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Abstract

Adults are known to have superior working memory to chil-
dren, but whether this improvement is driven primarily by dif-
ferences in storage capacity or attentional control is debated.
In particular, the understanding of how capacity and control
influence the development of working memory is hampered by
the fact that most theorizing about the effect of variation in ei-
ther on behavior has been verbal. To address this, we extended
a computational model of working memory to clearly separate
the contributions of capacity and control, fitting the model to
a recent developmental study. We find that the combined in-
fluence of capacity and control on working memory may be
more complicated than previously appreciated. In particular,
the general pattern of qualitative differences between children
and adults could be produced by increasing either capacity or
control alone. These results point to a need for additional ex-
perimental paradigms to clearly parse the differential impact
of working memory components.
Keywords: Working memory; Retro-cue; Attention; Metarea-
soning; Reinforcement Learning; Development

Introduction
Working memory underpins the ability to retain and update
task relevant information and perform mental operations in
pursuit of a goal. While there are a number of theoreti-
cal models of working memory, there is consensus that it
comprises multiple components, broadly involving the stor-
age and processing of information. There is also agreement
about several key distinct components of working memory
performance (Oberauer et al., 2018). First, working memory
is a constrained system of limited capacity, and variation in
that capacity is relevant to performance (Cowan, 2012). Sec-
ond, processes of selective attention can influence recall both
at encoding (ignoring irrelevant information), and during re-
tention (selectively retaining information as its relevance be-
comes clear; Shimi et al., 2014). Working memory under-
goes marked developmental improvement throughout child-
hood. However, the degree to which this is attributable to
increases in the different components of working memory,
and specifically storage capacity and attentional control, is
debated (Shimi & Scerif, 2017; Cowan et al., 2010; Cowan,
2016). Recently, marked differences in visual short-term
memory have also been found between species of primates,
with a clear phylogenetic signal. Our closest relatives, the
apes, performed better than monkey species, which in turn
outperformed lemurs (ManyPrimates et al., 2022). Again, the
contributions of different aspects of memory to this difference
(for example, limits in capacity and control) are unknown.

Empirical research to disentangle the effects of these mul-
tiple components of working memory on both developmental

and phylogenetic differences must grapple with the complex-
ity of the role played by limits in both capacity and control,
or run the risk of misattributing the cause of individual differ-
ences in performance. Disentangling the influence of capac-
ity and control on working memory has so far relied largely
on intuitions about how variation in either causes changes in
behavior. However, such intuitions might be misleading.

In this paper, we investigate the contributions of capacity
and control to working memory performance by extending a
model of control of working memory (Suchow & Griffiths,
2016) to explore the effects of parametric variation in stor-
age capacity and attentional control. We use this model to
simulate the effects of changing capacity and control on re-
call in a series of retro-cue experiments aimed at investigat-
ing how their interplay differs in children and adults (Shimi
& Scerif, 2017). Through simulation, we find that the influ-
ence of these two components on recall in these experiments
remains difficult to identify, offering a potential reinterpreta-
tion of how components of working memory change through
development.

Background
Capacity and control across development
Working memory is known to be capacity limited (Oberauer
& Kliegl, 2006; Cowan, 2012). The extent of such a limita-
tion is typically indexed by requiring an individual to remem-
ber an array of visual stimuli and examining how performance
decreases as the size of the array (load) increases (Zhang &
Luck, 2008). Individuals can compensate for limited capacity
by deploying attentional control to select which pieces of in-
formation are relevant to encode and represent, and which of
these representations to prioritize and actively maintain (Raye
et al., 2007; Oberauer, 2019). Attentional control has typi-
cally been measured through the use of cues that can convey
to the participant which stimulus is more likely to be probed,
and thus where they should devote resources. Whereas cues
used prior to stimulus presentation can index attentional con-
trol in encoding stimuli, cues presented after stimulus pre-
sentation (retro-cues) have been used to ascertain the role of
attentional control in active maintenance of working memory
representations (e.g. Astle et al., 2012; Shimi et al., 2014). On
trials in which a retro-cue correctly indicates the probe item,
performance is better than on trials without such a cue, creat-
ing a memory benefit (Griffin & Nobre, 2003). Furthermore,
testing uncued items from the array following a retro-cue in-
curs performance costs (Astle et al., 2012; van Moorselaar et
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al., 2015). The size of these effects has been used to index in-
dividual variability in the efficacy of control (Shimi & Scerif,
2017; Cowan et al., 2010).

