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The diversity of human faces and the contexts in which they appear gives rise to an
expansive stimulus space over which people infer psychological traits (e.g., trustwor-
thiness or alertness) and other attributes (e.g., age or adiposity). Machine learning
methods, in particular deep neural networks, provide expressive feature representations
of face stimuli, but the correspondence between these representations and various
human attribute inferences is difficult to determine because the former are high-
dimensional vectors produced via black-box optimization algorithms. Here we combine
deep generative image models with over 1 million judgments to model inferences of
more than 30 attributes over a comprehensive latent face space. The predictive accuracy
of our model approaches human interrater reliability, which simulations suggest would
not have been possible with fewer faces, fewer judgments, or lower-dimensional feature
representations. Our model can be used to predict and manipulate inferences with
respect to arbitrary face photographs or to generate synthetic photorealistic face stimuli
that evoke impressions tuned along the modeled attributes.

face perception | social traits | computational models

Faces are among the most important stimuli that people encounter—they are recognized
by infants long before other objects in their environment (1), recruit specialized circuits in
the brain (2), and are fundamental to social interaction (3). Central to our experience with
faces are the attributes that we assign to them, often implicitly. These include attributes
that are read off, describing largely objective attributes of faces (e.g., age and adiposity), and
those that are read into, such as how trustworthy a person is (4). Although the inferences
of the latter attributes are more subjective and generally inaccurate, they are similarly
psychologically consistent across people (4–6) around the globe (7–9) and have important
consequences (10) ranging from electoral success (11, 12) to sentencing decisions (13,
14). Because any face can be judged with respect to such attributes, these psychological
dimensions are universal in that they are implicitly defined over the space of nearly all
possible faces, contexts, and observational conditions. These factors combine to form
a diverse landscape of stimuli that makes it challenging to capture the corresponding
psychological content in its entirety. Such content forms the basis of scientific models of
face perception and defines the scope of downstream applications such as training people
to overcome stereotypes (15).

The importance of face attribute inferences has led to the proliferation of techniques
for scientific modeling of faces, which can be organized broadly into two approaches. The
first extrapolates from face photographs, often related via landmark annotations (16, 17).
The second generates artificial faces using parametric three-dimensional face meshes (18).
Photographs offer greater realism but are limited to available datasets of face stimuli that
serve as the basis for interpolation and by the interpolation algorithms themselves, which
often require high-quality landmark annotations unattainable without costly manual work
(19). Artificially generated faces are not subject to these limitations but lack diversity and
realism. Neither approach provides workable models that express the full richness and
diversity of human faces.

Machine learning methods, in particular deep neural networks such as generative adver-
sarial networks (GANs), can learn to model faces from massive collections of photographs
scraped from image-sharing websites (20–23). These methods present a third option
for developing scientific models of faces, providing expressive feature representations
for arbitrary realistic face images. However, relating these representations to human
perception is difficult because they are high-dimensional vectors produced via black-box
optimization algorithms (24).

We show that the keys to unlocking the scientific potential of these models and their
downstream applications are large-scale datasets of human behavior unattainable using
traditional laboratory experiments. In particular, such large datasets provide sufficient
evidence to determine a robust mapping between expressive high-dimensional repre-
sentations from machine learning models and human mental representations of faces.
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Fig. 1. Correlation matrix for 34 average attribute ratings for each of 1,000 faces. Rows and columns are arranged according to a hierarchical clustering of the
correlation values.

We quantify an upper bound on the robustness of the mapping
in terms of the reliability of the underlying attribute inferences
and determine how that robustness scales as a function of the
number of faces rated, the number of ratings per face, and
the dimensionality of the deep feature space. We then use this
mapping to predict and manipulate inferences over arbitrary face
images, enabling us, for example, to adjust a photograph so as to
increase or decrease the perceived trustworthiness of its subject to
match a target rating.

Such a mapping can be computed for any psychologically
meaningful attribute inference. We focus on three classes of such
inferences. First, there are inferences defined by subjective impres-
sions of relatively objective properties (e.g., age and adiposity).
These more objective properties, which also include hair styling,
presence of accessories (e.g., glasses), gaze, and facial expression,
are commonly studied in computer vision, where they are referred
to as “attributes” (25) or “soft biometrics” (26). Next, there are
inferences of subjective and socially constructed attributes, such
as trustworthy and masculine/feminine, the conventional targets
of social scientific study (4). Finally, there are inferences of fully
subjective attributes such as familiar, where the observer is the
only arbiter of truth (27). For ease of presentation, we refer to
inferences of all three classes as “attribute inferences” and the
underlying attributes as “attributes,” drawing distinctions between
the classes in the text as necessary. Please note that these attribute
inferences, especially those of the more subjective or socially con-
structed attributes, have no necessary correspondence to the actual
identities, attitudes, or competencies of people whom the images
resemble or depict (e.g., a trustworthy person may be wrongly
assumed to be untrustworthy on the basis of appearance). Rather,
these inferences, and in turn our measurements, reflect systematic
biases and stereotypes about attributes shared by the population of
raters. Nevertheless, these inferences are driven by (combinations
of ) physical cues present in the faces themselves—for example,
faces judged to look more trustworthy may have more neotenous
features (e.g., large eyes) or upturned lips, as in a smile (4).

We used online crowdsourcing to obtain attribute inference
ratings for just over 1,000 synthetic (although highly naturalistic)
face stimuli for 34 attributes, with ratings by at least 30 unique
participants per attribute–stimulus pair, for a total of 1,020,000
human judgments (Materials and Methods). We call this collection
of face stimuli and the corresponding behavioral data the One
Million Impressions dataset. A detailed summary of these ratings
and interattribute relationships can be found in SI Appendix.

