
Representational efficiency outweighs action efficiency
in human program induction

Sophia Sanborn1, David D. Bourgin1, Michael Chang2, Thomas L. Griffiths1,2

1 Department of Psychology
2 Department of Electrical Engineering and Computer Science

University of California, Berkeley
Berkeley, CA, 94720 USA

{sanborn,ddbourgin,mbchang,tom griffiths}@berkeley.edu

Abstract

The importance of hierarchically structured representations for
tractable planning has long been acknowledged. However, the
questions of how people discover such abstractions and how to
define a set of optimal abstractions remain open. This problem
has been explored in cognitive science in the problem solving
literature and in computer science in hierarchical reinforce-
ment learning. Here, we emphasize an algorithmic perspec-
tive on learning hierarchical representations in which the ob-
jective is to efficiently encode the structure of the problem, or,
equivalently, to learn an algorithm with minimal length. We
introduce a novel problem-solving paradigm that links prob-
lem solving and program induction under the Markov Deci-
sion Process (MDP) framework. Using this task, we target the
question of whether humans discover hierarchical solutions by
maximizing efficiency in number of actions they generate or by
minimizing the complexity of the resulting representation and
find evidence for the primacy of representational efficiency.

Keywords: problem solving; program induction; hierarchical
reinforcement learning

Introduction
The space of simple actions available to humans navigating
the world is immense. Even a seemingly straightforward task
such as turning a doorknob is composed of smaller actions:
arranging one’s fingers and thumb into a grasping position
and rotating one’s wrist. Each of these actions is composed
of smaller muscular movements, each of which is ultimately
controlled by the firing of neurons in motor cortex. With
even a small number of primitive actions, the space of pos-
sible finite-length sequences that an individual can execute
explodes. Despite this, the human brain manages to select
sequences of actions remarkably effectively, constructing and
executing plans that lead to the efficient achievement of goals.

It has long been noted that the inherent hierarchical struc-
ture of behavior can be exploited to dramatically reduce the
complexity of a problem space (Simon, 1991). The ubiquity
of hierarchy in neural and cognitive representation is well-
known; evidence for structured hierarchical representations is
found in many domains including language, perception, mo-
tor control, and problem solving (Chomsky, 1957; Van Essen
& Maunsell, 1983; Chase & Simon, 1973; Botvinick, Niv, &
Barto, 2009). The formation of hierarchical representations
confers considerable adaptive benefit by supporting efficient
coding, reducing working memory demands, and enabling a
learner to perceive higher-order structure that would other-
wise be too computationally costly to extract.

These insights from human perception and cognition
have inspired methods in the field of hierarchical reinforce-
ment learning (HRL), which integrates structured hierarchi-
cal representations into the reinforcement learning framework
(Barto & Mahadevan, 2003). Early work in HRL used hand-
designed abstractions, such as sub-goals, to demonstrate that
a well-designed hierarchy can significantly speed the discov-
ery of shortest-path solutions (Sutton, Precup, & Singh, 1999)
and enable agents to learn to solve related tasks more quickly
(Konidaris & Barto, 2007). More recent work in HRL has
investigated approaches for learning useful hierarchical rep-
resentations (Barto, Konidaris, & Vigorito, 2013; Botvinick
et al., 2009; Şimşek & Barto, 2009; Vigorito & Barto, 2010;
van Dijk & Polani, 2011). Across this work, one consistent
finding is that small differences in the formulation of the task
objective may lead to radically different hierarchical decom-
positions. A natural question thus becomes: given a particular
problem, what defines an “optimal” hierarchy for action?

For state-of-the-art hierarchical reinforcement learning al-
gorithms, the utility of a hierarchy is typically assessed by
its effect on the agent’s learning curve—how greatly the hi-
erarchy accelerates the agent’s convergence to the shortest-
path solution. In the cognitive science literature, the focus
has been on properties of the hierarchical representation it-
self, and researchers have aimed to determine hierarchies that
capture the structure of the task. In some cases, hierarchies
optimized to minimize the number of primitive actions used
in the solution and hierarchies optimized to capture the struc-
ture of the task may map on to each other. However, these
objectives can deviate in important ways: the shortest-path
solution may not possess the most structured hierarchical rep-
resentation.