Corresponding paradigms have fueled competing claims
as to whether increases in capacity are the main contribu-
tor to working memory development (Gathercole et al., 2004;
Cowan et al., 2010), or whether increases in attentional con-
trol are equally important (Astle et al., 2012; Shimi et al.,
2014). Shimi & Scerif (2017) recently aimed to measure
adults’ and childrens’ use of attentional control and how this
interacts with capacity limitations. Across three experiments,
7-year-old children and adults were shown arrays of stimuli
and later had to indicate whether a probe item had been in the
original stimuli array. In some trials (cued trials), participants
were shown an arrow pointing to the location of the stimuli
to be probed. This arrow cue came either before (pre-cue)
or after (retro-cue) presentation of the stimuli. In other tri-
als, instead of the informative arrow, participants were shown
an uninformative central square (neutral trials). The memory
load (number of items in the stimuli array) and timing of the
cue varied across experiments.

These experiments were interpreted as showing that chil-
dren and adults differ in the efficiency of attentional control,
in addition to capacity. However, these interpretations were
made without the use of a computational model to specify
how variation in capacity and control induce changes in be-
havior. We aimed to determine whether, when utilizing such
a model, these interpretations are borne out. We review the
details of the three studies in our results.

Computational models of working memory
A wide set of models have framed the limited capacity of
working memory as reflecting a limited resource that needs
to be divided across stimuli (Bays et al., 2022). Such models
have differed in whether that resource is fundamentally a dis-
crete quantity like a slot (Cowan, 2001; Luck & Vogel, 1997;
Zhang & Luck, 2008), or a continuous quantity like preci-
sion (Van den Berg et al., 2012, 2014). While the model that
we use assumes a discrete resource, quanta, this is not meant
as a substantive claim, and this resource could be interpreted
in terms of random samples, a view which may bridge these
perspectives (Schneegans et al., 2020).

Within the framework of resource limitations, attentional
control has been conceived of as a meta-decision about which
stimuli resources should be invested in. Resource rationality
postulates that this decision be made by balancing a cost of
spending a limited resource with an increase in accuracy in
responding to an eventual query (Lieder & Griffiths, 2020).
Van den Berg & Ma (2018) demonstrated that when framed
as a single decision over where to spend resources, this frame-
work could explain effects of set size and probe probability.
Suchow & Griffiths (2016) introduced a related model where
this process was framed as part of a multi-step decision pro-
cess where an agent makes repeated decisions about how to
shift resources between stimuli over time. Because such a
multi-step framing is necessary to model manipulations of

delay-time and retro-cue, we build on this model for simu-
lating the experiments in Shimi & Scerif (2017). We describe
this model in more detail below.

We note that another line of work has used recurrent neural
networks to model retro-cue tasks (Piwek et al., 2023; Wan et
al., 2022). While such models have captured aspects of be-
havioral and neural data, specifying what exactly corresponds
to varying control in such models is opaque, thus making
them more challenging to adapt for our purposes.

Model
We extended the computational model of Suchow & Griffiths
(2016) to determine whether previously reported differences
in working memory between adults and humans (Shimi &
Scerif, 2017), reflect differences in capacity and control. In a
given trial, the model assumes an agent that is presented with
S stimuli that it seeks to remember. The agent possesses N
units of a discrete resource, quanta, that determine the success
of recall for each stimulus. At stimulus presentation, quanta
are randomly allocated across the items. Quanta change their
item assignments over time, according to a Moran process
(Moran, 1958), modified such that the agent has limited con-
trol over the dynamics. At each time step, noise randomly
causes one of the quanta, qE , to change its assignment to the
current assignment of another, qA, that is selected by the agent
(Fig. 1A; adapted from Suchow et al., 2017). To foreshadow,
we will relate capacity and control respectively to the total
number of quanta the agent has available, and to its ability to
optimally direct quanta to the appropriate stimuli.