Results

The Structure of Attribute Inferences. To explore the structure
of attribute inferences, we first computed the correlation between
the mean face ratings for each pair of attributes (Fig. 1). Many
attributes were highly correlated, including happy–outgoing (r =
0.93 ) and dominant–trustworthy (r =−0.81), while others were
largely unrelated, including smart–attractive (r = 0.01), smart–
trustworthy (r = 0.02), liberal/conservative–believes in god (r =
0.08), and electable–attractive (r = 0.05).

Although some of these correlations are consistent with pre-
vious findings (8), others are not. First, although past work has
found that judgments of trustworthiness and dominance are often
negatively correlated, the correlation is generally small (on the
order of –0.2), whereas the correlation observed here (–0.81)
was much stronger (4, 28). Second, judgments of smartness or
competence have been found to be highly positively correlated
with judgments of attractiveness and trustworthiness (with values
as high as ≈ 0.8), whereas we found only marginal correlations
between those attribute inferences (8). One explanation for these
discrepancies is that the face stimuli used here are more diverse
than in the comparison studies, especially with respect to age; the
present study includes (simulated) childrens’ faces. This explana-
tion is plausible given that the correlational structure of judgments
of children’s faces is different from the structure of judgments
of adult faces (29). To probe this hypothesis, we recomputed
interattribute correlations on subsets of the data with restricted age
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ranges (SI Appendix, Fig. S9). We found that the inclusion of the
children’s faces partially explains some discrepancies (e.g., smart–
attractive) and does not explain others (trustworthy–dominant).
Third, memorable faces were more attractive, as observed in the
positive correlation between the respective ratings (Fig. 1). This
finding is inconsistent with work showing that actual memorabil-
ity of faces is negatively correlated with attractiveness to the extent
that predictions of memorability are veridical (30). Last, familiar
faces were seen as more attractive and average-looking, consistent
with the finding that average faces tend to be perceived as more
attractive (ref. 31, but see ref. 32).

The attribute outdoors (whether the photo appeared to be taken
outdoors or indoors) was included to assess potential confounds
in using naturalistic face photos. It was found to be the least
correlated with other attributes, having the lowest per-attribute
maximum absolute correlation (outdoors–electable, r = 0.20). In
comparison, the attribute with the next-lowest maximum was
skinny/fat (skinny/fat–attractive, r = 0.43), which despite having
twice the magnitude was one of the easier attributes to predict
(Fig. 2). Furthermore, that outdoors had the lowest mean absolute
correlation with all other attributes (r = 0.08) indicates minimal
contribution of contextual effects due to naturalistic backgrounds
and lighting.

Predicting Attribute Inferences. To model an attribute, we
start with the high-dimensional representation vectors zi =
{z1, . . . zd} assigned to each synthetic face i in our stimulus
set by a pretrained state-of-the-art GAN (21, 22, 33). The GAN
has learned a mapping from each such vector to an image through
extensive training on a large database of real, nonsynthetic face
photographs (Methods and Materials). We then model each
psychological attribute, measured via average ratings yi , as a
linear combination of features: yi = w0 + w1z1 + . . .+ wdzd .
The vector of weights wk = {w1, . . . wd} represents the attribute
as a linear dimension cross-cutting the representational space
and is fit using cross-validated, L2-regularized linear regression.
A diagram summarizing the modeling pipeline for predicting
attribute inferences is provided in SI Appendix, Fig. S1.

Average cross-validated (i.e., out-of-sample) model perfor-
mance for each attribute is reported in Fig. 2. Prediction for most
attributes was reasonably successful, with most R2 values ranging
from above 0.5 to almost 0.8, with attributes typical, familiar, and
gay being the exceptions.

Because participants partly disagree in their appraisals (34),
perfect prediction is impossible. To better understand the pre-
diction ceiling imposed by limited interrater reliability, we com-
puted the split-half reliability for each attribute, averaging the
squared correlations between the averages of 100 random splits
of the ratings for each image. These prediction ceilings vary across
attributes and are plotted in Fig. 2 alongside the corresponding
model shortfalls they imply. (See Factors Influencing Prediction
Performance for a detailed characterization.)

Interestingly, the models of familiar and looks like you showed
the smallest gaps between performance and reliability, indicating
that their unpredictability is not due to poor model quality or
lack of useful input features. Rather, it seems likely that familiar
more so than other attributes is based on both a shared concept
or experience and a much larger personal concept or experience;
only the former can be predicted for participants in aggregate. This
is corroborated by a similar effect for the attribute looks like you,
which can be predicted only at the aggregate level to the extent that
our participant pool has a shared representation of their respective
facial features, which may be a byproduct of the participant pool
having less diversity in appearance than does the stimulus set.

Fig. 2. Average cross-validated model performance (black bars) compared
to intersubject reliability (red markers).

Attributes corresponding to some racial or ethnic social cat-
egories, such as “Black,” exhibited a larger gap between relia-
bility and model performance than did other attributes. One
possible reason for this gap is a sampling bias in the stimulus
generator. Indeed, rating-distribution violin plots provide some
indication that, for example, Black faces were undersampled
(SI Appendix, Fig. S3). A second possible reason for the gap is that
the degree of undersampling of participants who report member-
ship in a racially or ethnically minoritized group might correlate
with the content of the aggregate attribute inferences. However,
we observe no such correlation: the second most common partici-
pant self-identifier was Black, which had one of the largest gaps
between reliability and model performance, whereas attributes
corresponding to even less commonly self-reported racial and
ethnic social categories had a smaller gap. A third possible reason
is that the predominantly White participant pool might have
similar stereotypes of all racially or ethnically minoritized groups,
leading to comparable predictability across the relevant attributes.
However, this explanation is inconsistent with the lack of strong
correlation observed across those attributes (Fig. 1). Taken to-
gether, this suggests that the stimulus selection contributes more
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Fig. 3. Model performance (R2) for each attribute as a function of the number of face examples (Top), the number of participant ratings for each face example
(Middle), and the number of image feature dimensions (Bottom). Attributes are ordered by the maximum model performance observed in Top.

to the observed gap than does the composition of the participant
pool. Even so, no firm conclusion can be drawn because we cannot
rule out limitations in the representational capacity of the neural
network features.
Factors Influencing Prediction Performance. To characterize the
factors influencing prediction performance, we first investigated
the effect of the number of faces rated on predictive performance
(Fig. 3, Top). Performance curves were generated by fitting models
for each of 30 random samples of images with sizes ranging
from 100 to 1,000. Most attributes benefit from increases in the
number of faces rated, with significant variation across them with
respect to how performance scales with the number of unique faces
that were rated. Interestingly, fewer images were needed to saturate
model performance for the attribute feminine/masculine than for
most other attributes. For all other attributes, adding additional
images improved performance through the full range.

