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Abstract	10 

The human brain has the impressive capacity to adapt how it processes information to 11 

high-level goals. While it is known that these cognitive control skills are malleable and 12 

can be improved through training, the underlying plasticity mechanisms are not well 13 

understood. Here, we develop and evaluate a model of how people learn when to exert 14 

cognitive control, which controlled process to use, and how much effort to exert. We 15 

derive this model from a general theory according to which the function of cognitive 16 

control is to select and configure neural pathways so as to make optimal use of finite time 17 

and limited computational resources. The central idea of our Learned Value of Control 18 

model is that people use reinforcement learning to predict the value of candidate control 19 

signals of different types and intensities based on stimulus features. This model correctly 20 

predicts the learning and transfer effects underlying the adaptive control-demanding 21 



 2 

behavior observed in an experiment on visual attention and four experiments on 1 

interference control in Stroop and Flanker paradigms. Moreover, our model explained 2 

these findings significantly better than an associative learning model and a Win-Stay 3 

Lose-Shift model. Our findings elucidate how learning and experience might shape 4 

people’s ability and propensity to adaptively control their minds and behavior. We 5 

conclude by predicting under which circumstances these learning mechanisms might lead 6 

to self-control failure. 7 

Author	Summary	8 

The human brain has the impressive ability to adapt how it processes information to high 9 

level goals. While it is known that these cognitive control skills are malleable and can be 10 

improved through training, the underlying plasticity mechanisms are not well understood. 11 

Here, we derive a computational model of how people learn when to exert cognitive 12 

control, which controlled process to use, and how much effort to exert from a formal 13 

theory of the function of cognitive control. Across five experiments, we find that our 14 

model correctly predicts that people learn to adaptively regulate their attention and 15 

decision-making and how these learning effects transfer to novel situations. Our findings 16 

elucidate how learning and experience might shape people’s ability and propensity to 17 

adaptively control their minds and behavior. We conclude by predicting under which 18 

circumstances these learning mechanisms might lead to self-control failure. 19 



 3 

Introduction	1 

The human brain has the impressive ability to adapt how it processes information 2 

and responds to stimuli in the service of high level goals, such as writing an article [1]. 3 

The mechanisms underlying this behavioral flexibility range from seemingly simple 4 

processes, such as inhibiting the impulse to browse your Facebook feed, to very complex 5 

processes such as orchestrating your thoughts to reach a solid conclusion.  Our capacity 6 

for cognitive control enables us to override automatic processes when they are 7 

inappropriate for the current situation or misaligned with our current goals. One of the 8 

paradigms used to study cognitive control is the Stroop task, where participants are 9 

instructed to name the hue of a color word (e.g., respond “green” when seeing the 10 

stimulus RED) while inhibiting their automatic tendency to read the word (“red”) [2]. 11 

Similarly, in the Eriksen flanker task, participants are asked to report the identity of a 12 

target stimulus surrounded by multiple distractors while overcoming their automatic 13 

tendency to respond instead to the distractors. Individual differences in the capacity for 14 

cognitive control are highly predictive of academic achievement, interpersonal success, 15 

and many other important life outcomes [3,4]. 16 

While exerting cognitive control improves people’s performance in these tasks, it 17 

is also effortful and appears to be intrinsically costly [5,6]. The Expected Value of 18 

Control (EVC) theory maintains that the brain therefore specifies how much control to 19 

exert according to a rational cost-benefit analysis, weighing these effort costs against 20 

attendant rewards for achieving one’s goals [7]. In broad accord with the predictions of 21 

the EVC theory, previous research has found that control specification is context-22 

sensitive [8,9] and modulated by reward across multiple domains [10,11], such as 23 



 4 

attention, response inhibition, interference control, and task switching. While previous 1 

theories account for that fact that people’s performance in these task is sensitive to 2 

reward [7,12–14], it remains unclear how these dependencies arise from people’s 3 

experience. Recently, it has been proposed that the underlying mechanism is associative 4 

learning [15,16]. Indeed, a number of studies have demonstrated that cognitive control 5 

specification is plastic: whether people exert cognitive control in a given situation, which 6 

controlled processes they employ, and how much control they allocate to them is learned 7 

from experience.  For instance, it has been demonstrated that participants in visual search 8 

tasks gradually learn to allocate their attention to locations whose features predict the 9 

appearance of a target [17], and a recent study found that learning continuously adjusts 10 

how much cognitive control people exert in a Stroop task with changing difficulty [18]. 11 

Furthermore, it has been shown that people learn to exert more cognitive control after 12 

their performance on a control-demanding task was rewarded [10] and learn to exert 13 

more control in response to potentially control-demanding stimuli that are associated with 14 

reward than to those that are not [11].  15 

These studies provide evidence that people can use information from their 16 

environment (e.g., stimulus features) to learn when to exert cognitive control and how to 17 

exert control, and it has recently been suggested that this can be thought of in terms of 18 

associative learning [15,16]. Other studies suggested that cognitive control can be 19 

improved through training [19–21]. However, achieving transfer remains challenging 20 

[22–25], the underlying learning mechanisms are poorly understood, and there is 21 

currently no theory that could be used to determine which training regimens will be most 22 

effective and which real-life situations the training will transfer to. Developing precise 23 



 5 

computational models of the plasticity of cognitive control may be a promising way to 1 

address these problems and to enable more effective training programs for remediating 2 

executive dysfunctions and enabling people to pursue their goals more effectively. 3 

In this article, we extend the EVC theory to develop a theoretical framework for 4 

modeling the function and plasticity of cognitive control specification. This extension 5 

incorporates recent theoretical advances inspired by the rational metareasoning 6 

framework developed in the artificial intelligence literature [26,27]. We leverage the 7 

resulting framework to derive the Learned Value of Control (LVOC) model which can 8 

learn to efficiently select control signals based on features of the task environment. The 9 

LVOC model can be used to simulate cognitive control (e.g., responding to a goal-10 

relevant target that competes with distractors) and, more importantly, how it is shaped by 11 

learning. According to the LVOC model, people learn the value of different cognitive 12 

control signals (e.g., how much to attend one stimulus or another). A key strength of this 13 

model is that it is very general and can be applied to phenomena ranging from simple 14 

learning effects in the Stroop task to the acquisition of complex strategies for reasoning 15 

and problem-solving. In order to demonstrate the validity and generality of this model, 16 

we show that it can capture the empirical findings of five cognitive control experiments 17 

on the plasticity of visual attention [17], the interacting effects of reward and task 18 

difficulty on the plasticity of interference control [10,11], and the transfer of such 19 

learning to novel stimuli [8,9]. Moreover, the LVOC model outperforms alternate models 20 

of such learning processes that rely only on associative learning or a basic win-lose-stay-21 

shift strategy. Our findings shed light on how learning and experience might shape 22 

people’s ability and propensity to adaptively control their minds and behavior, and the 23 



 6 

LVOC model predicts under which circumstances these mechanisms might lead to self-1 

control failure. 2 

Models	3 

Formalizing	the	function	of	cognitive	control	4 

At an abstract level, all cognitive control processes serve the same function: to adapt 5 

neural information processing to achieve a goal [28]. At this abstract level, neural 6 

information processing can be characterized by the computations being performed, and 7 

the extent to which the brain achieves its goals can be quantified by the expected utility 8 

of the resulting actions. From this perspective, an important function of cognitive control 9 

is to select computations so as to maximize the agent’s reward rate (i.e., reward per unit 10 

time). This problem is formally equivalent to the rational metareasoning [26,29] problem 11 

studied in computer science:  selecting computations so as to make optimal use of the 12 

controlled system’s limited computational resources (i.e., to achieve the highest possible 13 

sum of rewards with a limited amount of computation).  14 

Thus, rational metareasoning suggests that the specification of cognitive control is 15 

a metacognitive decision problem. In reinforcement learning [30], decision problems are 16 

typically defined by a set of possible actions, the set of possible states, an initial state, the 17 

conditional probabilities of transitioning from one state to another depending on the 18 

action taken by the agent, and a reward function. Together these five components define a 19 

Markov decision process (MDP [30]). In a typical application of this framework the agent 20 

is an animal, robot, or computer program, actions are behaviors (e.g., pressing a lever), 21 

the state characterizes the external environment ℰ (e.g., the rat’s location in the maze), 22 
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and the rewards are obtained from the environment (e.g., pressing a lever dispenses 1 

cheese). In general, the agent cannot observe the state of the environment directly; for 2 

instance, the rat running through a maze does not have direct access to its location but has 3 

to infer this from sensory observations. The decision problems posed by an environment 4 

that is only partially observable can be modelled as a partially observable MDP (POMDP  5 