At a given time point, the agent will be probed to recall
one of the S stimuli, with recall success being determined
by the number of quanta assigned to that stimulus. Increas-
ing the amount of quanta assigned to a probed stimulus, i,
increases the probability of correct recall with diminishing
returns, Precall(i) = .5+ 1

2×(1+e−βrecall ni )
(Fig. 1B). Here, ni is

the number of quanta assigned to a stimulus i at the time it
is probed and βrecall determines the steepness of the func-
tion. If the agent selects actions randomly, the number of
quanta assigned to each stimulus change gradually over time
(Fig. 1C). When a stimulus loses all of its quanta it cannot
acquire any more, so the stimulus is forgotten. After a long
time has passed, this leads to a steady state where one stim-
ulus has all quanta assigned to it, and the remaining stimuli
have none. Given a time-series of quanta assignments, the re-
call function (Fig. 1B) specifies the probability that the agent
would correctly answer a query about each stimulus at each
time point (Fig. 1D).

The agent can improve its chances of correctly answering
the query by selecting optimal actions. The model assumes
that the agent does not know what time point it will be queried
and thus tries to maximize its chances of correctly answering
the query at every future time point. This is implemented by
framing the agent as receiving a reward, rt , at each time point,
t, which is the probability it would correctly answer a query at
that time point. This depends on both the quanta assignments
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Figure 1: Model of capacity and control in working memory. A. MDP model of memory. Three time steps are displayed.
Each circle denotes a quantum and color denotes stimulus assignment. qE denotes environment selected quantum, whose as-
signment changes to that of qA, selected by the agent. B. Recall function: the probability a probed stimulus will be remembered
as a function of the number of quanta assigned to it (βrecall = .2). C, D. Example trial with random actions (no control). Each
line denotes the number of quanta assigned to a stimulus (C) and probability correct response (D) if that stimulus were probed.
E,F. Example trials with optimal actions selected (full control). E) Stimuli are equally likely to be probed. F) One stimulus
is more likely to be probed. G,H) Varying control and capacity in a retro-cue experiment. Lines show mean probability of
remembering the cued stimulus over 1000 trials for a given setting of control (G) or capacity (H). G: Capacity is set to 24. H:
Control is set to 1− ε = .45.

at that time point and also on beliefs about which stimulus
will be probed, rt = ∑

S
i=1 Pprobe(i)×Precall(ni,t). Here, ni,t is

the number of quanta assigned to stimulus i at time point t,
and Pprobe(i) is the agent’s beliefs about the probability that
stimulus i will be probed.

Combined with the dynamics, this reward function de-
fines a Markov decision process (Sutton & Barto, 2018)
for which optimal actions, which maximize the expected
future-discounted reward, a∗t = argmaxat E[∑∞

k=0 γkrt+k+1|at ],
maximize the probability of correct responses to future
queries. Because solving for such optimal actions using dy-
namic programming was intractable for problems with more
than 3 stimuli or 10 quanta, we approximated optimal ac-
tions as those which maximized the next-step reward, a∗t =
argmaxat E[rt+1|at ]. This approximation works well for this
class of reward function.

Optimal actions depend on beliefs about which stimulus
will be probed, Pprobe, which can be altered by cues. Without
a cue, the agent assumes that all stimuli are equally likely,
Pprobe(i) = 1

S . This leads to optimal actions that add quanta
to stimuli with the lowest number (example trial in Fig. 1E).
This is because when additional quanta have a diminishing
marginal effect on recall, the average recall probability is
maximized when quanta are shared equally across all stim-
uli. For experiments modeled here, cues always signal the
probed item. Thus, following a cue, Pprobe(i) = 1 if i is the

cued stimulus and 0 otherwise. This leads to optimal actions
that add quanta to the cued stimulus, which improves that
chances that it will be recalled (Fig. 1F). To simulate retro-
cue trials, where a cue is introduced during the maintenance
period, these action-selection policies are combined, where
before the cue actions are generated based on an assumption
of equally probable probes (Fig. 1E), and after the cue on the
assumption that the cued stimulus will be probed (Fig. 1F).

We formalize notions of capacity and control in the model
by allowing two parameters to vary between agents. We de-
fine capacity as the number of quanta. To define control, we
assume that, with probability ε, the optimal action fails and
instead a randomly selected action is performed. The control
parameter is defined as 1−ε. We illustrate the effects of vary-
ing capacity and control by simulating a 3-stimulus retro-cue
experiment for agents defined with varying combinations of
capacity and control (Fig. 1G, H). Increasing either capacity
or control leads to improved recall. However, changes in ei-
ther differently affect recall dynamics.

