like other planning methods against adversarial opponents, MCTS works by constructing a game tree to plan future actions. Unlike other methods, MCTS selectively runs stochastic simulations (also known as rollouts) of different actions, rather than exhaustively searching through the entire game tree. In doing so, MCTS focuses on moves and positions whose values appear both promising and uncertain. In this regard, MCTS is similar to human reasoning (Newell & Simon, 1972).

Furthermore, the number of simulations used by MCTS affects how heuristic versus how accurate the method is. When the number of simulations is small, the algorithm is faster but less accurate. When the number of simulations is high, the algorithm is slower but more accu-

Table 2

<table>
<thead>
<tr>
<th></th>
<th>$\var{\mathcal{M}^*}$</th>
<th>$\var{\mathcal{M}}$</th>
<th>$\var{\mathcal{M}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9×10^2</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>7×10^2</td>
<td>4.7</td>
<td>2.7</td>
</tr>
<tr>
<td>3</td>
<td>1.7×10^3</td>
<td>4.7</td>
<td>1.4</td>
</tr>
<tr>
<td>4</td>
<td>1.27×10^3</td>
<td>2.4</td>
<td>1.4</td>
</tr>
</tbody>
</table>

Fig. 5. The optimal number of systems for planning under uncertainty (Simulation 2) as a function of the standard deviation of r_s and r_m for $\var{\mathcal{M}} = 100$.
rate. Thus, similar to the sequential decision making setting (Simulation 2), we simulate the speed-accuracy tradeoffs of the available processes \mathcal{M} by running MCTS with different numbers of simulations (k).

On each turn, there is a thinking stage and an acting stage. In the thinking stage, the agent executes a reasoning process that performs a number of stochastic simulations (k) of future moves and then updates its estimate of how good each action is, that is how likely it is to lead to a winning state. In the acting stage, the agent takes the action with the highest estimated value.

The agent attains a utility U based on whether it wins or loses the game. The unbounded agent would simply choose the number of simulations k that maximizes expected utility: $E[U/k]$. However, the bounded agent incurs costs for acting and thinking. We assume that the cost for acting is constant: c_a. The cost for executing a reasoning process is linear in the number of simulations it performs: $k \cdot c_r$, where c_r is the cost of a single simulation. The bounded agent has to optimize a trade-off between its utility U and the costs of acting and thinking:

$$E[U - (c_a + k \cdot c_r)]N[k],$$

where N is the number of turns until the game ends. For consistency, we can reparameterize this as $r_e = c_r/c_a$, the ratio between the cost of acting and the cost of thinking, and without loss of generality, we can let $c_a = 1$. Eq. (9) then simplifies to

$$B(k, r_e) := E\left[U \left(1 + \frac{k}{r_e}\right)N[k]\right].$$

The optimal reasoning process for the agent to choose given a fixed value of r_e is $k^* (r_e) = \text{arg max}_k B(k, r_e)$. The optimal set of reasoning processes \mathcal{M} out of all possible systems \mathcal{T} for strategic interaction is

$$\mathcal{M}' = \text{arg max}_{\mathcal{M} \in \mathcal{T}} E[\text{max}_k B(k, r_e)] = \frac{|\mathcal{M}|}{r_e}.$$

In this case, the expectation is taken over r_e, as the goal is to find the set of systems that is optimal across all problems in the environment.

In our simulations, the game is played on a 9×9 board. U is 500 if the agent wins, 250 if the game ends in a draw, and 0 if the agent loses. The opponent also runs MCTS with 5 simulations to decide its move. $E[U/k]$ and $E[N/k]$ are estimated using simulation (see Fig. 6). For computational tractability, the possible number of simulations we consider are $\mathcal{T} = \{5, 10, ..., 50\}$.