[31]). For each POMDP there is an equivalent MDP whose state encodes what the agent 6 

knows about the environment and is thus fully observable; this is known as the belief-7 

MDP [31]. 8 

Critically, the belief-MDP formalism can also be applied to the choice of internal 9 

computations [27] – such as allocating attention [32] or gating information into working 10 

memory [33,34] – rather than only physical actions. In the rational metareasoning 11 

framework, the agent is the cognitive control system whose actions are control signals 12 

that specify which computations the controlled systems should perform. The internal state 13 

of the controlled systems is only partially observable. We can formally define the 14 

problem of optimal cognitive control specification as maximizing reward the in the meta-15 

level MDP 16 

M	 = 	 𝒮, 𝑠(, 𝒞, 𝑇, 𝑟 ,													(1) 17 

where 𝒮 is the set of possible information states, comprising beliefs about the external 18 

environment (e.g., the choices afforded by the current situation) and beliefs about the 19 

agent’s internal state (e.g., the decision system’s estimates of the choices’ utilities), 𝑠( 20 

denotes the initial information state, 𝒞 is the set of possible control signals that may be 21 

discrete (e.g., “Simulate action 1.”) or continuous (e.g., “Increase the decision threshold 22 

by 0.175.” or “Suppress the activity of the word-reading pathway by 75%.”), 𝑇 is a 23 



 8 

transition model, and 𝑟 is the reward function that cognitive control seeks to maximize. 1 

The transition model specifies the conditional probability of transitioning from belief 2 

state 𝑠 to belief state 𝑠′ if the control signal is 𝑐 by 𝑇(𝑠, 𝑐, 𝑠′). The meta-level reward 3 

function 𝑟 combines the utility of outcome 𝑋 (of actions resulting from control signal 𝑐 in 4 

belief state 𝑠) with the computational cost associated with exerting cognitive control: 5 

𝑟 𝑠, 𝑐 = 𝑢 𝑋 − cost 𝑠, 𝑐 ,												(2)				 6 

where 𝑋 is the outcome of the resulting action, 	𝑢 is utility function of the brain’s reward 7 

system, and cost(𝑠, 𝑐) is the cost of implementing the controlled process.  8 

Within this framework, we can define a cognitive control strategy 𝜋:	𝒮 → 𝒞 as a 9 

mapping from belief states 𝑠 ∈ 𝒮 to control signals 𝑐 ∈ 𝒞. The optimal cognitive control 10 

strategy 𝜋⋆ is the one that always chooses the computation with the highest expected 11 

value of computation (EVOC): 12 

𝜋⋆:		𝑠 ↦ argmaxD	EVOC 𝑐, 𝑠 .								(3) 13 

The EVOC is the expected sum of computational costs and benefits of performing the 14 

computation specified by the control signal 𝑐 and continuing optimally from there on: 15 

EVOC 𝑐, 𝑠 = 𝑄L⋆ 𝑠, 𝑐 = 𝔼 𝑟 𝑠, 𝑐 + 𝑉L⋆(𝑆QRS)	|𝑆Q = 𝑠, 𝐶V = 𝑐, 𝑇 ,													(4) 16 

where 𝑄L⋆ is known as the Q-function of the optimal control strategy 𝜋⋆, and 𝑉L⋆(𝑆QRS) 17 

is the expected sum of meta-level rewards of starting 𝜋⋆ in state 𝑆QRS. 18 

In summary, cognitive control specification selects the sequence of cognitive 19 

control signals that maximizes the expected sum of rewards of the resulting actions minus 20 

the cost of the controlled process. The optimal solution to this problem is given by the 21 

optimal control policy 𝜋⋆. 22 
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So far, we have assumed that the cognitive control system chooses one control 1 

signal at a time, but 𝒄 could also be a vector comprising multiple control signals (e.g., one 2 

that increases the rate at which evidence is accumulated towards the correct decision by 3 

via an attentional mechanism and a second one that adjusts the decision threshold). 4 

Furthermore, overriding a habit by a well-reasoned decision also requires executing a 5 

coordinated sequence of cognitive operations for planning and reasoning. Instead of 6 

specifying each of these operations by a separate control signal, the cognitive control 7 

system might sometimes use a single control signal to instruct the decision system to 8 

execute an entire planning strategy. The rational metareasoning framework allows us to 9 

model cognitive strategies as options [35–38]. An option is a policy combined with an 10 

initiation set and a termination condition [38]. Options can be treated as if they were 11 

elementary computations and elementary computations can be interpreted as options that 12 

terminate after the first step. With this extension, the optimal solution to the cognitive 13 

control specification problem becomes 14 

𝜋⋆ 𝑠 = argmax
Y∈𝒪

Q⋆(𝑠, 𝑜),									(5) 15 

where the set of options 𝒪 may include control strategies and elementary control signals. 16 

 Critically, this rational metareasoning perspective on cognitive control covers not 17 

only simple phenomena, such as inhibiting a pre-potent automatic response in the Stroop 18 

task, but also more complex ones, such as sequencing one’s thoughts so as to follow a 19 

good decision strategy, and very complex phenomena such as reasoning about how to 20 

best solve a complex problem. 21 
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The	LVOC	model	of	the	plasticity	of	cognitive	control	specification	1 

The computations required to determine the expected value of control may themselves be 2 

costly and time consuming. Yet, in some situations cognitive control has to be engaged 3 

very rapidly, because maladaptive reflexes, impulses, and habitual responses have to be 4 

inhibited before the triggered response has been executed. In such situations, there is 5 

simply not enough time to compute the expected value of control on the fly. Fortunately, 6 

this may not be necessary because an approximation to the EVOC can be learned from 7 

experience. We therefore hypothesize that the cognitive control system learns to predict 8 

the context-dependent value of alternative control signals. By understanding how this 9 

learning occurs, we might be able to explain the experience-dependent changes in how 10 

people use their capacity for cognitive control which we will refer to as the plasticity of 11 

cognitive control specification. In addition to these systematic, experience-driven 12 

changes cognitive control is also intrinsically variable.  To model the plasticity and the 13 

variability of cognitive control, this section develops a model that combines a novel 14 

feature-based learning mechanism with a new control specification mechanism that 15 

explores promising control signals probabilistically to accelerate learning which of them 16 

is most effective. 17 

The previous section characterized the problem of cognitive control specification 18 

as a sequential meta-decision problem. This makes reinforcement learning algorithms   19 

[39] a natural starting point for exploring how the cognitive control systems learns the 20 

EVOC from experience. Approximate Q-learning appears particularly suitable because 21 

the optimal control strategy can be expressed in terms of the optimal Q-function 22 

(Equations 3-5). From this perspective, the plasticity mechanisms of cognitive control 23 
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specification serve to learn an approximation to the value 𝑄Q(𝑠, 𝑐) of selecting control 1 

signal 𝑐 in state 𝑠 based on one’s experience with selecting control signals 𝒄 =2 

(𝑐S,⋯ , 𝑐Q) in states 𝒔 = (𝑠S,⋯ , 𝑠Q) and receiving the meta-level rewards 𝒓 = (𝑟S,⋯ , 𝑟Q). 3 

Learning an approximate Q-function 𝑄Q from this information could enable the cognitive 4 

control system to efficiently select a control strategy by comparing learned values rather 5 

than reasoning about their effects.  6 

Learning the optimal meta-level state-value function 𝑄⋆ can be challenging 7 

because the value of each control signal may depend on the outcomes of the control 8 

signals selected afterwards. Furthermore, the state space of the meta-level MDP has a 9 

very high dimensionality as it comprises all possible states that the controlled system 10 

could be in. To overcome these challenges, a neural system like the brain might learn a 11 

linear approximation to the meta-level state value function instead of estimating each of 12 

its entries separately. Concretely, the cognitive control system might learn to predict the 13 

value of selecting a control strategy (e.g., focusing on the presenting speaker instead of 14 

attending to an incoming phone call) by a weighted sum of features of the internal state 15 

and the current context (e.g. being in a conference room). For instance, the value Q⋆(𝑠, 𝑐) 16 

of choosing control signal 𝑐 in the internal state 𝑠 can be predicted from the features 17 

𝑓V(𝑠), the implied control signal intensities 𝒄, their interactions with the features, that is 18 