In this paper, we aim to bridge approaches to hierarchy
learning in computer science and cognitive science by intro-
ducing a novel problem-solving task that is naturally formu-
lated as a Markov decision process and enables participants to
explicitly articulate algorithmically-structured solutions. Ul-
timately, this task may facilitate direct comparisons between
the algorithms used for HRL in computer science and the hi-
erarchical solutions generated by humans, and may be used as
a novel benchmark for HRL algorithms. In this paper, we use
this task to examine the properties of the hierarchies that hu-
mans generate in problem solving. In particular, we target the
question of whether humans generate hierarchical solutions

that accord with the objective typically optimized in HRL—
efficiency in terms of primitive actions—or if humans express
a bias to generate hierarchies that capture the structure of the
task and yield lower complexity representations.

We focus here on a general measure of representational
complexity: the length of the shortest program that generates
a sequence of actions. This metric is inspired by Kolmogorov
complexity (Kolmogorov, 1963) and is in accordance with the
principle of efficient coding in neuroscience (Barlow, 1961).
Extending the efficient coding hypothesis to higher-level cog-
nition, we hypothesize that humans possess a bias for algo-
rithmic simplicity and coding efficiency that may guide their
specification of hierarchical solutions in problem solving.

Our perspective emphasizes the importance of representa-
tion learning in reinforcement learning and problem solving,
and imports insights from sensory neuroscience into higher-
level cognition. The relevance of this connection has been
expressed by several researchers (Tishby & Polani, 2011;
Botvinick, Weinstein, Solway, & Barto, 2015), and prelim-
inary empirical support for efficient coding in problem solv-
ing has been found in a series of studies that show that hu-
mans are sensitive to the latent hierarchical structure in flat
solutions and show preferences for maximizing computa-
tional efficiency when multiple shortest flat paths are avail-
able (Solway et al., 2014). Although these findings are sug-
gestive, the structure present in the flat sequences in these
studies is limited to “bottlenecks” in the state space. Fur-
ther, the strength of the bias for computational efficiency is
unclear since the computationally efficient solutions are also
maximally efficient in terms of actions. Here, we design con-
texts that express richer, algorithmic structure and explicitly
tease apart and trade off efficiency of action and represen-
tation, finding evidence for the primacy of representational
efficiency.

Background
The theory of Markov decision processes (MDPs; Sutton &
Barto, 1998) provides a computational framework for mod-
eling problem solving as search within a metaphorical prob-
lem or state space. Optimal solutions to an MDP may be ob-
tained via dynamic programming or reinforcement learning.
In an MDP, the problem is formalized as a set of states linked
by actions. Transitions between states can be stochastic or
deterministic, and pairs of states and actions yield variable
rewards. The goal is to find the policy governing the selec-
tion of actions in each state that yields the greatest expected
reward. The shortest-path solution to a problem is the pol-
icy that obtains the greatest expected reward with the fewest
number of steps.

To integrate hierarchical structure, the problem formula-
tion may be extended to include abstractions over the “prim-
itive” actions or states. In the formulation of the task consid-
ered in this paper, we introduce hierarchy by distinguishing
primitive actions from sub-processes—stored sequences of
primitive actions that may be executed with a single call—and

we consider deterministic solutions (programs) consisting of
calls to primitive actions and sub-processes. We contrast hier-
archical solutions to “flat” solutions that use primitive actions
alone. We further distinguish the flat path of actions that a
program generates from the stored representation of the pro-
gram itself. The flat path generated by a program may or may
not map onto the optimal flat solution to a problem, which
allows us to tease apart the objectives of action efficiency and
representational efficiency.

Lightbot: An experimental paradigm for
hierarchical problem solving

We present a novel problem-solving context that is rich
enough to elicit explicit hierarchical, algorithmically-
structured solutions from participants and is amenable to for-
malization in the RL framework. The task is adapted from a
game designed to teach children how to program (Lightbot:
https://lightbot.com; Figure 1)1.

Figure 1: Lightbot screenshot showing puzzle and program.

In the Lightbot domain, players control a robot in a 3-
dimensional block world and must determine a sequence of
actions that will lead the robot to turn on all of the light
tiles (blue tiles) in the world. There are five primitive ac-
tions (walk, jump, turn right, turn left, and toggle light). Par-
ticipants may additionally be given the capacity to store se-
quences of primitive actions as sub-processes. These pro-
cesses can be called within the main program, within each
other, or within themselves, thus allowing participants to gen-
erate hierarchically structured, algorithmic solutions that may
incorporate simple recursion.

Aside from the behavior it elicits, this task has many prop-
erties that make it appealing from a methodological per-
spective: (a) problems of arbitrary complexity and difficulty
can be generated, (b) participants explicitly externalize their
problem-solving strategies by writing down the algorithm
they use to solve the problem, and (c) the process of generat-
ing and testing these solutions can be recorded and analyzed.