6.2. Results

As in the previous tasks, the optimal number of processes depends on the variability of the environment and the difficulty of selecting between multiple processes (Fig. 7). As the cost of selecting between reasoning processes (“costliness of metareasoning”) increases, the optimal number of processes decreases and the bounded-optimal agent comes to reason less and less. By contrast, the optimal number of processes increases with the variability of the environment. Furthermore, when the optimal number of processes is two, the difference between the amount of reasoning performed by the two processes increases as the environment becomes more variable (Table 3). In conclusion, the findings presented in this section suggest that the kind of computational architecture that is bounded-optimal for simple decisions and planning (i.e., two processes with opposite speed-accuracy tradeoffs) is also optimal for reasoning about more complex problems, such as strategic interaction in games.

7. Simulation 4: Multi-alternative risky choice

Decision-making under risk is another domain in which dual-process theories abound (e.g., Figner, Mackinlay, Wilkening, & Weber, 2009; Kahneman & Frederick, 2007; Mukherjee, 2010; Steinberg, 2010), and the dual-process perspective was inspired in part by Kahneman and
7.1. Methods

We investigated the size of the optimal subset of the ten decision strategies proposed by Payne et al., 1988 as a function of the meta-reasoning cost and the variability of the relative cost of reasoning. These strategies were the lexicographic heuristic (LEX) which corresponds to Take-The-Best, the semi-lexicographic heuristic, the weighted-additive strategy (WADD), choosing randomly, the equal-weight heuristic, elimination by aspects, the maximum confirmatory dimensions heuristic (MCD), satisfying (SAT), and two combinations of elimination by aspects with the weighted additive strategy (EBA-WADD) and the maximum confirmatory dimensions heuristic (EBA-MCD). Concretely, we determined the optimal number of decision strategies in 5 × 30 environments that differed in the mean and the standard deviation of the distribution of \(r_e \). The means were 10, 50, 100, 500, and 1000, and the standard deviations were linearly spaced between \(10^{-3} \) and 3 times the mean.

For each environment, four thousand decision problems were generated at random. Each problem presented the agent with the choice between five gambles with five possible outcomes. The payoffs for each outcome-gamble pair were drawn from a uniform distribution on the interval \([0, 1000]\). The outcome probabilities differed randomly from problem to problem except that the second highest probability was always at most 25% of highest probability, the third highest probability was always at most 25% of the second-highest probability, and so on.

Based on previous work on how people select cognitive strategies (Lieder & Griffiths, 2017), our simulations assume that people generally select the decision-strategy that achieves the best possible speed-accuracy tradeoff. This strategy can be formally defined as the heuristic \(s^* \) with the highest value of computation (VOC; Lieder & Griffiths, 2017). Formally, for each decision problem \(d \), an agent equipped with strategies \(S \) should choose the strategy

\[
s^*(d, S, r_e) = \max_{s \in S} \text{VOC}(s, d).
\]

Following Lieder and Griffiths (2017) we define a strategy’s VOC as decision quality minus decision cost. We measure the decision quality by the ratio of the expected utility of the chosen option over the expected utility of the best option, and we measure decision cost by the opportunity cost of the time required to execute the strategy. Formally, the VOC of making the decision \(d \) using the strategy \(s \) is

\[
\text{VOC}(s, d) = \frac{\mathbb{E}[u(s(d))] \cdot d}{\text{max}_s \mathbb{E}[u(s)] \cdot d} \cdot \frac{1}{r_e \cdot n_{\text{computations}}(s, d)}. \tag{13}
\]

where \(x(d) \) is the alternative that the strategy \(s \) chooses in the decision \(d \), \(\frac{1}{r_e} \) is the cost per decision operation, and \(n_{\text{computations}}(s, d) \) is the number of cognitive operations it performs in this decision process. To determine the number of cognitive operations, we decomposed each strategy into a sequence of elementary information processing operations (Johnson & Payne, 1985) in the same way as Lieder and Griffiths (2017) did and counted how many of those operations each strategy performed on any given decision problem.