𝑓V 𝑠 ⋅ 𝑐c, and their costs. Concretely, the EVOC of selecting control signal 𝑐 in state 𝑠 is 19 

approximated by the Learned Value of Control (LVOC), 20 
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LVOC 𝑠, 𝑐;𝒘 = 𝑤( + 𝑤V
h ⋅ 𝑓V 𝑠

i

VjS

+ 𝑤k
l ⋅ 𝑐k

m

kjS

1 

+ 𝑤V,k
h×l ⋅ 𝑓V 𝑠 ⋅ 𝑐k

m

kjS

i

VjS

− cost(𝑐) − 𝑤 o ⋅ 𝑇,										(6)	 2 

where the weight vector 𝒘 includes the offset 𝑤(, the weights  𝒘V
h  of the states’ 3 

features, the weights 𝒘(l) of the control signal intensities, the weights 𝒘V,k
h×l  of their 4 

interaction terms, the weight 𝑤(o) of the response time 𝑇, and cost(𝑐) is the intrinsic cost 5 

of control which scales with the amount of cognitive control applied to the task.  6 

 The optimal way to update the weights based on experience in a stationary 7 

environment is given by Bayes rule. Our model therefore maintains and continues to 8 

update an approximation to the posterior distribution  9 

𝑃(𝒘|	𝑒S,⋯,Q) ∝ 𝑃(𝒘 	𝑒S,⋯,QtS ⋅ 𝑃 𝑒Q 𝒘 ,								(7) 10 

on the weight vector 𝒘 given its experience 𝑒S,⋯,Q up until the present time 𝑡, where each 11 

experience 𝑒c = (𝑠c, 𝑐c, 𝑟c, 𝑇c, 𝑠cRS) comprises the state, the selected control signal, the 12 

reward, the response time, and the next state. In simple settings where a single control 13 

signal determines a single reward our model’s learning mechanism is equivalent to 14 

Bayesian linear regression [40,41]. In more complex settings involving a series of control 15 

signals or delayed rewards the learning rule approximates the Bayesian update by 16 

substituting the delayed costs and benefits of control by the model’s predictions.  For 17 

more details, see S1 Text.  18 

If the value of control is initially unknown, the optimal way to select control 19 

signals is to balance exploiting previous experience to maximize the expected immediate 20 

performance with exploring alternative control allocations that might prove even more 21 
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effective. Our model solves this dilemma by an exploration strategy similar to Thompson 1 

sampling: It draws 𝑘 samples from the posterior distribution on the weights and averages 2 

them, that is 3 

𝑤S,⋯ ,𝑤V ∼ 𝑃(𝒘|	𝑒S,⋯,Q), 𝑤 =
1
𝑘 ⋅ 𝑤c

V

cjS

.						(8) 4 

According to the LVOC model the brain then selects a control signal by maximizing the 5 

EVOC predicted by the average weight 𝑤, that is 6 

𝑐Q ≈ argmaxl LVOC 𝑠Q, 𝑐; 	𝑤 .				 9  7 

 Together, Equations 6-9 define the LVOC model of the plasticity of cognitive 8 

control. The LVOC model extends the EVC theory [7] which defines optimal control 9 

signals in terms of the EVOC (Equation 3), by proposing two mechanisms through which 10 

the brain might be able to approximate this normative ideal: learning a feature-based, 11 

probabilistic model of the EVOC (Equations 6-7) and selecting control signals by 12 

sampling from this model (Equations 8-9). This model is very general and can be applied 13 

to model cognitive control of many different processes (e.g., which location to saccade to 14 

vs. how strongly to inhibit the word-reading pathway) and different components of the 15 

same process (e.g., rate of evidence accumulation towards the correct decision vs. the 16 

decision threshold).  The LVOC model’s core assumptions are that the brain learns to 17 

predict the EVOC of alternative control specifications from features of the situation and 18 

the control signals, and that the brain then probabilistically selects the control 19 

specification with the highest predicted value of control. Both of these components could 20 

be implemented by many different mechanisms. For instance, instead of implementing 21 

the proposed approximation to Bayesian regression, the brain might learn to predict the 22 
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EVOC through the rewarded-modulated associative plasticity mechanism outlined in the 1 

SI. We are therefore not committed to the specific instantiation we used for the purpose 2 

of the simulations reported below (Equations 7-9).   3 

 The LVOC model instantiates the very general theory that the brain learns how to 4 

process information via metacognitive reinforcement learning. This includes not only the 5 

plasticity of cognitive control but also how people might discover cognitive strategies for 6 

reasoning and decision-making and how they learn to regulate their mental activities 7 

during problem solving. As a proof of concept, the following sections validate the LVOC 8 

model against five experiments on the plasticity of attention and interference control. 9 

Alternative	models:	Associative	learning	and	Win-Stay	Lose-Shift	10 

In principle, the control-demanding behavior considered in this paper could result from 11 

simpler mechanisms than the ones proposed here. In this section, we consider two simple 12 

models that we use as alternatives to compare against the more complex LVOC model. 13 

The first model relies on the assumption that the plasticity of cognitive control can be 14 

understood in terms of associative learning [15,16]. We therefore evaluate our model 15 

against an associative learning model based on the Rescorla-Wagner learning rule [42]. 16 

This model forms stimulus-control associations based on the resulting reward. The 17 

association 𝐴},l between a stimulus 𝑠 and a control signal 𝑐 is strengthened when it is 18 

accompanied by (intrinsic or extrinsic) reward and weakened otherwise. Concretely, the 19 

association strengths involving the chosen response were updated according to the 20 

Rescorla-Wagner rule, that is 21 

𝐴},l = 𝐴},l + 𝛼 ⋅ 𝑅 − 𝐼} ⋅ 𝐴},l
}

,				(10) 22 
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where 𝛼 is the learning rate, 𝑅 is the reward and the indicator variable 𝐼} is 1 when the 1 

stimulus 𝑠 was present and 0 else. Given the learned associations, the control signal is 2 

chosen probabilistically according to the exponentiated Luce’s choice rule, that is each 3 

control signal 𝑐 is selected with probability 4 

𝑝 𝑐 =
exp	(𝐴},l)
exp	(𝐴},l)l

.				(11) 5 

 The second alternative model is based on previous research suggesting that people 6 

sequentially adjust their strategy through a simple Win-Stay Lose-Shift mechanism [43]. 7 

This mechanism starts with a random strategy on the first trial, and on each subsequent 8 

trial it either repeats the previous strategy when it was successful or switches to a 9 

different strategy when the current strategy failed. Here, we apply this idea to model how 10 

the brain learns which control signal to select. Concretely, our WSLS model repeats the 11 

previous control signal (e.g., “Attend to green.”) when it leads to a positive outcome 12 

(Win-Stay) and randomly selects a different control signal (e.g., “Attend to red.”) 13 

otherwise (Lose-Shift).  14 

Simulations	of	learning	and	transfer	effects	in	cognitive	control	paradigms	15 

To evaluate the proposed models, we used them to simulate the plasticity of 16 

attentional control in a visual search task [17] as well as learning and transfer effects in 17 

Stroop and Flanker paradigms [8–11]. Table 1 summarizes the simulated phenomena and 18 

how the LVOC model explains each at a conceptual level. 19 

Learning	to	control	visual	attention	20 

Previous research has shown that how people allocate their attention is shaped by 21 

learning [8–11,15–17]. For instance, Lin and colleagues [17] had participants perform a 22 
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visual search task in which they gradually learned to allocate their attention to locations 1 

whose color predicted the appearance of the target (Figure 1a). In this task, participants 2 

viewed an array of four rotated letters (one T and three L’s), each encompassed by a 3 

different colored circle. They were instructed to report the orientation of the T. The 4 

circles appeared before the letters allowing participants to allocate their attention by 5 

saccading to a promising location before the letters appeared. In the training phase, the 6 

target always appeared within the green circle, but in the test phase it was equally likely 7 

to appear in any of the four circles. 8 

Visual search entails sequentially allocating cognitive control to different 9 

locations based on their visual features. Since attention is can be understood as an 10 

instance of cognitive control, this problem is naturally modeled as a meta-level MDP. We 11 

therefore applied our LVOC theory to predict the dynamics and consequences of learning 12 

which locations to attend to based on their features (the colored circles) in this paradigm. 13 

Since the stimuli were presented along a circle, approximating locations people might 14 

naturally attend around a clock, we assumed that the control signal 𝑐 ∈ {1,2,3, … ,12} 15 

specifies which of 12 locations to attend, the state 𝑠Q encodes which of the 12 locations 16 

were highlighted by a colored circle (see Figure 1a), the circles’ colors, the unknown 17 

position of the target, and the list of locations that have already been inspected on the 18 

current trial. Since, the set of possible control signals is small, our simulation assumes 19 

that the brain always finds the control signal that maximizes the predicted EVOC 20 