Methods
We evaluated what parameter combinations could produce re-
call performance consistent with either children or adult be-
havior in Shimi & Scerif (2017). Across three experiments
that manipulated the type of cue, its timing, and the number of
stimuli, Shimi & Scerif (2017) report mean Cowan’s K values
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for 24 different conditions for adults and 20 different condi-
tions for children. Cowan’s K is defined as N×(h− f ), where
h is the hit rate and f is the false alarm rate. We performed
a parameter sweep, varying capacity between 2 and 50 in in-
crements of 1, and control between 0 and 1 in increments
of .02. For these parameter combinations, we computed the
mean squared error (MSE) between model-predicted and re-
ported Cowan’s K across each condition. For each condition,
predicted Cowan’s K was computed by simulating 1000 trials
from that condition to compute a mean probability of correct
response, precall , to the probed item at the time of the query
(e.g. Fig. 1G,H). Predicted Cowan’s K was computed by as-
suming no response bias, h = precall , and f = 1− precall .

Simulating the model also required specifying the steep-
ness of the recall function, βrecall , and the number of model
time steps that occur per second, NT . To identify these hyper-
parameters, we performed a sweep, varying βrecall over .025,
.05, .1, .2, .4 and varying NT over 25, 50, 100, 200, 400,
800. For each setting of βrecall and NT , we performed a
coarse search over capacity and control, varying each over
20 values between 0 and 100 and 0 and 1 respectively, to esti-
mate the minimum total MSE for that setting (under a model
where children and adults differ in capacity and control pa-
rameters). Results presented below correspond to NT = 800
and βrecall = .2, which achieved overall minimum total MSE.
We note that our results do depend on the setting of these
hyperparameters and it is possible that future consideration
of additional studies will lead to a more informed setting of
these. We return to this point in the discussion.

Results

Fig. 2 shows MSE between model-predicted and reported
Cowan’s K values across all three experiments for children
(A) and adults (B) as a function of control and capacity pa-
rameters. Contour lines designating parameter values with
lowest 5% MSE (white lines) demonstrate that increasing ca-
pacity and control trade-off in explaining the data. This trade-
off is especially apparent in children, whose recall can poten-
tially be explained both by (1) moderate capacity paired with
low control, or (2) low capacity paired with moderate control.
We formally considered three possibilities for how children
and adults differ in control and capacity. First, adults have
higher capacity but equal control relative to children. Second,
adults have higher control, but equal capacity relative to chil-
dren. Third, adults have both higher capacity and higher con-
trol. To separate these possibilities, we defined four models,
which permit comparison of the degree to which each of these
possibilities can explain differences in behavior between chil-
dren and adults. Capacity Shared allowed control to vary
between adults and children but constrained capacity to be
the same. Control Shared allowed capacity to vary between
adults and children but constrained control to be the same.
Neither Shared allowed both control and capacity to vary be-
tween adults and children. For completeness, Both Shared
required both capacity and control to be the same for adults

and children. Fig. 2A-C shows the parameter values selected
by these models. Notably, parameters selected by either Con-
trol Shared or Capacity Shared models lie in the lowest 5%
MSE range, suggesting that either can achieve relatively low
error (Fig. 2C). To formally compare these models, we com-
puted the AIC of each model’s fit, treating MSE as a measure
of (scaled) negative log likelihood (thus assuming a Gaussian
error distribution). Control Shared provided the most par-
simonious fit to the data, marginally outperforming Capac-
ity Shared (∆AIC = 1.1) and Both Shared (∆AIC = 1.9), and
greatly outperforming Neither Shared (∆AIC = 28.6).

These results suggest that the data reported in Shimi &
Scerif (2017) weakly favor developmental differences in ca-
pacity alone. To more strongly determine the advantage of
this explanation over alternatives, we next examined each
model’s ability to account for qualitative differences in be-
havior between children and adults (Fig. 3). This was done by
plotting each model’s predictions for each condition in each
experiment, at the best parameter values for adults and chil-
dren. Surprisingly, we find that models with either shared
capacity or shared control can both capture the overall quali-
tative patterns in the data. Rather, the only model which can
be confidently ruled out is Both Shared, for which neither
component differs between adults and children.