We estimated the optimal set of strategies,

\[
S^* = \max_S \mathbb{E}_{P(d)} \left[\text{VOC}(s^*(d; S, r_e), d) - \frac{1}{r_m} |S| \right]. \tag{14}
\]

by approximating the expected value in Eq. (14) by averaging the VOC over 4000 randomly generated decision problems. The resulting noisy

Tversky’s ground-breaking research program on heuristics and biases (Kahneman, Slovic, & Tversky, 1982). Consistent with our resource-rational framework, previous research revealed that people make risky decisions by arbitrating between fast and slow decision strategies in an adaptive and flexible manner (Payne et al., 1993). When making decisions between the risky gambles shown in Fig. 8 people adapt not only how much they think but also how they think about what to do. Concretely, people have been shown to use different strategies for different types of decision problems (Payne et al., 1988). For instance, when some outcomes are much more probable than others then people seem to rely on fast-and-frugal heuristics (Gigerenzer & Goldstein, 1996) like Take-The-Best which decides solely based on the most probably outcome that distinguishes between the alternatives and ignores all other possible outcomes. By contrast, when all outcomes are equally likely, people seem to integrate the payoffs for multiple outcomes into an estimate of the expected value of each gamble. Previous research has proposed at least ten different decision strategies that people might use when choosing between risky prospects (Gigerenzer & Selten, 2002; Payne et al., 1988; Thorngate, 1980). Yet, it has remained unclear how many decision strategies a single person would typically consider (Scheibehenne, Rieskamp, & Wagenmakers, 2013). Here, we investigate how many decision strategies a boundedly optimal metareasoning agent should use in a multi-alternative risky-choice environment similar to the experiments by Payne et al., 1988. Unlike in the previous simulations these strategies differ not only in how much computation they perform but also in which information they use and how they use it.
estimates were smoothed with a Gaussian kernel with standard deviation 20. Then the optimal set of cognitive strategies was determined based on the smoothed VOC estimates for each combination of parameters. Finally, the number of strategies in the optimal sets was smoothed with a Gaussian kernel with standard deviation 10, and the smoothed values were rounded.

7.2. Results

As shown in Fig. 9, we found that the optimal number of strategies increased with the variability of the environment and decreased with the metareasoning cost. Like in the previous simulations, the optimal number of decision systems increased from 1 for high metareasoning cost and low variability to 2 for moderate metareasoning cost and variability, and increased further with decreasing metareasoning cost and increasing variability. There was again a sizeable range of plausible values in which the optimal number of decision systems was 2. For extreme combinations of very low time cost and very high variability the optimal number of systems increased to up to 5. Although Fig. 9 only shows the results for $E[r_e] = 100$, the results for $E[r_e] = 10, 50, 500, \text{ and } 1000$ were qualitatively the same.

When the optimal number of strategies was one, then in 87% of the cases the optimal strategy was to choose randomly and in 13% of the cases the optimal strategy was the lexicographic strategy. When the optimal number of strategies was two, then for 98% of the scenarios this optimal pair comprised choosing randomly and LEX. When the optimal decision system included three strategies, then this optimal triplet always was one of the four following combinations: (LEX, SAT, EBA-WADD) was optimal in 49.5% of the scenarios; (LEX, random choice, MCD) was optimal for 24.9% of the scenarios; (LEX, random choice, WADD) was optimal for 20.7% of all scenarios, and (LEX, random choice, EBA-MCD) was optimal for 4.8% of all scenarios.

In this section, we applied our analysis to a more realistic setting than in the previous sections. It used psychologically plausible decision strategies that were proposed to explain human decision-making rather than algorithms. These strategies differed not only in how much reasoning they perform but also in how they reason about the problem. For this setting, where the environment comprised different kinds of problems favoring different strategies, one might expect that the optimal number of systems would be much larger than in the previous simulations. While we did find that having 3–5 systems became optimal for a larger range of metareasoning costs and variabilities, it is remarkable that having two systems was still bounded-optimal for a sizeable range of reasonable parameters. This finding suggests that our results might generalize to the much more complex problems people have to solve and people’s much more sophisticated cognitive mechanisms.

Most importantly, the finding that there is a range of plausible scenarios in which the bounded-optimal cognitive architecture comprises the only strategy that performs zero deliberation (i.e., choosing randomly) and a second strategy that performs some deliberation (i.e., LEX) corroborates the conclusion of Simulation 1 in a more realistic scenario.