(Equation 9). 21 

The features 𝒇(𝑠, 𝑐) encode only observable aspects of the state 𝑠 that are relevant 22 

to the value of the control signal 𝑐. Concretely, our simulations assumed that the features 23 
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encode whether the attended location was highlighted by a colored circle, the color of 1 

that circle (one binary indicator variable for each possible color), its position (by one 2 

binary indicator variable for each of the four possible locations), and whether or not it has 3 

been attended before. To capture people’s prior knowledge that attending a location a 4 

second time is unlikely to provide new information, we set the prior on the weight of the 5 

last feature to −1; this captures the well-known inhibition of return mechanism in visual 6 

attention [44]. For all other features the mean of the prior on the weights was 0. Based on 7 

the results reported by [17], we modeled reaction times as the sum of a non-decision time 8 

of 319ms and a decision-time of 98ms per attended location. Our simulation assumed that 9 

people incur a fixed cost (𝑟 𝑠, 𝑐 = cost c = −1 for all 𝑐 ∈ 1,2,3,4 ) every time they 10 

deploy their attention to a location. For simplicity, we assume that in this simple task 11 

people always search until they find the target and that when they attend to a location 12 

they always recognize the presence/absence of the target and respond accordingly. 13 

Hence, the intuition that people should try to find the target with as few saccades as 14 

possible follows directly from the objective of maximizing the sum of meta-level 15 

rewards. Applied to this visual search task, the LVOC model offers a mechanism for how 16 

people learn where to allocate their attention based on environmental cues in order to find 17 

the target as quickly as possible. 18 

Our associative learning model assumed that finding the target yields an intrinsic 19 

reward of +1 and no reward or cost otherwise. The responses 𝐶 were saccades to one of 20 

the 12 locations. The stimuli S comprised indicator variables for each of the four colors, 21 

the absence of a circle, and whether the location had been inspected before, and one 22 

feature that was always 1. To capture the inhibition of return, the reward associations 23 
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with the stimulus-feature indicating that a location had been attended previously were 1 

initialized by −1. All other association strengths were initialized as 0 and the learning 2 

rate of the Rescorla-Wagner model to the data from [17] using maximum-likelihood 3 

estimation. 4 

Learning	and	transfer	effects	in	inhibitory	control	5 

In Stroop and Flanker paradigms, the cognitive control strategy 𝑜 is defined by a 6 

single control signal 𝑐 ∈ [0,1] serves to bias processing away from an automatic 7 

mechanism. Following the classic model by Cohen and colleagues [45], we assume that 8 

control signals determine the relative contribution of the automatic versus the controlled 9 

process to the drift rate 𝑑 at which evidence is accumulated towards the controlled 10 

response [46]: 11 

𝑑 = 𝑐 ⋅ 𝑑DY���Y���� + 1 − 𝑐 ⋅ 𝐶 ⋅ 𝑑���Y����D,								(12) 12 

where 𝑑DY���Y���� and 𝑑���Y����D are the drift rates of the controlled and the automatic 13 

process respectively, and 𝐶 = 1 when the trial is congruent or −1 when the trial is 14 

incongruent. The drift rates, in turn, affect the response and response time according to a 15 

drift-diffusion model [46]. When the decision variable exceeds the threshold +𝜃, then the 16 

response agrees with the controlled process (equivalent to the correct response for these 17 

tasks). When the decision variable falls below – 𝜃, the response is incorrect. To capture 18 

sources of error outside of the evidence accumulation process (e.g., motor execution 19 

errors), our simulation assumes that people accidentally give the opposite of their 20 

intended response on a small fraction of trials (𝑝����<0.05). 21 
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We model the selection of continuous control signals as a gradient ascent on the 1 

EVOC predicted by Thompson sampling (Equations 8-9). Concretely, continuous control 2 

signals are selecting by repeatedly applying the update rule 3 

c ← 𝑐 + 	𝜂 ⋅
𝑑	LVOC 𝑠, 𝑐;	𝑤

𝑑𝑐 					(13) 4 

until the change in the Euclidean norm of the control signal intensity vector is less than 5 

𝛿l. This mechanism starts from the control signal deployed on the previous trial and 6 

thereby captures the inertia of control specification and the resulting reconfiguration cost 7 

[46], consistent with the task-set inertia hypothesis [47]. Furthermore, it predicts that 8 

control intensities are adjusted gradually and continually, thereby allowing control to be 9 

exerted while the optimal control signal is still being determined. This feature of our 10 

model makes the intuitive prediction that time pressure might reduce the magnitude of 11 

control adjustment [cf. 48,49]. 12 

We model the cost associated with a continuous control signal 𝑐 as the sum of the 13 

control cost required to exert that amount of control (cost(𝑐)) and the opportunity cost of 14 

executing the controlled process (𝜔 ⋅ 𝑡), that is  15 

cost 𝑠, 𝑐 = 𝜔 ⋅ 𝑡 + cost 𝑐 ,								(14) 16 

where 𝜔 is the opportunity cost per unit time1, 𝑡 is the duration of the controlled process, 17 

and cost 𝑐  is the intrinsic cost of exerting the control signal 𝑐. While the first term 18 

captures that goal-directed control processes, such as planning, can take significantly 19 

longer than automatic processes, such as habits, the second term captures that due to 20 

interference between overlapping pathways the cost of a control signal increases with its 21 

                                            
1 In many real-world scenarios and some experiments, the opportunity cost is time-varying. This can be 
incorporated into our model by adding a learning mechanism that estimates 𝜔 from experience [54,86]. 
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intensity [13] even when control intensity accelerates the decision process [11,50,51]. 1 

Following [46], we model the intrinsic cost of control as the implementation cost 2 

cost 𝑐 = exp 𝑎c ⋅ 𝑐 + 𝑏c , 								(15) 3 

where 𝑐 is the control signal, 𝑎c specifies how rapidly control cost increases with control 4 

intensity, and 𝑏c determines the lowest possible cost.2 The monotonic increase of control 5 

cost with control signal intensity expressed by this equation models that the more 6 

intensely you focus on one process, say color-naming, the less you are able to do other 7 

valuable things, such as verbal reasoning. This cognitive opportunity cost of control is a 8 

consequence of overlap between neural pathways serving different functions [13,52,53]. 9 

 In all of our simulations, the number of samples drawn from the posterior 10 

distribution on the weights was 𝑘 = 2. For simplicity, we modeled control allocation in 11 

each trial of the Stroop and Flanker tasks simulated below as an independent, non-12 

sequential, metacognitive control problem. The opportunity cost of time (𝜔 in Equation 13 

14) was set to $8/h [cf. 51]. Model parameters were fitted by maximum likelihood 14 

estimation using Bayesian optimization [55]. The drift rates of the controlled and the 15 

automatic process (Equation 12) were determined from people’s response times on 16 

neutral trials. The model’s prior precision on the weights was set to assign 95% 17 

confidence to the EVOC of a stimulus lying between the equivalent of ±5 cents per 18 

second. 19 

In the color-word Stroop task by Krebs et al. [11] the participant’s task was to 20 

name the font color of a series of color words which were either congruent or incongruent 21 

                                            
2 This framework can easily be extended to also other sources of control costs, such as reconfiguration 
costs  [46]. 
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with the word itself (Figure 2a). For two of the four colors, giving the correct response 1 

yielded a monetary reward whereas responses to other two colors were never rewarded. 2 

Our simulation of this experiment assumed that people represent each stimulus by a list 3 

of binary features that encode the presence of each possible color and each possible word 4 

independently but do not encode their combinations. To capture the contribution of the 5 

experiment’s financial incentives for correct responses, we assumed that the utility 𝑢(𝑋) 6 

in Equation 2 is the sum of the financial reward and the intrinsic utility of getting it right 7 

[56], that is 8 

𝑢 correct = 𝑟�¤������ + 𝑟������¥�D,															 16 	9 

𝑢 wrong = − 𝑟�¤������ + 𝑟������¥�D , 17  10 

where the monetary reward 𝑟�¤������ was 10 cents on rewarded trials and zero otherwise. 11 

The non-decision time was set to 300ms. The implementation cost parameters (𝑎c and 𝑏c 12 

in Equation 15), the probability of accidental response flips (𝑝����), the intrinsic reward 13 

𝑟������¥�D of responding correctly (Equations 16-17), and the noise parameter 𝜎 of the drift 14 

diffusion model (Equation 12) were fit to the empirical data shown in Figure 2b-c. To 15 

enable a fair comparison, we gave the associative learning model and the Win-Stay Lose-16 

Shift model degrees of freedom similar to those of the LVOC model by adding 17 

parameters for the intrinsic reward of being correct, the probability of response error, and 18 

the noise of the drift-diffusion process. In addition, the Rescorla-Wagner model was 19 

equipped with a learning rate parameter. Each model was fitted using maximum-20 

likelihood estimation using the Bayes adaptive direct search algorithm [57]. 21 

In the Flanker task by Braem et al. [10], participants were instructed to name the 22 

color of a central square (the target) flanked by two other squares (distractors) whose 23 