Experiment 1 compared the effect of memory load (num-
ber of stimuli) on the effect of different types of cues on mem-
ory between adults and children (Fig. 3A). The experimental
conditions varied were the number stimuli (Load: 2 or 4),
whether a cue indicated which item would be probed (Cued or
Neutral), and whether the cue was presented prior to (300 ms;
Pre) or following (300 ms; Retro) stimuli presentation. Em-
pirically, both children and adults benefited from cues more
for four stimuli compared to two stimuli. Additionally, com-
pared to adults, children made less use of retro-cues com-
pared to pre-cues. All models except for Both Shared were
able to capture both of these effects qualitatively.

Experiment 2 compared the effect of time between stimu-
lus presentation and cue presentation on the effect of cues on
memory (Fig. 3B). Conditions varied whether a (retro-)cue
was presented 200 ms (IM) or 1000 ms (VSTM) following
stimulus presentation, and also whether a retro-cue indicated
which item would be probed (Cued or Neutral). Empirically,
compared to adults, children’s performance on both cued and
uncued trials decayed more over time. For children, cues still
provided a benefit in both IM and VSTM conditions, how-
ever less so than for adults. Additionally, for children, the
effect of cue was less in the VSTM condition than in the IM
condition. As with Experiment 1, all models except for Both
Shared could capture these qualitative effects. However, we
note that the predicted extent of decrease in neutral condition
over time is less than was observed.

Experiment 3 manipulated both load and decay, in order to
look at how their interaction affected recall in children versus
adults. Load was varied between 3 and 6 stimuli and delay
was varied between the IM and VSTM conditions, as well
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Figure 2: Model fit to three experiments in Shimi and Scerif (2017). A, B. Mean squared error (MSE) between model-
generated predictions and data from children (A) and adults (B). Brighter image intensity depicts better fit to data (lower MSE).
White line designates contour encircling parameters with lowest 5% MSE. Stars designate parameter setting with lowest MSE if
children and adults vary in both capacity and control (Neither Shared Model). C. Models where capacity varies keep parameters
in lowest MSE range. Colored lines denote contour encircling parameters with lowest 5% MSE for children (red) and adults
(blue). Gray symbols denote best fit parameters for models for which either the capacity parameter is shared between adults
and children (Capacity Shared; circle), the control parameter is shared between adults and children (Control Shared; downward
tri-arrow), or both a parameters are shared (Both Shared; plus). D. A model with shared control and varying capacity parameters
marginally provides the most parsimonious fit to data. Akaike Information Criterion (AIC) for models which vary depending
on whether either, both or neither control and capacity parameters are shared between adults and children.

Figure 3: Differences in either capacity or control can explain qualitative differences between children and adults across
three experiments in Shimi and Scerif (2017). A. Experiment 1. Conditions varied on number of stimuli, either 2 (Load 2) or
4 (Load 4), whether a cue was informative or not (Cued or Neutral), and whether the cue was presented before or after stimulus
presentation (Pre or Retro 300ms before or after presentation). B. Experiment 2. Conditions varied whether a (retro-)cue was
informative (Cued or Neutral) as well as whether the (retro-)cue was presented 200 ms (IM) or 1000 ms (VSTM) following
stimulus presentation. C. Experiment 3. Conditions varied whether a (retro-)cue was informative (Cued or Neutral), whether
the retro-(cue) was presented 200 ms (IM) 1000 ms (VSTM) or 1800 ms (long VSTM) following stimulus presentation, and
also whether 3 (Load 3) or 6 (Load 6) stimuli were presented. For Load 6, children only completed the IM condition. A-C)
Bars reflect Cowan’s K values reported in Shimi and Scerif (2017). Symbols reflect model predictions at best-fit parameter
values. Horizontal lines denote perfect memory.
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as a third longer condition, longer VSTM, which increased
the time between stimulus presentation and cue to 1800 ms.
In the Load 6 condition, children only completed IM. Empiri-
cally, children’s memory decay plateaued after the IM period.
Adults had larger effects of cues, and additionally, had slower
overall decay. As with the above experiments, we found that
all models except for Both Shared were able to capture these
effects qualitatively.