Next, we investigated the relationship between the number of
ratings by unique participants obtained for each face stimulus and
predictive performance (Fig. 3, Middle). Performance curves were
generated by fitting models on down-sampled datasets with sizes
ranging from 5 to 30 unique ratings per image, with 30 datasets
sampled per size. Aside from attributes feminine/masculine and age,
which elicit less disagreement, performance increases considerably
as the number of ratings increases for all attributes. Gains due to
the number of ratings diminish with increases in the number of
unique ratings but at a slower rate than gains due to the number
of faces (Fig. 3, Top). It remains to be seen the extent to which
scaling the number of rated faces and the number of ratings
per face beyond the range explored here accounts for the gap
between model performance and the ceiling imposed by interrater
reliability.

Finally, we investigated the relationship between the number
of image features (512 total) and predictive performance (Fig. 3,
Bottom). Performance curves were generated by fitting models
using reduced feature sets obtained via principal components
analysis, varying the dimensionality between 10 and 512. In all
cases, performance saturates quickly but is improved marginally
with a greater number of dimensions in some cases. The various
profiles of saturation indicate that as few as 10 dimensions of this
latent feature space may be enough to account for the bulk of vari-
ance in attribute inferences, with a subset of attributes benefiting
considerably from higher-dimensional feature representations.

It is possible that the quality of the learned representation from
the particular deep neural network we employed was a limiting
factor in predictive performance. Factors beyond predictive per-
formance (specifically, the ability to generate images in addition to
representing them) guided network selection for the present study.
Other architectures with other forms of supervision may offer
improvement in predictive performance. For example, there is
evidence that identity-supervised models provide representations
that are highly predictive of diverse attribute information (26,
35, 36).
Manipulating Attribute Inferences. Because the learned
attribute vectors correspond to linear dimensions, we can
manipulate an arbitrary face represented by features zi with
respect to attribute k using vector arithmetic: zi + βwk , where
β is a scalar that controls the positive or negative modulation of
the attributes. We apply a symmetric range of β around 0 to each
attribute vector to manipulate a series of base face representations
in both the negative and positive directions and decode the results
for visualization using the same decoder/generator component of
the neural network that was used to derive representations (see
SI Appendix for more details).

The results of these transformations for six sample attribute
inferences are shown in Fig. 4. The manipulations are strikingly
smooth and effective along each attribute dimension. For ex-
ample, modulating trustworthiness increases features associated
with perceptions of trustworthiness, such as eye gaze, degree of
smiling, face shape, and facial femininity (4, 37). Manipulations
of attribute inferences may affect more than one dimension of
appearance. For example, increasing smartness may add glasses or
change the facial expression. Increasing outgoingness may increase
smiling, as expected, but also give glasses a more rounded and
cartoonish appearance. Other dimensions allow for greater levels
of extrapolation. For example, faces can be made considerably
skinnier or fatter than any examples in the dataset, yet still
maintain a realistic appearance. Faces with strongly manipulated
happiness also resemble convincing caricatures.

It is possible to manipulate one dimension s (e.g., smartness)
while controlling for another t (e.g., trustworthiness) by creating
an orthogonal vector, subtracting the projected component of the
dimension to be controlled for:

s − t
s · t
||t ||2 . [1]
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BA

Fig. 4. (A) The faces judged on average to have the highest and lowest ratings along six sample perceived attribute dimensions. (B) Model-based manipulations
of two sample base faces along the sample dimensions, demonstrating smooth and effective manipulations along each attribute.

An example of such transformations controlling for trustwor-
thiness on a given exemplar face can be seen in SI Appendix,
Fig. S11.

Note that the attribute-inference manipulations can affect both
internal facial features and external features. When only internal
face features are altered, it is not because the GAN manipulates
only internal features but because the external features are orthog-
onal or irrelevant to that attribute inference in the region of the
manipulated face.

Validating Models of Attribute Inferences. Do the attribute
models generated above reliably change participants’ impressions
of faces transformed with them? To answer this question, we
ran a series of 20 preregistered experiments with over 1,000
participants to verify that our models can indeed manipulate
attribute impressions in observers. Each of the experiments paired
one of two face image types (artificial vs. real) with one of
10 different attribute dimensions, chosen to represent a wide
range of different model performances and levels of objectiv-
ity/subjectivity (age, feminine/masculine, skinny/fat, trustworthy,
attractive, dominant, smart, outgoing, memorable, and familiar).
Like in the attribute-modeling experiments, for the artificial face
experiments we generated 50 unique synthetic faces at random