 22 

color was either the same as the color of the target (congruent trials) or different from it 1 

(incongruent trials) (Figure 3a). On a random 25% of the trials, responding correctly was 2 

rewarded and on the other 75% of the trials it was not. Our simulation assumed that 3 

people predict the EVOC from two features that encode the presence of conflict and 4 

congruency respectively: The conflict feature was +1 when the flankers and the target 5 

differed in color and zero otherwise. Conversely, the value of the congruency feature was 6 

+1 when the flankers had the same color as the target and zero else. To capture that 7 

people exert more cognitive control when they detect conflict [58], the prior mean on 8 

these weights was +1 for the interaction between control signal intensity and 9 

incongruence and −1 for the interaction between control signal intensity and congruence. 10 

Providing our model with these features instantiates our assumption that in the Flanker 11 

task perception is easy but response inhibition can be challenging. In other words, our 12 

model assumes that errors in the Flanker arise from the failure to translate three correct 13 

percepts into one correct response by inhibiting the automatic responses to the other two. 14 

Furthermore, the incongruency feature can also be interpreted as a proxy for the resulting 15 

response conflict that is widely assumed to drive the within-trial adjustment of control 16 

signals in the Flanker task [58]. 17 

 Our simulation assumed that people only learn on trials with feedback. The effect 18 

of control was modelled as inhibiting the interference from the flankers according to 19 

𝑑 = 𝑑���©�� + 1 − 𝑐 ⋅ 𝐶 ⋅ 𝑑����ª��¥	, 18  20 

where 𝐶 = 1 if the distractors are congruent and 𝐶 = −1 when they are incongruent.  21 

The drift rates for accumulating information from the target (𝑑���©��) and the distractors 22 

(𝑑����ª��¥) were assumed to be identical. Their value was fit to the response time for color 23 
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naming on rewarded neutral trials reported in [11], and the non-decision time was 1 

300ms. The perceived reward value of the positive feedback was determined by 2 

distributing the prize for high performance (EUR 10) over the 168 rewarded trials of the 3 

experiment (𝑧 = 7.5 US cents per correct response). Braem et al. [10] found that the 4 

effect of reward increased with people’s reward sensitivity. To capture individual 5 

differences in reward sensitivity, we modelled people’s subjective utility by 6 

𝑢 correct = 𝑧¬ + 𝑟������¥�D	, 19  7 

𝑢 wrong = −𝑟������¥�D	, 20  8 

where for	𝑧 ≥ 0 is the payoff and 𝛼 ∈ 0,1  is the reward sensitivity. The reward 9 

sensitivity was set to 1, and the intrinsic reward of being correct (𝑟c�����¥�D), the standard 10 

deviation of the noise (𝜎), the threshold of the drift-diffusion model (𝜃), the 11 

implementation cost parameters (𝑎c, 𝑏c) were fit to the effects of reward on the reaction 12 

times on congruent trials (Figure 3c), the average reaction time, and the effect of reward 13 

sensitivity on conflict adaptation reported by [10]. The probability of accidentally giving 14 

the opposite of the intended response was set to zero. 15 

 To enable a fair comparison between LVOC model and the two simpler models, 16 

we equipped the associative learning model and the Win-Stay Lose-Shift model with the 17 

same assumptions and degrees of freedom as the LVOC model. Equivalently to the 18 

LVOC model of this task, they included a bias against exerting control was instantiated 19 

by an association of -1 between either stimulus feature and control exertion. The effect of 20 

control was modeled using the same drift-diffusion model with same set of free 21 

parameters, and like the LVOC model they also included a free parameter for the intrinsic 22 

reward of being correct and the probability of response error. Furthermore, these models 23 
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included a free parameter for the cost of exerting control that is equivalent to two 1 

parameters of the LVOC model’s implementation and reconfiguration cost parameters, 2 

because their control signal was either 1 or 0. Furthermore, the Rescorla-Wagner model 3 

included an additional parameter for its learning rate, giving it the same number of 4 

parameters as the LVOC model. 5 

Experiment 2 by Bugg et al. [8] asked participants to name the color of Stroop 6 

stimuli like those used by Krebs et al. [11]. Critically, some of the color words were 7 

printed in color that appeared on congruent trials 80% of the time whereas other color 8 

words were printed in a color that appeared on incongruent trials 80% of the time (Figure 9 

4a). Each word was written either in cursive or standard font.  We modeled the stimuli by 10 

four binary features indicating the presence of each of the four possible words (1 if the 11 

feature is present and 0 otherwise), and a fifth feature indicating the font type (0 for 12 

regular and 1 for cursive). The non-decision time was set to 400ms. Since there were no 13 

external rewards for good performance, the utility of correct/incorrect responses was 14 

±𝑟������¥�D.  The implementation cost parameters (𝑎c and 𝑏c), the probability of accidental 15 

response flips (𝑝����), the intrinsic reward of being correct (𝑟������¥�D), and the standard 16 

deviation of the noise (𝜎) were fit to the empirical data shown in Figure 4b and Figure 4c. 17 

Given these parameters, the drift rate for color naming and reading where determined to 18 

match the reaction times on unrewarded neutral trials reported in [11]. 19 

Finally, Bugg et al. [9] presented their participants with pictures of animals 20 

overlaid by animal names Figure 4d). The participants’ task was to name the animal 21 

shown in the picture. Critically, for some animals, the picture and the word were usually 22 

congruent whereas for other the picture and the word were usually incongruent. The 23 



 25 

training phase was followed by a test phase that used novel pictures of the same animal 1 

species. We modelled this picture-word Stroop by representing each stimulus by a vector 2 

of binary indicator variables. Concretely, our representation assumed one binary indicator 3 

variable for each word (i.e., BIRD, DOG, CAT, FISH) and one indicator variable for 4 

each image category (i.e., bird, dog, cat, fish). The non-decision time was set to 400ms.  5 

The implementation cost parameters (𝑎c and 𝑏c), the intrinsic reward of being correct 6 

(𝑟������¥�D), the standard deviation of the noise (𝜎), and the probability of accidental 7 

response flips (𝑝����) were fit to the empirical data shown in Figure 4e-f. Given these 8 

parameters, the drift rate for word reading was fit as above and the drift rate for picture 9 

naming was fit to a response time of 750ms. 10 

 Phenomenon Explanation of the LVOC model 
Lin et al. 
(2016), 
Exp. 1 

In the training block, participants 
learn to find the target increasingly 
faster when it always appears in a 
location with a certain color. In the 
test block, participants are 
significantly slower on trials that 
violate this regularity. 

People learn to predict the value of 
attending to different locations from 
their color. 

Krebs et 
al. (2010), 
Exp. 1 

People come to name the color of 
incongruent words faster and more 
accurately for colors for which 
performance is rewarded. 

People learn to predict the value of 
increasing control intensity from the 
color of the word. 

Braem et 
al. (2012), 
Exp. 1 

On a congruent Flanker trial, 
people are faster when the previous 
trial was rewarded and congruent 
than when it was unrewarded and 
congruent, but the opposite holds 
when the previous trial was 
incongruent. These effects are 
amplified in people with high 
reward sensitivity. 

People learn to exert more control 
on incongruent trials. Thus, 
rewarded incongruent trials tend to 
reinforce higher control signals 
while rewarded congruent trials tend 
to reinforce low control signals. 
Thus, people increase control after 
the former and lower control after 
the latter. 

Bugg et 
al. (2008), 
Exp. 2 

People become faster and more 
accurate at naming the color of an 
incongruently colored word when it 
is usually incongruent than when it 
is usually congruent. 

People learn that exerting more 
control is more valuable when the 
color or word is predictive of 
incongruence.  
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Bugg et 
al. (2011), 
Exp. 2 

People are faster at naming animals 
in novel, incongruently labelled 
images when that species was 
mostly incongruently labelled in the 
training phase than when it was 
mostly congruently labelled.   

People learn that exerting more 
control is more valuable when the 
semantic category of the picture is 
predictive of incongruence. 