In addition, we again found that the variability of the environment matters. Concretely, Fig. 9 shows that as the variability of the environment increases from 0.1 to 50 the range of arbitration cost for which a dual-process architecture is resource-rational roughly doubles in size.

8. General discussion

We found that across four different tasks the number and diversity of processes supported by a bounded-optimal cognitive architecture increases with the variability of the environment but decreases with how difficult it is to select and arbitrate between different processes. Each additional system tends to provide at most marginal improvements; so the optimal solutions tend to favor small numbers of cognitive systems, with two systems being optimal across a range of plausible values for metareasoning cost and variability. Our analyses of two-alternative forced choice and multi-alternative risky-choice found that the bounded-optimal cognitive architecture for a range of environments and cognitive costs included exactly two systems: a system that performs no deliberation (“System 1”) and a system that performs a fair amount of deliberation (“System 2”). This might be why the human mind too appears to contain two opposite subsystems within itself – one that is fast but fallible and one that is slow but accurate. In other words, this mental architecture might have evolved to enable people to quickly adapt how they think and decide to the demands of different situations. Our findings thereby suggests that dual-process architectures could be optimal for the human mind. Whether or not dual-system architectures are in fact bounded-optimal in the real-world depends on the variability of the stakes of real-life decisions and on the cost of selecting and arbitrating between multiple cognitive systems. Our analysis can be used to make this hypothesis empirically testable by specifying the conditions under which it would be true.

While we have formulated the function of selecting between multiple cognitive systems as metareasoning, this does not mean that the mechanisms through which this function is realized have to involve any form of reasoning. Rather, our analysis holds for all selection and arbitration mechanisms as having more cognitive systems incurs a higher cognitive cost. This also applies to model-free mechanisms that choose decision systems based on learned associations. This is because the more actions there are, the longer it takes for model-free reinforcement learning to converge to a good solution and the suboptimal choices during the learning phase can be costly.

The emerging connection between normative modeling and dual-process theories is remarkable because the findings from these approaches are often invoked to support opposite views on human (ir)rationality (Stanovich, 2011). In this debate, some authors (Ariely, 2009; Marcus, 2009) have interpreted the existence of a fast, error-prone cognitive system whose heuristics violate the rules of logic, probability theory, and expected utility theory as a sign of human irrationality. By contrast, our analysis suggests that having a fast but fallible cognitive system in addition to a slow but accurate system might be the best possible solution. This implies that the variability, fallibility, and inconsistency of human judgment that result from people’s switching between System 1 and System 2 should not be interpreted as evidence for human irrationality, because it might reflect the rational use of limited cognitive resources.

![Fig. 9. The optimal number of strategies for multi-alternative risky choice (Simulation 4) as a function of the standard deviation of r_e and r_m for $E[r_e] = 100$.](image-url)
8.1. Limitations

One limitation of our analysis is that the cognitive systems we studied are simple algorithms that abstract away most of the complexity and sophistication of the human mind. In particular, Simulations 1-3 do not properly capture that people use qualitatively different kinds of decision mechanisms that differ in more than just their speed-accuracy tradeoffs. A second limitation is that all of our tasks were drawn from the domains of decision-making and reasoning. However, our conclusion only depends on the plausible assumption that the cost of deciding which cognitive system to use increases with the number of systems. As long as this is the case, the optimal number of cognitive systems should still depend on the tradeoff between metareasoning cost and cognitive flexibility studied above, even though its exact value may be different. Thus, our key finding that the optimal number of systems increases with the variability of the environment and decreases with the metareasoning cost is likely to generalize to other tasks and the much more complex architecture of the human mind.