using StyleGAN2 (21, 22), a state-of-the-art GAN architecture
(SG2). However, for the real-face experiments, we encoded into
our model 50 unique face photograph, chosen from a commonly
used database of real faces from the psychological literature (38).
On each trial, participants were shown a single face and asked
to rate it. Critically, each face image was transformed by one
(experimentally assigned) perceived attribute model to evoke one
of three levels of that impression; faces could be set to the mean
observed value of the perceived attribute or at ± 0.5 SD from
that mean. Every face was shown at every level of the assigned
attribute (50 identities × 3 transformation levels = 150 unique
faces), and once again, 20% of trials were repeated to measure
test–retest reliability (in order to exclude subjects with negative
such reliability) for a total of 180 trials. If the attribute model
transformations indeed change participants’ impressions of the
faces, then we should observe that participants’ ratings of the faces
increase with increasing levels of the manipulation. We found
just that: repeated measures ANOVAs revealed that all of the
manipulations yielded highly significant results [all F (2, 98)s >
14.13, all values of P < 0.000005, all values of η2 > 0.223].
Critically, all of the experiments’ data showed a strongly significant
positive linear trend [all values of t(98) > 2.69, all values of
P ≤ 0.008, with the exception of real faces manipulated along
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the familiar attribute dimension, t(98) =−1.60, P = 0.112; see
SI Appendix, Fig. S12 for a swarmplot of all the data].*

General Discussion

We set out to develop a comprehensive model of attribute percep-
tion that can predict human attribute inferences from face images
and manipulate them along psychologically meaningful dimen-
sions. With no explicit featurization or interpolation algorithm,
the model accomplishes this in a fully data-driven manner with
relatively high accuracy and generalization. Large datasets (with
respect to both the number of face stimuli and the number of rat-
ings per face) are necessary to achieve this. Qualitative results and
validation experiments demonstrate that psychological attribute
manipulations of realistic face photos can be accomplished using
simple vector arithmetic. Moreover, our pipeline provides a gen-
eral formula for modeling inferences of any attributes that can be
measured via image annotations. Because the models of attributes
are expressed in the same multidimensional space, their similarity
is immediately given, enabling testing of specific hypotheses about
the relation between psychological attributes, predicting novel
attributes based on their relationships with models of existing
attributes, and controlling for shared variance between attributes.

The model broadly characterizes inferences about diverse faces
in their everyday contexts and viewing conditions. For exam-
ple, in any particular image, one can generally discern whether
the photograph is candid or contrived, environment conditions
(e.g., outside in direct sunlight near vegetation versus inside of
a building with warm lighting), the subject’s pose and gaze,
grooming habits, and even hints of their culture or tastes based
on partially visible clothing, necklines, head wear, jewelry, glasses,
etc. Other factors of variation include viewing angle, head pose,
photo quality, focal length, and depth of field, among others.
While capturing behavior in a way that generalizes across these
variations (and includes their effects) is the primary goal, it
has the considerable disadvantage of making interpretation more
challenging. Consider, for example, when one face is inferred
to be more trustworthy than another. Is it because of furrowed
brows and a wide jaw or because of a highly atypical hat and dark
lighting? Although our stimuli are synthetic, they are not highly
controlled, more comparable to randomly sampled and weakly
curated photographs. Thus, understanding the bases of attribute
inferences will require significant additional lower-level attribute
annotations (e.g., hair color). Fig. 1, for example, implies that
skinny/fat, long hair, and hair color (hair darkness) are not partic-
ularly explanatory of attribute inferences, with some exceptions
(e.g., skinny/fat–attractive). Qualitative inspection revealed that
transformations did not appear to frequently or significantly alter
nonface features (with the notable exception of spawning glasses
when increasing smart-ness).

Another notable consideration when interpreting the current
work is that the diversity of the faces used in the experiment will
almost certainly influence and may even obfuscate the meaning
of some attributes. For example, the semantics of the attribute
attractive may differ when rating images of children versus adults.
It is not enough to simply analyze subsets of faces in the data,
because the context of the experiment may induce order effects
or serial dependence (39) that influences participant ratings of
all faces. It is also difficult to manipulate the context of the
experiment because so many different contexts are possible. Fu-

*The fact that familiar performed so poorly is not unexpected, as this dimension was
specifically chosen to represent a poorly performing attribute model from the model-
generation studies.

ture work could consider two possible solutions. The first is to
exploit the fact that our experiment sampled faces and their
ordering, and thus contexts, at random and relatively densely.
Because some of these contexts will cluster into, e.g., many-
children/few-children groups, this provides one possible avenue
for probing relevant effects. The second is to model attributes
as multimodal, wherein attributes are not single linear factors
(linear combinations of features) but many potentially correlated
but not wholly colinear factors that cluster in different regions of
the underlying representation space of the attribute model. This
may also explain part of the current gap between our predictive
models and the corresponding estimated upper bounds based on
intersubject reliability.

Last, it is unclear whether synthetic stimuli generated by archi-
tectures like SG2, despite being generally convincingly realistic,
are in fact different from real faces in ways that could bias
conclusions that make use of them. For this reason, researchers
making use of these stimuli to draw conclusions about human
perception should take care to validate findings derived from them
using photos of real faces as appropriate.

Ethical Implications. Importantly, while the primary goal of this
work is to support scientific modeling, the framework developed
here adds significantly to the ethical concerns that already en-
shroud image manipulation software. In contrast to traditional
photo editing, which may be limited in effectiveness by the
intuitions of a particular artist, the current method may be more
accurate and at the least is faster and more efficient through its
automation. Further, in contrast to other methods making use of
deep neural networks such as DeepFakes (40), which can affect the
social perception of an individual by placing them in an unwanted
or compromising context (e.g., superimposed on a body in an
arbitrary target image), our model can induce (perceived) changes
within the individual’s face itself and may be difficult to detect
when applied subtly enough. We argue that such methods (as
well as their implementations and supporting data) should be
made transparent from the start, such that the community can
develop robust detection and defense protocols to accompany
the technology, as they have done, for example, in developing
highly accurate image forensics techniques to detect synthetic
faces generated by SG2 (41, 42). More generally, to the extent
that improper use of the image manipulation techniques described
here is not covered by existing defamation law (43, 44), it is
appropriate to consider ways to limit use of these technologies
through regulatory frameworks proposed in the broader context
of face-recognition technologies (45, 46).