Table 1: The core assumption of the LVOC model explains the learning effects observed in five 1 
different cognitive control experiments. 2 

a) Visual search task of Lin et al. (2016) 3 

 4 

 5 

Figure 1: Learning to control the allocation of attention. a) Visual search task used by Lin 6 
et al. (2016). b)  Predictions of the LVOC model. c) Human data from Experiment 1 of 7 
Lin et al. (2016).  d) Fit of Win-Stay Lose-Shift model. e) Fit of Rescorla-Wagner model. 8 
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Results	1 

We found that our model correctly predicted the learning effects observed in five 2 

different cognitive control experiments by virtue of its fundamental assumption that 3 

people reinforcement-learn to predict the value of potential control signals and control 4 

signal intensities from situational features (see Table 1). The following sections describe 5 

these findings in detail. 6 

Plasticity	of	attentional	control	in	visual	search	7 

Lin et al. [17] had participants perform a visual search task for which the target of 8 

attention could either be predicted (training and predictable test trials) or not 9 

(unpredictable test trials) (Figure 1a). For this task, given its core reinforcement learning 10 

assumption (Table 1), the LVOC model predicts that 1) people should learn to attend to 11 

the circle with the predictive color and thus become faster at finding the target over the 12 

course of training, 2) continue to use the learned attentional control strategy in the test 13 

block and hence be significantly slower when the target appears in a circle of a different 14 

color during the test block, and 3) gradually unlearn their attentional bias during the test 15 

block (Figure 1c). As shown Figure 1b, all three predictions were confirmed by Lin and 16 

colleagues [17]. 17 

We compared the performance of LVOC to two plausible alternative models of 18 

these control adjustments: a Win-Stay Lose-Shift model and a simple associative learning 19 

model based on the Rescorla-Wagner learning rule. We found that the Win-Stay Lose-20 

Shift model failed to capture that people’s performance improved gradually during 21 

training, and it also failed to capture the difference between people’s response times to 22 

predicted versus unpredicted target locations in the test block (see Figure 1d). As Figure 23 
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1e shows, the fit of the associative learning model (estimated learning rate: 0.0927) 1 

captures that after learning to exploit the predictive regularity in the training block 2 

participants were significantly slower in the test block. However, this simple model 3 

predicted significantly less learning induced improvement and significantly slower 4 

reaction times than was evident from the data by [17]. A quantitative model comparisons 5 

using the Bayesian Information Criterion [59,60] provided very strong evidence that the 6 

LVOC model explains the data by [17] better than the Rescorla-Wagner model or the 7 

Win-Stay Lose-Shift model (BIC±²³´ = 1817.8, BICµ¶ = 9763.2, BIC¶·±· = 3449.9). 8 

This reflects that our model was able to accurately predict the data from [17] without any 9 

free parameters being fitted to those data. In conclusion, findings suggest that the LVOC 10 

model correctly predicted essential learning effects observed by [17] and explains these 11 

data significantly better than a simple associative learning model and a Win-Stay Lose-12 

Shift model.   13 

To more accurately capture both the slow improvement in the training block and 14 

the rapid unlearning in the test block simultaneously, the LVOC model could be extended 15 

by including a mechanism that discounts what has been learned or increases the learning 16 

rate when a change is detected [61,62]. Next, we evaluate the LVOC model against 17 

empirical data on the plasticity of inhibitory control.  18 

Plasticity	of	Inhibitory	Control	19 

We found that our model can capture reward-driven learning effects in Stroop and 20 

Flanker tasks, as well as how people learn to adjust their control allocation based on 21 

features that predict incongruence and the transfer of these learning effects to novel 22 

stimuli. In each case, the LVOC model captured the empirical phenomenon more 23 
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accurately than either a simple Win-Stay Lose-Shift model or a simple associative 1 

learning model. The following two sections present these results in turn. 2 

 3 

Table 2: Model parameters used in the simulations of empirical findings. 4 

 𝑎c 𝑏c 𝜃 𝜎 𝑟������¥�D 𝑝���� 
Krebs, et al. (2010) 1.60 −0.01 3 0.05 1.60¢ 3.5% 
Braem et al. (2012) 4.17 −2 2.75 5 4.17¢ 0.8% 
Bugg et al. (2008) 1.95 −2.1 2.65 3.01 3.89¢ 0.4% 
Bugg et al. (2011) 5 −2 2.75 3 18.00¢ 0.8% 

 5 
 6 
a) 

 
a) 

 

c) 

 
Figure 2: LVOC model captures that in the paradigm by Krebs et al. (a) people learn to exert more 7 
cognitive control on stimuli whose features predict that performance will be rewarded which manifests in 8 
faster responses (b) and fewer errors (c). 9 

Reward-driven	plasticity	in	interference	control	10 

People	learn	to	allocate	more	control	on	rewarded	trials	11 

To determine whether our integrated theory captures the reward-modulated 12 

plasticity of cognitive control specification, we used the LVOC model to simulate two 13 

sets of experiments that examined the influences of reward on cognitive control. Krebs et 14 
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al. [11] found that participants in a color-word Stroop task learned to respond faster and 1 

more accurately to incongruently colored color words when their color predicted that 2 

performance would be rewarded than when it predicted that performance would not be 3 

rewarded. We found that our model can capture these effects with reasonable parameter 4 

values (see Table 2). Figure 2 shows that our model captures Krebs et al.’s finding that 5 

people learn to exert more control on trials with rewarded colors than on trials with 6 

unrewarded colors even though they were interspersed within the same block. 7 

Concretely, our model captured that people become faster (541 ± 7ms ms vs. 691 ±8 

8ms; 𝑡(959998) = −14.6, 𝑝 < 10tS») and more accurate (4.9 ± 0.02% errors vs. 9 

11.8 ± 0.03% errors; 𝑡 959998 = −164.7, 𝑝 < 10tS») when the color of the word is 10 

associated with reward. Critically, the qualitative effects observed in this experiment 11 

follow logically from the core assumption of the LVOC model (see Table 1). 12 

We compared the LVOC’s model performance to that of an associative learning 13 

model with equivalent parameters (see Methods); the maximum likelihood estimates of 14 

these parameters were 𝛼 = 0.0447 for the learning rate, 𝑟������¥�D = 0.1811 for the 15 

intrinsic reward, 𝜎¼ = 0.1525 for the noise of the drift-diffusion process, and 𝑝���Y� =16 

0.1799. While the Rescorla-Wagner model was able to qualitatively capture the effect of 17 

potential reward on reaction time and error rate, its quantitative fit was far worse than the 18 

fit of the LVOC model (see Figure 2b and Figure 2c); thus, a quantitative model 19 

comparison controlling for the number of parameters provided very strong evidence for 20 

the LVOC model over the Rescorla-Wagner model (BIC±²³´ = 45.3 vs. BICµ¶ =21 

1333.9). We also fitted the Win-Stay Lose-Shift model and its parameter estimates were 22 

𝑟������¥�D = 0 for the intrinsic reward, 𝜎¼ = 0 for the noise of the drift-diffusion process, 23 
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and 𝑝���Y� = 0.07). We found that the WSLS model was unable to capture the effect of 1 

reward on response times and error rates (see Figure 2b and Figure 2c) because its control 2 

signals are uninformed by the stimulus presented on the current trial. Consequently, a 3 

formal model comparison provided strong evidence for the LVOC model over the Win-4 

Stay Lose-Shift model (BIC±²³´ = 45.3 vs. BIC¶·±· = 2454.8). 5 

Reward	accelerates	trial-by-trial	learning	of	how	to	allocate	control	6 

Braem et al. [10] found that participants in their Flanker task allocated more 7 

cognitive control after rewarded incongruent trials than after rewarded congruent trials or 8 

unrewarded trials. As Figure 3b shows, the LVOC model can capture this reward-induced 9 

conflict-adaptation effect with a plausible set of parameters (see Table 2). Our model 10 

correctly predicted that people’s responses on congruent trials are faster when they are 11 

preceded by rewarded congruent trials than when they are preceded by rewarded 12 

incongruent trials. The predicted difference (7	ms) was smaller than the empirically 13 

observed difference (27	ms) but it was statistically significant (𝑡 99 = 37.99, 𝑝 <14 

10tS»). According to our model, people learn to exert more control on incongruent trials 15 

than on congruent trials. Furthermore, being rewarded for exerting a low level of control 16 

reduces the control intensity on the subsequent trial, whereas being rewarded for exerting 17 

a high level of control increases the control intensity on the subsequent trial. Thus, our 18 

model predicts that control intensity should increase after rewarded incongruent trials but 19 

decrease after rewarded congruent trials. On congruent trials, more control leads to 20 

slower responses because it inhibits the facilitating signal from the flankers (Equation 21 

18). This suggests that our model’s metacognitive reinforcement learning mechanism 22 

correctly predicts the findings of Braem et al. [10] (see Figure 3 and Table 1).  23 
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The LVOC model’s learning increases with the magnitude of the reward. 1 