Overall, we find that models with either shared capacity
or shared control can produce qualitative patterns observed
in the data. This suggests that differences between adults
and children could be in capacity, control, or both processes,
without giving strong support to one scenario over the oth-
ers. While we find that models with varying capacity provide
a marginally better quantitative fit than models with varying
control, potentially due to better prediction of the effect of
cues on children’s performance (Fig. 3A), we discuss caveats
to this interpretation below.

Discussion
While numerous studies have documented differences in
working memory between children and adults, whether these
differences reflect underlying differences in capacity or con-
trol is still debated. Here, we moved towards resolving this
debate by extending a computational model of working mem-
ory so that capacity and control could be captured via model
parameters. This allowed examination of possible explana-
tions for differences in recall between children and adults re-
ported in a recent study (Shimi & Scerif, 2017). Informed in-
tuition provides the expectation that adults will have superior
working memory because they have both greater capacity and
control. Surprisingly, and in contrast to the interpretation of-
fered in Shimi & Scerif (2017), we find that qualitative differ-
ences in recall between children and adults can be produced
either by variation in capacity or control alone. Together, our
findings motivate further examination into what changes dur-
ing the development of working memory.

Overall, our findings suggest alternative interpretations of
aspects of the experiments in Shimi & Scerif (2017). First,
it is often assumed that the extent of an effect of a pre-cue
or retro-cue indicates efficacy of attentional control. How-
ever, as shown in Fig. 1 (E,F), changes in capacity can also
drive the extent of a retro-cue effect, provided some control
is present. Second, Shimi & Scerif (2017) as well as prior
studies (Cowan et al., 2010) interpret the finding that retro-
cue effects on recall increase with load on working memory
as evidence that control is strategically deployed more when
load is greater. However, our model does not vary control de-
pendent on load, and can recapitulate these findings. Finally,
Shimi & Scerif (2017) interpret differences in the retro-cue
effect between IM and VSTM manipulations to suggest that
these memory systems provide fundamentally different repre-
sentational systems over which retro-cues can operate. Inter-
estingly, our model does not assume distinct memory systems
that are differently affected by cueing, yet can still capture the

qualitative findings in Experiments 2 and 3.
We note that the interpretation of the results of Shimi &

Scerif (2017) offered by the model may depend on the setting
of hyperparameters NT and βrecall which respectively set the
rate of model time steps and the recall function. In additional
simulations, not reported due to space limitations, we found
that the setting of these hyperparameters affects the ability of
the Capacity Shared model to explain differences in adult’s
and children’s performance by affecting the rate at which pre-
dicted performance converges following a cue. Because the
influence of control on performance requires time (Fig. 1G),
speeding up convergence causes control to act more like ca-
pacity by allowing its effects to occur more instantaneously.
In line with this, we found that speeding up convergence
by increasing NT increases the ability of variation in con-
trol alone to explain developmental differences. In contrast,
decreasing either NT or βrecall decreases the ability of con-
trol to explain differences, however also worsens the fit of all
models. Whereas here we set NT and βrecall to values which
minimized MSE of the Neither Shared Model, it is likely that
using additional studies to further constrain these parameters
will improve model inferences.

Because our model’s quanta dynamics were based on the
Moran process, results from evolutionary biology may them-
selves help with understanding how control and capacity in-
teract. The Moran process has been used to examine how evo-
lution is influenced by stochastic events (genetic drift) ver-
sus deterministic selection (advantageous genes propagate)
(Otto & Day, 2007). A canonical finding is that selection
strongly influences which genes are retained in large popula-
tions. This is because in small populations stochastic events
can idiosyncratically remove a substantial proportion of ad-
vantageous genes, before selection allows them to accrue. By
analogy, a larger capacity reduces the influence of stochastic
events that cause quanta to be assigned in suboptimal ways
across items (e.g. for items to lose all quanta and be forgot-
ten). Consequently, control (analogue of selection) has more
chance to drive quanta to a desirable distribution when ca-
pacity is high (e.g. allocating quanta to a cued item). That
is, increased capacity boosts the efficacy of control, so that
substantial increases in control are not needed to produce the
better performance in recall. This may explain the character-
istic capacity-control trade-off found by our model in fitting
recall data (Fig 2).

In future work, we intend to understand how increasing
control pays off for an agent as a function of capacity, and
vice versa. This will enable application of our models to evo-
lutionary modeling, which in turn should generate principled
predictions for cross-species differences in control and capac-
ity.
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