There is also potential for our data and models to perpetuate
the biases they measure, which are first impressions of the popu-
lation under study and have no necessary correspondence to the
actual identities, attitudes, or competencies of people whom the
images resemble or depict. While the bias in our sample of raters
comes from the same population as most crowdsourced studies,
it may be particularly important to understand in the context
of social attribute perception, given that it consists of primarily
White participants from the United States. Further, we found
that the generative model that synthesized our stimuli, while
highly diverse, nonetheless undersamples faces of Black people
and other minoritized groups. Applications of the model will
thereby produce face images that are more closely aligned with
this bias than are the original inputs. We quantify part of this
bias beyond participant demographics primarily using the White,
familiar, and looks like you attributes, all of which are moderately
correlated (Fig. 1).
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Conclusion. Modern data-driven methods from machine learn-
ing provide new tools for representing and manipulating complex,
naturalistic stimuli but are not explicitly designed to model or
explain human mental representations. However, applying the
same “big data” philosophy to behavioral experiments allows us
to align these powerful models with human perception. The deep
models of superficial face judgments that we explore in this paper
can in turn be used to broaden the range of behavioral data
we can collect because they define an infinite set of realistic
and psychologically controlled stimuli for a new generation of
behavioral experiments.

Materials and Methods

Stimuli. Our experiments make use of 1,004 synthetic yet photorealistic images
of faces generated using SG2. The generator network component of SG2 models
the distribution of face images conditioned on a 512-dimensional, unit-variance,
multivariate normal latent variable. When a vector is sampled from this distri-
bution and passed through the network, it is mapped to a second, intermediate
512-dimensional representation (for which the distribution is unknown), which
is in turn fed through multiple layers and ultimately mapped to an output image
resembling those from the dataset on which the model was trained. Thus, either
of the two 512-dimensional representations can be used for our modeling ap-
plications, each associating one fully descriptive (latent) feature vector with each
face. We used the latter representation throughout because it yielded superior
results in all analyses. Specifically, we use these representations from a pretrained
model that was trained on the Flickr-Faces-HQ Dataset (21), containing 70,000
high-quality images at a resolution of 1,024 × 1,024 pixels. Images generated
by this model are rendered at the same resolution.

The synthetic faces generated by SG2 are diverse and convincingly realistic
in most cases but can occasionally contain visual artifacts that appear odd or
even jarring. We minimized these artifacts in our dataset using two strategies.
First, SG2 employs a parameterψ for posttraining image generation that bounds
the norm of each multivariate input sample and, as a result, trades off between
sample diversity and sample quality. We set ψ to 0.75, which by inspection
appeared to jointly maximize the criteria for our purposes. Second, we manually
inspected and filtered the generated images, removing all instances that con-
tained obviously distorted faces, multiple faces, hands, localized blotches of color,
implausible headdress, or any particularly notable visual artifact. Specifically,
we sampled ∼10,000 512-dimensional normal vectors, fed them through the
generator network of SG2 to obtain 10,000 candidate face stimuli for our dataset,
and took the first ≈ 1,000 that met the criteria for quality. Random examples
from the stimulus set are provided in SI Appendix.

For the model-validation studies, 50 real face identities were generated by
encoding 50 faces from the Chicago Face Database (CFD ) (38). The CFD faces
used in these real-face experiments were roughly balanced in terms of the four
races and two genders available in the main stimulus set. The final set included
12 East Asian, 14 Black, 12 Latin American, and 12 White faces (with equal
numbers of male and female faces in each racial group). The 50 faces used in the
artificial face experiments were chosen via the same procedure as in the previous
attribute modeling studies. Each unique face identity was then transformed along
one of 10 perceived attribute dimensions (age, feminine/masculine, skinny/fat,
trustworthy, attractive, dominant, smart, outgoing, memorable, and familiar) at
three levels of the attribute (–0.5 SD, 0 SD, and +0.5 SD from the mean ratings
observed in the attribute model studies). This yielded 150 unique images per
model-validation study and therefore 3,000 unique images in total.

Participants. For the attribute model studies, we used Amazon Mechanical Turk
to recruit a total of 4,157 participants across 10,974 sessions, of which 10,633
(≈ 97%) met our criteria for inclusion (SI Appendix, Data Quality). Participants
identified their gender as female (2,065) or male (2,053), preferred not to say
(21), or did not have their gender listed as an option (18). The mean age was
∼39 y old. Participants identified their race/ethnicity as either White (2,935),
Black/African American (458), Latinx/a/o or Hispanic (158), East Asian (174),
Southeast Asian (71), South Asian (70), Native American/American Indian (31),
Middle Eastern (12), Native Hawaiian or Other Pacific Islander (3), or some
combination of two or more races/ethnicities (215). The remaining participants

either preferred not to say (22) or did not have their race/ethnicity listed as an
option (8).

For the model-validation studies, we recruited a total of 1,022 workers from
Amazon Mechanical Turk via CloudResearch (47), of which 1,000 (∼98%) met
our criteria for inclusion. Of those, 18 participants were excluded for low test–
retest reliability, one was excluded for participating in the experiment twice, and
three were overrecruited beyond our target sample size of 1,000. Participants
identified their gender as female (530) or male (484), preferred not to say (3),
or did not have their gender listed as an option (5). The mean age was ∼42 y
old. Participants identified their race/ethnicity as either White (781), Black/African
American (77), Latinx/a/o or Hispanic (37), East Asian (37), Southeast Asian
(11), South Asian (12), Native Hawaiian or Other Pacific Islander (3), or some
combination of two or more races/ethnicities (57). The remaining participants
either preferred not to say (3) or did not have their race/ethnicity listed as an
option (4).

The Institutional Review Board at Princeton University approved both sets of
studies. Participants provided informed consent before beginning the study.