Consequently, the LVOC model predicts that the effect shown in Figure 3b should 2 

increase with people’s reward sensitivity. Concretely, as we increased the reward 3 

sensitivity parameter 𝛼 from 0 to 1, the predicted reward-driven effect of conflict 4 

monotonically increased from 0.6ms to 8.0ms (𝑡(102) = 4.77, 𝑝 < 0.0001). Consistent 5 

with this prediction, Braem and colleagues [10] found that the magnitude of reward-6 

driven conflict adaptation effect increased with people’s reward sensitivity, suggesting 7 

that the reward experienced for exerting cognitive control was the driving force of their 8 

adjustments. The significant positive correlation between people’s reward sensitivity and 9 

the magnitude of their conflict adaptation effect reported by [10] confirms our model’s 10 

prediction. Our model captures all of these effects because it learns to predict the 11 

expected rewards and costs of exerting control from features of the situation and 12 

probabilistically chooses the control signal that achieves the best cost-benefit tradeoff. 13 

We compared the LVOC’s fit to these behaviors with the associative learning and 14 

Win-Stay Lose-Shift models. Even though the associative learning model had the same 15 

number of parameters as the LVOC model, its fit was substantially worse than the fit of 16 

the LVOC model (mean squared errors: MSEµ¶ = 	3.33 vs. MSE±²³´ = 1.35), and its 17 

best fit (Figure 3d) failed to capture the qualitative effect shown in Figure 3c. Finally, we 18 

evaluated a Win-Stay Lose-Shift model. This model was equipped with the same set of 19 

parameters as our Rescorla-Wagner model except for the learning rate parameter. We 20 

found that the Win-Stay Lose-Shift model was unable to capture the data by Braem et al. 21 

Figure 3e) because it stays with the controlled process forever once it has been rewarded 22 

for using it (MSE¶·±· = 19.4). Taken together with the previous results, this suggests 23 
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that the simple mechanisms assumed by the associative learning model and the Win-Stay 1 

Lose-Shift model are insufficient to explain the complexity of cognitive control plasticity, 2 

but the LVOC model can capture it.  3 
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a)  1 

 2 
b)     c) 3 

  4 
d)     e) 5 

 6 
Figure 3: Metacognitive reinforcement learning captures the effect of reward on learning from experienced 7 
conflict observed by Braem et al. (2012). a) Illustration of the Flanker task by Braem et al. (2012). b) Fit of 8 
LVOC model. c) Human data by Braem et al. (2012). d) Fit of Rescorla-Wagner model. e) Fit of Win-Stay 9 
Lose-Shift model.    10 
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a) Bugg et al. (2008) 

 

d) Bugg et al. (2011 

  
  
b) e)  

  

c) 

  

f) 

 

Figure 4: The LVOC model captures that people learn to adjust their control intensity based on features that 1 
predict incongruence. a) Color-Word Stroop paradigm by Bugg et al. (2008). b-c) LVOC model captures 2 
that people learn to exploit features that predict incongruency to respond faster and more accurately on 3 
incongruent trial. d) Picture-Word Stroop paradigm by Bugg, Jacoby, and Chanani (2011). e-f) The LVOC 4 
model captures that the learning effects enabling people to respond more quickly and more accurately to 5 
incongruently labelled images of animals whose labels are usually incongruent transfer to novel images.  6 
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Transfer	of	learning	effects	in	interference	control		1 

The expected value of computation depends not only on the rewards for correct 2 

performance but also on the difficulty of the task. In easy situations, such as the 3 

congruent trials of the Stroop task, the automatic response can be as accurate, faster, and 4 

less costly than the controlled response. In cases like this, the expected value of exerting 5 

control is less than the EVOC of exerting no control. By contrast, in more challenging 6 

situations, such as incongruent Stroop trials, the controlled process is more accurate and 7 

therefore has a positive EVOC as long as accurate performance is sufficiently important. 8 

Therefore, on incongruent trials the expected value of control is larger than the EVOC of 9 

exerting no control. Our model thus learns to exert control on incongruent trials but not 10 

on congruent trials. Our model achieves this by learning to predict the EVOC from 11 

features of the stimuli. This predicts that people should learn to exert more control when 12 

they encounter a stimulus feature (such as a color or word) that is predictive of 13 

incongruence than when they encounter a feature that is predictive of congruence (see 14 

Table 1). 15 

Consistent with our model’s predictions, Bugg and colleagues [8] found that 16 

people learn to exert more control in response to stimulus features that predict 17 

incongruence than stimulus features that predict congruence. Their participants 18 

performed a color-word Stroop task with four colors and their names printed either in 19 

cursive or regular font. Our model captured the effects of congruency-predictive features 20 

on control allocation with a plausible set of parameters (see Table 2). As shown in Figure 21 

4a-b, the LVOC model predicted that responses should be faster (655 ± 9	ms vs. 722 ±22 

11	ms; 𝑡 49 = 5.39, 𝑝 < 0.0001) and more accurate (2.85 ± 0.2% errors vs. 4.3 ±23 
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0.3% errors; 𝑡 49 = 5.01, 𝑝 < 0.0001) on incongruent trials if the word was predictive 1 

of incongruence than when it was not. To their surprise, Bugg and colleagues observed 2 

that adding an additional feature (font) that conveyed the same information about 3 

congruence as the color, did not enhance learning. This is exactly what our model 4 

predicted because the presence of a second predictive feature reduces the evidence for the 5 

predictive power of the first one and vice versa – this is directly analogous to a 6 

phenomenon from the Pavlovian literature known as blocking, whereby an animal fails to 7 

learn an association between a stimulus and an outcome that is already perfectly 8 

predicted by a second stimulus  [63].        9 

Since our model learns about the predictive relationship between features and the 10 

EVOC, it predicts that all learning effects should transfer to novel stimuli that share the 11 

features that were predictive of the expected value of control in the training trials (see 12 

Table 1). A separate study by Bugg and colleagues [9] confirmed this prediction. They 13 

trained participants in a picture-word Stroop task to associate particular images of certain 14 

categories (e.g., cats and dogs) with incongruence and associated particular images of 15 

other categories (e.g., fish and birds) with congruence. As expected, participants learned 16 

to exert more control when viewing the stimuli associated with incongruence. More 17 

importantly, these participants also exerted more control when tested on novel instances 18 

of the category associated with incongruence (e.g., cats) than on novel instances of the 19 

category associated with congruence (e.g., fish). This finding provides strong evidence 20 

for the feature-based learning mechanism that is at the core of our model of the plasticity 21 

of cognitive control and is entirely accounted for by our model. As shown in Figure 4e 22 

and Figure 4f, our model correctly predicted the positive and the negative transfer effects 23 
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reported by [9] with reasonable parameters (see Table 2): The model’s responses were 1 

faster (685 ± 2	ms vs. 709 ± 3	ms; 𝑡 99 = −8.13, 𝑝 < 0.0001) and more accurate 2 

(3.2 ± 0.1% errors vs. 4.8 ± 0.3% errors; 𝑡 99 = −5.06, 𝑝 < 0.0001) on incongruent 3 

trials if the word was predictive of incongruence than when it was not (positive transfer). 4 

Conversely, on congruent trials, the predicted responses were slightly slower when the 5 

features wrongly predicted incongruence (530 ± 0.1ms vs. 527 ± 0.2ms, 𝑡 99 =6 

9.28, 𝑝 < 0.0001; negative transfer).  7 

Discussion	8 

Building on previous work modeling the specification of cognitive control in 9 

terms of meta-decision making [12–14,29,33,64,65] and reinforcement learning 10 

[33,34,66–68], we have illustrated that at least some of the functions of cognitive control 11 

can be characterized using the formal framework of rational metareasoning [26] and 12 

meta-level Markov decision processes [27]. Concretely, modeling the function of 13 

cognitive control as a meta-level MDP allowed us to derive the first formal 14 

computational model of how people learn to specify continuous control signals and how 15 

these learning effects transfer to novel situations. This model provides a unifying 16 

explanation for how people learn where to attend, the interacting effects of reward and 17 

incongruence on interference control, and their transfer to novel stimuli. 18 

Our simulations of learning in Stroop and Flanker paradigms illustrate that the 19 

LVOC model can account for people’s ability to learn when and how intensely to engage 20 

controlled processing and inhibit automatic processing. We further found that the LVOC 21 

model correctly predicted the learning curve in the visual attention experiment by Lin et 22 
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al. [17] without any free parameters.  Critically, all of our model’s qualitative predictions 1 

follow directly from our theory’s core assumption that people reinforcement-learn to 2 

predict the value of alternative control signals and control signal intensities from stimulus 3 

features (see Table 1). None of our model’s auxiliary assumptions about the cost of 4 

control, the reward of being correct, the drift-diffusion model, the details of learning and 5 

control signal selection, and the corresponding parameters summarized in Table 2 are 6 

necessary to derive these qualitative predictions; instead they only serve to increase the 7 

quantitative accuracy of those predictions. 8 

While the LVOC model is more complex than basic associative learning and the 9 

Win-Stay Lose-Shift mechanism, neither of these simpler models was able to capture 10 

human learning in the simulated visual search, Stroop, and Flanker paradigms. This 11 

suggests that the complexity of the LVOC model may be currently warranted to capture 12 

how people learn when to exert how much cognitive control. Furthermore, the LVOC 13 

model’s sophistication may be necessary to explain more complex phenomena such as 14 

how people learn to orchestrate their thoughts to solve complex problems and acquire 15 

sophisticated cognitive strategies. Recent work has indeed shown that the learning 16 

mechanism instantiated by the LVOC model can also capture aspects of how people learn 17 

how to plan [69] and to flexibly and adaptively choose between alternative cognitive 18 

strategies [54]. Testing whether people learn to select sequences of control signals in the 19 

way predicted by our model is an interesting direction for future research. 20 

The	LVOC	model	integrates	control	specification	and	strategy	selection	learning	21 