Third, our analysis assumed that the mind is divided into discrete cognitive systems to make the adaptive control over cognition tractable. While this makes selecting cognitive operations much more efficient, we cannot prove that it is boundedly-optimal to approximate rational metareasoning in this way. Research in artificial intelligence suggests that there might be other ways to make metareasoning tractable. One alternative strategy is the meta-greedy approximation (Hay et al., 2012; Russell & Wefald, 1991a) which selects computations under the assumption that the agent will act immediately after executing the first computation. According to the directed cognition model (Gabaix & Laibson, 2005) this mechanism also governs the sequence of cognitive operations people employ to make economic decisions. This model predicts that people will always stop thinking when their decision cannot be improved by a single cognitive operation even when significant improvements could be achieved by a series of two or more cognitive operations. This makes us doubt that the meta-greedy heuristic would be sufficient to account for people’s ability to efficiently solve complex problems, such as puzzles, where progress is often non-linear. This might be why when Gabaix, Laibson, Moloche, and Weinberg (2006) applied their model to multi-attribute decisions, they let it choose between macro-operators rather than individual computations. Interestingly, those macro-operators are similar to the cognitive systems studied here in that they perform different amounts of computation. Thus, the directed cognition model does not appear to eliminate the need for sub-systems but merely proposes a mechanism for how the mind might select and switch back-and-forth between them. Consistent with our analysis, the time and effort required by this mechanism increases linearly with the number of cognitive systems. While research in artificial intelligence as identified a few additional approximations to rational metareasoning, those are generally to specific computational processes and problems (Lin et al., 2015; Russell & Wefald, 1989; Vul et al., 2014) and would be applicable to only a small subset of people’s cognitive abilities.

Fourth, the sizes of the relevant regions of the parameter space for which dual-process theories are resource-rational depend on one’s assumptions about the unknown statistics of natural environments. Our limited knowledge about the statistics of natural environments renders the relative sizes of the regions depicted in Figs. 2, 5, 7, and 9 difficult to interpret.

8.2. Relation to previous work

The work presented here continues the research programs of bounded rationality (Simon, 1956, 1982), rational analysis (Anderson, 1990), computationally bounded rational analysis (Howes et al., 2009; Lewis et al., 2014), and resource-rational analysis (Griffiths et al., 2015; Lieder & Griffiths, 2020b) in seeking to understand how the mind is adapted to the structure of the environment and its limited computational resources. While previous work has applied the idea of bounded optimality to derive optimal cognitive strategies for an assumed cognitive architecture (Griffiths et al., 2015; Lewis et al., 2014; Lieder et al., 2018a; Lieder, Griffiths, & Hsu, 2018) and the arbitration between assumed cognitive systems (Keramati et al., 2011), the work presented here derived the cognitive architecture itself.

Our application of the principle of bounded optimality to studying cognitive architectures has precedents in the work by Howes et al. (2009) and the approach of computationally bounded rational analysis (Lewis et al., 2014) more generally. In their groundbreaking work Howes et al. (2009) applied bounded optimality to derive the behavioral signatures of two cognitive architectures (i.e., serial vs. parallel processing) and used empirical data to infer which of them best explains human behavior. Our goal here is different in that we asked a normative question rather than a descriptive question. That is, we sought to determine which cognitive architecture achieves the best tradeoff between choice accuracy and cognitive cost for a given environment. Another difference is that Howes et al. (2009) assumed bounded optimality to derive which program a given cognitive architecture would execute whereas we assumed bounded optimality to derive which cognitive systems the agent should be equipped with. Some additional differences between resource-rational analysis and computationally bounded rational analysis are discussed in Lieder and Griffiths (2020a).

The compatibility of the results of our analysis with the empirical literature on dual systems in human cognition provide support for the idea that bounded optimality is a useful assumption for understanding human cognition. Our analysis complements previous arguments suggesting that people make rational use of the cognitive architecture they are equipped with (Griffiths et al., 2015; Howes et al., 2016; Lewis et al., 2014; Lieder et al., 2018a; Lieder & Griffiths, 2020b; Lieder, Griffiths, & Hsu, 2018; Tsetsos et al., 2016). Taken together, these lines of work illustrate how assuming the people make rational use of their cognitive resources can be an effective tool for identifying not just the specific systems and strategies that people follow, but also the structure of the underlying cognitive architecture.