Procedure. For the attribute model studies, we used a between-subjects design
where participants evaluated faces with respect to each attribute. Participants first
consented. Then they completed a preinstruction agreement to answer open-
ended questions at the end of the study. In the instructions, participants were
given 25 examples of face images in order to provide a sense of the diversity
they would encounter during the experiment. Participants were instructed to rate
a series of faces on a continuous slider scale where extremes were bipolar descrip-
tors such as “trustworthy” and “not trustworthy.” We did not supply definitions of
each attribute to participants and instead relied on participants’ intuitive notions
of each.

Each participant then completed 120 trials with the single attribute to which
they were assigned. One hundred of these trials displayed images randomly
selected (without replacement) from the full set; the remaining 20 trials were
repeats of earlier trials, selected randomly from the 100 unique trials, which we
used to assess intrarater reliability. Each stimulus in the full set was judged by at
least 30 unique participants.

At the end of the experiment, participants were given a survey that queried
what participants believed we were assessing and asked for a self-assessment of
their performance and feedback on any potential points of confusion, as well as
demographic information such as age, race, and gender. Participants were given
30 min to complete the entire experiment, but most completed it in under 20
min. Each participant was paid $1.50.

The model-validation studies followed an identical procedure to that of the
attribute modeling studies above, except where noted below.

Each participant completed one of 20 preregistered experiments involving a
pair of one of two different face image types (artificial vs. real) with manipula-
tions along one of 10 different attribute dimensions (age, feminine/masculine,
skinny/fat, trustworthy, attractive, dominant, smart, outgoing, memorable, and
familiar). In each experiment, observers rated 150 unique images (with 30
repeats) along the assigned perceived attribute dimension. Each participant was
paid $2.00 due to the longer experiment duration.

Face Attribute Model. To broadly capture human face attribute perception, a
model should accurately reproduce human judgments about the attributes of
natural faces. More formally, we seek a function φ(·)PE (what we call a “psycho-
logical encoder”) that maps from any possible face stimulus xi = {x1, . . . xm}
(i.e., an m-dimensional vector of raw pixel intensities) to a given psychological
attribute inference (average judgment for face xi):

φ(xi)PE = yi. [2]

We further define φ(·)PE as a decomposition of functions:

φ(x)PE = φ(φ(x)F)S , [3]

where φ(xi)F = zi = {z1, . . . zd} is a rich feature representation of face stim-
ulus xi and φ(·)S maps these features to psychological dimensions of interest.
This formulation allows us to leverage state-of-the-art neural networks to featurize
arbitrary, complex face images.
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We then relate these features zi to psychological features by assuming that
φ(·)S is a linear function and thereby implying that each attribute is a 512-
dimensional (potentially sparse) vector in the overall feature space. The func-
tion φ(·)S is learned from human attribute judgment data. In particular, given
continuous-scale attribute judgments (i.e., degree of trustworthiness on a scale
from 1 to 100), we use linear regression to map 512-dimensional feature vectors
zi to average attribute ratings yi:

yi = φ(zi)S = w0 + w1z1 + . . .+ wdzd . [4]

In both cases, weight vector wk = {w1, . . . wd} represents a single attribute k
as a linear factor. Therefore, at the heart of our model is a matrix W ∈ IR k×d , a
set of d-dimensional linear factors for each of the k attributes, each obtained by
fitting a separate linear model.

The above components of the model enable predictions of attributes to be
made for arbitrary face stimuli. We further desire the flexibility to manipulate
these attributes for a given face. Because we represent each attribute as a vector
wk in the feature representation space, we can manipulate each face in this space
(i.e., represented by zi) using vector addition:

z′i = zi + βwk , [5]

where z′i is the new transformed face andβ is a scalar parameter that controls the
strength of the transformation, which can be positive or negative. When β = 0,
z′i = zi, and no transformation takes place. In other words,β scales the attribute
vector that is added to the given face representation. Finally, in order to generate
a new stimulus corresponding to our transformation, the inverse featurizer (i.e.,
decoder/generator network of SG2) φ−1(·)F is employed to map from features
zi back to a face stimulus xi, such that manipulation of face images can be fully
described by

x′
i = φ−1(z′i )F = φ−1(zi + βwk) = φ−1(φ(xi)F + βwk), [6]

where x′
i is the attribute-transformed version of input face xi.

The success of the above formulation (i.e., good prediction of human at-
tribute judgments for arbitrary faces) is highly dependent on the choice of the
feature encoder φ(·)F , which abstracts over raw pixels and provides the basis
for modeling attributes. If the features are not sufficiently expressive, the model
will fail to make good predictions of human attribute judgments. Likewise, the
ability of the inverse function φ−1(·)F to generate face stimuli given their
feature representations determines whether attribute-transformed face stimuli
will successfully avoid the uncanny valley effect. There are many modern neural
networks that could make for a good choice of featurizer φ(·)F . For example,
convolutional neural networks, which learn hierarchies of translation-invariant
features, can be trained to classify faces to a high level of accuracy, and their
hidden representations can be taken as a feature representation z. However, this
method does not yield an inverse function from features back to stimuli and
attempts to invert models after the fact often introduce artifacts (48).

Instead, we selected a model primarily aimed at solving the inverse problem
alone. GANs are a form of deep latent variable model that learn to model a dis-
tribution of images using two components: a generator network that generates
images by mapping Gaussian noise to (synthetic) images and a discriminator

network that discriminates between real and generated data. When properly
trained in a way that balances the two components, the discriminator network
forces the generator to produce realistic images, and the discriminator can no
longer distinguish between real and generated images. SG2, described earlier,
is one of the most successful applications of this model structure and training
paradigm; it includes several key improvements that yield highly convincing
results (see example faces in SI Appendix).