The model developed in this article builds on two previous theories: the EVC theory, 22 

which offered a normative account of control specification [7], and the rational 23 
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metareasoning theory of strategy selection [54], which suggested that people acquire the 1 

capacity to select heuristics adaptively by learning a predictive model of the execution 2 

time and accuracy of those heuristics. The LVOC model synergistically integrates these 3 

two theories: it augments the EVC theory with the metacognitive learning and prediction 4 

mechanisms identified by [54], and it augments rational metareasoning models of 5 

strategy selection with the capacity to specify continuous control signals that gradually 6 

adjust parameters of the controlled process (see S2 Text).  7 

Empirical	predictions	8 

All else being equal, the proposed learning rules (see Equation 7, S1 Text Equations 1-7, 9 

and S3 Text Equations 13-14) predict that people’s propensity to exert cognitive control 10 

should increase when the controlled process was less costly (e.g., faster) or generated 11 

more reward than expected [19]. The experience that less controlled (more automatic) 12 

processing was more costly or less rewarding than expected should also increase our 13 

propensity to exert cognitive control [70–72]. Conversely, if a controlled process 14 

performed worse than expected or if an automatic process performed better than 15 

expected, people’s propensity to exert cognitive control should decrease [73].  16 

At a more detailed level, our theory predicts that the influence of environmental 17 

features on control allocation generalizes across contexts, to the extent that their features 18 

are similar. Thus, adding or removing features to the internal predictive model of the 19 

EVOC should have a profound effect on the degree to which observed performance of the 20 

controlled process in Context A changes people’s propensity to select it in Context B, and 21 

vice versa. This mechanism can account for empirical evidence that suggests a role for 22 

feature-binding in mechanisms of task switching [74–77] . These studies suggest that 23 
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participants associate the task that they perform on a stimulus with the features of that 1 

stimulus. Once they are asked to engage in a new task on that stimulus, the old 2 

(associated) task interferes, leading to switch costs. 3 

Furthermore, our theory predicts that increasing the rewards and punishments for 4 

the outcomes of the controlled or automatic processes should increase the speed at which 5 

people’s control allocation adapts to new task requirements, because the resulting weight 6 

updates will be larger; this becomes especially apparent when the updates are rewritten in 7 

terms of prediction errors (see S3 Text, Equations 1-2). Finally, when the assumptions of 8 

the internal model are met and its features distinguish between the situations in which 9 

each controlled process performs best, then control signal selection should become 10 

increasingly more adaptive over time [78,79]. But in situations where the internal 11 

model’s assumptions are violated, for instance because the value of control is not additive 12 

and linear in the features, then the control system’s plasticity mechanisms may become 13 

maladaptive.  14 

This prediction has been confirmed in a recent experiment with a novel color-15 

word Stroop paradigm comprising two association phases and a test phase [80]. In the 16 

first association phase, participants learned that color naming was rewarded for certain 17 

colors whereas word reading was rewarded for the other colors. In the second association 18 

phase, participants learned that color-naming was rewarded for certain words whereas 19 

word-reading was rewarded for other words. Critically, in the test phase, naming the 20 

color was rewarded if either the word or the color had been associated with color naming 21 

(SINGLE trials); but when both the color and the word were associated with color 22 

naming then participants had to instead read the word (BOTH trials). This non-linear 23 
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relationship between stimulus-features and control demands caused mal-transfer from 1 

SINGLE trials to BOTH trials that significantly interfered with participants’ performance 2 

(resulting in participants incorrectly engaging in color-naming, the more control-3 

demanding task which in that context was also less rewarding). The LVOC model may 4 

thus be able to explain the puzzling phenomenon that people sometimes overexert 5 

cognitive control even when it hurts their performance, such as when upon seeing a non-6 

urgent email on a topic you have learned to be careful about you cannot help but compose 7 

the perfect response in your mind while trying to finish the talk you have to give in 5 8 

minutes. 9 

According to the LVOC model, control allocation is a process of continuing 10 

gradual adjustment (Equation 13). This means that the control intensity for a new 11 

situation starts out with the control intensity from the previous situation and is then 12 

gradually adjusted towards its optimal value (Equation 13)—just like in anchoring-and-13 

adjustment [48,81]. This might provide a mechanism for commonly observed phenomena 14 

associated with task set inertia and switch costs [47]. Since control adjustment takes time, 15 

this mechanism predicts that increased time pressure could potentially lead to decreased 16 

control adjustment, thereby biasing people’s control allocation to its value on the 17 

previous trial and thus decreasing their cognitive flexibility. Finally, thinking about the 18 

neural implementation of the LVOC model leads to additional neural predictions as 19 

detailed in the S3 Text. 20 

Avenues	for	future	research	21 

We view rational metareasoning as a general theoretical framework for modeling the 22 

allocation and plasticity of cognitive control. As such, it could be used to develop 23 
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unifying models of different manifestations of cognitive control, such as attention, 1 

response inhibition, and cognitive flexibility. Furthermore, rational metareasoning can 2 

also be used to connect existing models of cognitive control [6,7,32–3 

34,46,64,65,78,79,82,83]. Interpreting previously proposed mechanisms of control 4 

allocation as approximations to rational metareasoning and considering how else rational 5 

metareasoning could be approximated might facilitate the systematic evaluation of 6 

alternative representations and computational mechanisms and inspire new models. 7 

While our computational explorations have focused on which control signal the cognitive 8 

control system should select, future work might also shed light on how the cognitive 9 

control system monitors the state of the controlled system by viewing the problem solved 10 

by the cognitive control system as a partially observable MDP. Concretely, the function 11 

of cognitive monitoring could be formulated as a meta-level MDP whose computational 12 

actions include sensing operations that update the cognitive control system’s beliefs 13 

about the state of the monitored system. 14 

Future work should further evaluate the proposed computational mechanism and 15 

its neural implementation by performing quantitative model comparisons against simpler 16 

models across a wider range of cognitive control phenomena. We will investigate the 17 

performance of the proposed metacognitive learning mechanism and evaluate it against 18 

alternative mechanisms (e.g., temporal difference learning mechanisms with eligibility 19 

traces [30]).  20 

Another interesting direction will be to use the learning models to investigate the 21 

plasticity of people’s cognitive control skills. We are optimistic that this line of work will 22 

lead to better quantitative models of control plasticity that can be used to develop 23 
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interventions to improve people’s executive functions via a combination of cognitive 1 

training and augmenting environments where people’s automatic responses are 2 

maladaptive with cues that prime them to employ an appropriate control signal. In 3 

addition, future work may also explore model-based metacognitive reinforcement 4 

learning [84] as a model of the plasticity of cognitive control specification. Model-based 5 

hierarchical reinforcement learning approaches [37], such as option models [38], could be 6 

used to integrate the learning mechanisms for the value of individual control signals with 7 

the strategy selection model to provide an account of how the brain discovers control 8 

strategies. This might explain how people learn to adaptively coordinate their thoughts 9 

and actions to pursue increasingly more challenging goals over increasingly longer 10 

periods of time. 11 

Finally, the rational metareasoning framework can also be used to model how 12 

people reason about the costs and benefits of exerting mental effort and to delineate self-13 

control failure from rational resource-preservation through a normative account of effort 14 

avoidance [13,85].  15 

Conclusion	16 

Our simulation results suggested that the LVOC model provides a promising step 17 

towards a mathematical theory of cognitive plasticity that can serve as a scientific 18 

foundation for designing cognitive training programs for improving people’s executive 19 

functions. This illustrates the utility of formalizing the function of cognitive control in 20 

terms of rational metareasoning. Rational metareasoning provides a unifying framework 21 

for modeling executive functions, and thus opens up exciting avenues for future research. 22 

We are optimistic that the connection between executive functions and metareasoning 23 
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will channel a flow of useful models and productive ideas from artificial intelligence and 1 

machine learning into the neuroscience and psychology of cognitive control.  2 
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