8.3. Conclusion and future directions

A conclusive answer to the question whether it is boundedly optimal for humans to have two types of cognitive systems will require more rigorous estimates of the variability of decision problems that people experience in their daily lives and precise measurements of how long it takes to predict the performance of a cognitive system. Regardless thereof, our analysis suggests that the incoherence in human reasoning and decision-making are qualitatively consistent with the rational use of a bounded-optimal set of cognitive systems rather than a sign of irrationality. Perhaps more importantly, the methodology we developed in this paper makes it possible to extend resource-rational analysis from cognitive strategies to cognitive architectures. This new line of research offers a way to elucidate how the architecture of the mind is shaped by the structure of the environment and the fundamental limits of the human brain. Future work can use our methodology to investigate how differences between cognitive domains and tasks affect which cognitive architectures are resource-rational, as well as how often people should rely on different cognitive systems.
Appendix A. 2AFC

In this appendix, we derive the formula for the utility of making a decision based on k mental simulations used in our analysis of two alternative forced choice (i.e., Eq. (1)). Since there are two possible choices, there are two ways in which the agent can score a reward of 1, that is

$$E_d[U|k] = \int [P(a_i| \text{is correct}) \cdot P(\text{Agent picks } a_i|k) + P(\text{Agent picks } a_i|k)] P(d\theta).$$

(1)

If a_i is the correct answer, then $i \sim \text{Bern}(\theta)$. The probability that the agent chooses a_i is equal to the probability that it sampled a_i more than $k/2$ times. The probability that the agent sampled a_i more than $k/2$ times is $\Theta_{CDF}(k/2, \theta, k)$ where Θ_{CDF} is the binomial cumulative density function. Correspondingly, the probability that the agent sampled a_i more than $k/2$ times is $1 - \Theta_{CDF}(k/2, \theta, k)$. Thus, we can write Eq. (1) as

$$E_d[U|k] = \int \left[(1 - \Theta_{CDF}(k/2, \theta, k)) + (1 - \theta)(\Theta_{CDF}(k/2, \theta, k))\right] P(d\theta).$$

Appendix B. Sequential decision-making

Here, we provide a derivation of how to simplify the expression for the optimal number of planning systems in Eq. (6), that is

$$t' = \arg\min_{t} \mathbb{E}\left[\sum_{i=0}^{n} c(s_i, a_i) + f(t)\right],$$

(6)

to the expression in Eq. (7), that is

$$k' = \arg\min_{k} \mathbb{E}[N|k].$$

(7)

Our reasoning behind this derivation is as follows: Since the cost of each thinking system is linear in the number of simulations, i.e. $c_s \cdot k$, we can replace $f(t)$ with $c_s \cdot k$ in the expectation in Eq. (6). Since the cognitive systems are distinguished by the number of simulations they do, we can condition on the number of simulations k instead. Therefore, the expectation in Eq. (6) becomes

$$E\left[\sum_{i=0}^{n} c(s_i, a_i) + c_s \cdot k | k \right].$$

The cost of acting from non-goal states is constant, i.e. $c(s_i, a_i) = c_0$. Therefore, the expectation simplifies to (6) becomes

$$E\left[\sum_{i=0}^{n} c_0 + c_s \cdot k | k \right] = \mathbb{E}[N(c_0 + c_s \cdot k)].$$

We can reparameterize using $r_s = c_s / c_0$ by substituting c_s with c_0 / r_s:

$$\mathbb{E}\left[N\left(c_0 + \frac{c_s}{r_s} \cdot k\right) \right] = c_0 \mathbb{E}\left[\left(1 + \frac{k}{r_s}\right)^N \right].$$

We now arrive at Eq. (6) by picking the cognitive system (number of simulations) that minimizes the above quantity.

$$k' = \arg\min_{k} \mathbb{E}\left[\left(1 + \frac{k}{r_s}\right)^N \right] = \arg\min_{k} \mathbb{E}\left[\left(1 + \frac{k}{r_s}\right)^N \right].$$

References