SG2 yields only the inverse functionφ(xi)
−1
F , a learned convolutional genera-

tor or decoder function which maps from features to images. In order to apply our
model to arbitrary face images outside of our set of 1,004, inverting this function
is required. While the authors of SG2 supply their own solution to this problem,
we find that it is not accurate enough for our purposes. Instead, we define an
encoder function and featurizer φ(xi)F as an optimization process that searches
via gradient descent for the vector input to SG2 that produces an output image
with a good likeness to the one we wish to featurize. This likeness is defined as
Euclidean distance in the feature space of another external convolutional network
pretrained to recognize faces (20). Additionally, because this process is slow, we
initialize the image-encoding vector using a first-pass approximation from yet
another convolutional neural network that we trained to regress thousands of
SG2 image samples to the output vectors that generated them. This encoder is
much less accurate, but much faster, and drastically speeds convergence of the
slower and more accurate decoding process outlined above.

A summary diagram of our modeling pipeline is provided in SI Appendix,
Fig. S1.

Model Fitting and Generalization. All linear regression models were fit using
the least squares algorithm. Because image feature representations (i.e., vectors
of predictors in the design matrix) are high-dimensional, there is a significant risk
of overfitting, which could potentially result in suboptimal or meaningless model
solutions. To address this, we use ridge regression, which penalizes solutions wk

that have a large euclidean distance from the 0 vector. The strength of this penalty
and its influence on the resulting solution is controlled by a free parameter λ.
We search for the optimal value of this parameter based on the generalization
performance of the model, specifically using 10-fold cross-validation. All reported
model scores are averages over those for each of the 10 folds, such that we never
report performance on data that was used to fit our models.

Data Availability. The One Million Impressions dataset and all behavioral
judgments and synthesized images have been deposited in a GitHub repository
(https://github.com/jcpeterson/omi) (49).

ACKNOWLEDGMENTS. A.T. was supported by the Richard N. Rosett Faculty
Fellowship at the University of Chicago Booth School of Business. Data collection
was funded by the Innovation Fund for New Ideas in the Natural Sciences from
Princeton University’s Dean for Research.

Author affiliations: aDepartment of Computer Science, Princeton University, Princeton, NJ
08540; bBooth School of Business, University of Chicago, Chicago, IL 60637; cDepartment
of Psychology, Princeton University, Princeton, NJ 08540; and dSchool of Business, Stevens
Institute of Technology, Hoboken, NJ 07030

1. F. Farzin, C. Hou, A. M. Norcia, Piecing it together: Infants’ neural responses to face and object
structure. J. Vis. 12, 6–6 (2012).

2. N. Kanwisher, J. McDermott, M. M. Chun, The fusiform face area: A module in human extrastriate
cortex specialized for face perception. J. Neurosci. 17, 4302–4311 (1997).

3. C. Frith, Role of facial expressions in social interactions. Philos. Trans. R. Soc. Lond. B Biol. Sci. 364,
3453–3458 (2009).

4. N. N. Oosterhof, A. Todorov, The functional basis of face evaluation. Proc. Natl. Acad. Sci. U.S.A. 105,
11087–11092 (2008).

5. C. A. Sutherland et al., Social inferences from faces: Ambient images generate a three-dimensional
model. Cognition 127, 105–118 (2013).

6. L. A. Zebrowitz, First impressions from faces. Curr. Dir. Psychol. Sci. 26, 237–242 (2017).
7. B. C. Jones et al., To which world regions does the valence-dominance model of social perception

apply? Nat. Hum. Behav. 5, 159–169 (2021).
8. A. Todorov, D. Oh, The structure and perceptual basis of social judgments from faces. Adv. Exp. Soc.

Psychol. 63, 189–245 (2021).
9. C. A. M. Sutherland et al., Facial first impressions across culture: Data-driven modeling of Chinese and

British perceivers’ unconstrained facial impressions. Pers. Soc. Psychol. Bull. 44, 521–537 (2018).
10. A. Todorov, C. Y. Olivola, R. Dotsch, P. Mende-Siedlecki, Social attributions from faces: Determinants,

consequences, accuracy, and functional significance. Annu. Rev. Psychol. 66, 519–545 (2015).

11. A. Todorov, A. N. Mandisodza, A. Goren, C. C. Hall, Inferences of competence from faces predict
election outcomes. Science 308, 1623–1626 (2005).

12. A. C. Little, R. P. Burriss, B. C. Jones, S. C. Roberts, Facial appearance affects voting decisions. Evol. Hum.
Behav. 28, 18–27 (2007).

13. I. V. Blair, C. M. Judd, K. M. Chapleau, The influence of Afrocentric facial features in criminal
sentencing. Psychol. Sci. 15, 674–679 (2004).

14. J. L. Eberhardt, P. G. Davies, V. J. Purdie-Vaughns, S. L. Johnson, Looking deathworthy: Perceived
stereotypicality of Black defendants predicts capital-sentencing outcomes. Psychol. Sci. 17, 383–386
(2006).

15. C. J. Bohil, H. M. Kleider-Offutt, C. Killingsworth, A. M. Meacham, Training away face-type bias:
Perception and decisions about emotional expression in stereotypically black faces. Psychol. Res. 85,
2727–2741 (2021).

16. M. Turk, A. Pentland, Eigenfaces for recognition. J. Cogn. Neurosci. 3, 71–86 (1991).
17. B. Tiddeman, M. Stirrat, D. Perrett, Towards realism in facial prototyping: Results of a wavelet mrf

method. Proc. Theory Pract Comp. Graph. 1, 20–30 (2006).
18. V. Blanz, T. Vetter, “A morphable model for the synthesis of 3d faces” in Proceedings of the 26th Annual

Conference on Computer Graphics and Interactive Techniques, A. Rockwood, Ed. (ACM
Press/Addison-Wesley Publishing Co., 1999), pp. 187–194.

19. C. A. Sutherland, G. Rhodes, A. W. Young, Facial image manipulation: A tool for investigating social
perception. Soc. Psychol. Personal. Sci. 8, 538–551 (2017).

8 of 9 https://doi.org/10.1073/pnas.2115228119 pnas.org

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 3
8.

39
.1

70
.1

02
 o

n 
Ju

ly
 2

7,
 2

02
2 

fr
om

 I
P 

ad
dr

es
s 

38
.3

9.
17

0.
10

2.

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2115228119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2115228119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2115228119/-/DCSupplemental
https://github.com/jcpeterson/omi
https://doi.org/10.1073/pnas.2115228119


20. O. M. Parkhi, A. Vedaldi, A. Zisserman, “Deep face recognition” in Proceedings of the British Machine
Vision Conference (BMVC), X. Xi, M. W. Jones, G. K. L. Tam, Eds. (BMVA Press, 2015), pp. 41.1–41.12.

21. T. Karras, S. Laine, T. Aila, “A style-based generator architecture for generative adversarial networks” in
CVF Conference on Computer Vision and Pattern Recognition (CVPR) (IEEE, 2018), pp. 4396–4405.

22. T. Karras et al., “Analyzing and improving the image quality of StyleGAN” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (IEEE, 2020), pp. 8110–8119.

23. Y. Choi et al., “StarGAN: Unified generative adversarial networks for multi-domain image-to-image
translation” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (IEEE,
2018), pp. 8789–8797.

24. A. J. O’Toole, C. D. Castillo, C. J. Parde, M. Q. Hill, R. Chellappa, Face space representations in deep
convolutional neural networks. Trends Cogn. Sci. 22, 794–809 (2018).

25. Z. He, W. Zuo, M. Kan, S. Shan, X. Chen, AttGAN: Facial attribute editing by only changing what you
want. IEEE Trans. Image Process. 28, 5464–5478 (2019).

26. P. Terhörst, D. Fährmann, N. Damer, F. Kirchbuchner, A. Kuijper, “Beyond identity: What information is
stored in biometric face templates?” in 2020 IEEE International Joint Conference on Biometrics (IJCB)
(IEEE, 2020), pp. 1–10.

27. V. Bruce, A. Young, Understanding face recognition. Br. J. Psychol. 77, 305–327 (1986).
28. D. Oh, R. Dotsch, J. Porter, A. Todorov, Gender biases in impressions from faces: Empirical studies and

computational models. J. Exp. Psychol. Gen. 149, 323–342 (2020).
29. J. R. Collova, C. A. M. Sutherland, G. Rhodes, Testing the functional basis of first impressions:

Dimensions for children’s faces are not the same as for adults’ faces. J. Pers. Soc. Psychol. 117,
900–924 (2019).

30. W. A. Bainbridge, P. Isola, A. Oliva, The intrinsic memorability of face photographs. J. Exp. Psychol. Gen.
142, 1323–1334 (2013).

31. G. Rhodes, The evolutionary psychology of facial beauty. Annu. Rev. Psychol. 57, 199–226 (2006).
32. C. P. Said, A. Todorov, A statistical model of facial attractiveness. Psychol. Sci. 22, 1183–1190 (2011).
33. I. J. Goodfellow et al., “Generative adversarial networks.” in Advances in Neural Information Processing

Systems, Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, K. Q. Weinberger, Eds. (Curran Associates,
Inc., 2014), vol. 27.

34. J. E. Martinez, F. Funk, A. Todorov, Quantifying idiosyncratic and shared contributions to judgment.
Behav. Res. Methods 52, 1428–1444 (2020).

35. A. Song, L. Linjie, C. Atalla, G. Cottrell, “Learning to see people like people: Predicting social
impressions of faces.” in 39th Annual Meeting of the Cognitive Science Society (CogSci, 2017).

36. C. J. Parde, Y. Hu, C. Castillo, S. Sankaranarayanan, A. J. O’Toole, Social trait information in deep
convolutional neural networks trained for face identification. Cogn. Sci. 43, e12729 (2019).

37. M. L. Willis, R. Palermo, D. Burke, Social judgments are influenced by both facial expression and
direction of eye gaze. Soc. Cogn. 29, 415–429 (2011).

38. D. S. Ma, J. Correll, B. Wittenbrink, The Chicago face database: A free stimulus set of faces and
norming data. Behav. Res. Methods 47, 1122–1135 (2015).

39. A. Kiyonaga, J. M. Scimeca, D. P. Bliss, D. Whitney, Serial dependence across perception, attention, and
memory. Trends Cogn. Sci. 21, 493–497 (2017).

40. P. Korshunov, S. Marcel, Deepfakes: A new threat to face recognition? Assessment and detection. arXiv
[Preprint] (2018). https://arxiv.org/abs/1812.08685 (Accessed 20 December 2018).

41. D. Gragnaniello, D. Cozzolino, F. Marra, G. Poggi, L. Verdoliva, “Are GAN generated images easy to
detect? A critical analysis of the state-of-the-art” in 2021 IEEE International Conference on Multimedia
and Expo (ICME) (IEEE, 2021), pp. 1–6.

42. G. Tang et al., Detection of GAN-synthesized image based on discrete wavelet transform. Secur.
Commun. Netw. 2021, 5511435 (2021).

43. R. Winick, Intellectual property, defamation and the digital alteration of visual images. Columbia VLA
J. Law Arts 21, 143 (1996).

44. L. B. A. Potter, Altered realities: The effect of digital imaging technology on libel and right of privacy.
Hast. Comm. Ent. LJ 17, 495 (1994).

45. D. Almeida, K. Shmarko, E. Lomas, The ethics of facial recognition technologies, surveillance, and
accountability in an age of artificial intelligence: A comparative analysis of US, EU, and UK regulatory
frameworks. AI Ethics, 10.1007/s43681-021-00077-w (2021).
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