The task is also interesting from a reinforcement learning
perspective, as it poses an objective function not typically ex-
amined in the RL literature. In the Lightbot task, the objec-
tive is not simply to maximize reward by turning on as many
lights as possible; the objective here is to do so as compu-
tationally efficiently as possible by generating an algorithm
that exploits the abstract structure of the problem. This task

1The codebase that we adapted was developed by Laurent Haan
(https://github.com/haan/Lightbot)

provides a bridge for comparing hierarchies generated by hu-
mans and by HRL algorithms and may be used as a bench-
mark for HRL in the future.

Action efficiency vs. representational efficiency
The length of a program (the representation of the desired
behavior) is defined in this context as the number of instruc-
tions stored in the main program and sub-processes. Note
that this often differs from the number of actions that the pro-
gram will generate. As an illustration, the program in Figure
1 has length 13, but will generate a sequence of 38 actions.
In calculating the length of a program, each action listed in
a sub-process is counted once, and the entire sub-process se-
quence may then be executed for the cost of a single call in
the main. An efficient program stores sequences of actions
that are repeated multiple times as sub-processes, yielding a
program that is shorter than the length of the flat sequence of
actions it generates. With this task structure, we can design
puzzles that tease apart the objectives of action efficiency and
representational efficiency. We now turn to an empirical ex-
amination of human performance on the Lightbot task.

Experiment: Exploring human abstractions
Methods
The Lightbot task We consider the six puzzles in Figure 2,
which illustrates the flat path that the optimal flat (left) and
best hierarchical (right) solutions generate. All puzzles, with
the exception of puzzle 2, are designed to tease apart action
and representational efficiency. To demonstrate the distinc-
tion, consider the best flat and hierarchical solutions to puzzle
1. The shortest flat solution to this puzzle is 46 instructions
long. Assuming 4 subprocesses can be stored, the most this
solution can be compressed is into a hierarchical program of
length 29. A considerably shorter hierarchical solution to this
puzzle has length 22 in its compressed version. However,
if one expands this program into the flat sequence of actions
that it generates, the flat version is 87 instructions long. Thus,
compression of the shortest flat solution is not a general strat-
egy for obtaining the optimal hierarchical solution.

For puzzles 1 and 3, the flat paths generated by the best hi-
erarchical solutions are substantially longer than the shortest
flat solutions. Puzzles 4, 5, and 6 were designed to meet the
additional constraint that the shortest flat solution is incom-
pressible or marginally compressible, meaning that there is
little gain achieved by encoding the flat path into a hierarchi-
cal program. Puzzle 2 meets neither of these requirements,
but possesses a clear recursive solution and is of interest in
analyzing the efficiency of participants’ programs. This de-
sign allows us to study the trade-off between action efficiency
and representational efficiency by examining the length and
compressibility of participants’ flattened solutions.

Optimal flat solutions The flat solutions for these puz-
zles are found by training a reinforcement learning agent
with Proximal Policy Optimization (PPO) (Schulman, Wol-
ski, Dhariwal, Radford, & Klimov, 2017) with a clipped ob-

hierarchical
program

22

11

15

10

15

13

flattened
program

87

38

53

15

22

18

compressed
flat path

29

11

18

12

15

13

46

38

46

13

17

13

flat
program

flat
solutions

hierarchical
solutions

solution lengthssolution lengths

1

2

3

4

5

6

Figure 2: Solutions to lightbot puzzles. Paths in yellow and blue
show the execution traces of the best flat (yellow) and hierarchical
(blue) programs. The lengths of the programs and their correspond-
ing compressed (for flat) or flattened (for hierarchical) versions are
displayed for each puzzle.

jective. The state representation contains four components:
the direction the lightbot is facing, the height of the current
square, the coordinates of the lightbot, and a binary array with
an entry for each light, with a value of 1 if that particular light
has been turned on, and 0 otherwise. We encode the state with
a binary vector representation as input two a two-layer neural
network policy, which outputs a probability distribution over
the actions. We also train a value network that estimates the
value of each state. The agent receives -1 reward for each
action taken and +1 reward for each light turned on. Once a
light has been turned on, it cannot be turned back off. For
each puzzle, we train the agent until convergence and then
run 100 random rollouts from the trained policy. We use the
rollout with the fewest number of actions as the standard for
our flat solutions.

Best hierarchical solutions A general method for obtain-
ing optimal hierarchical solutions to Lightbot puzzles remains
an open question. Thus, we consider our best approximations,
which we obtained from the original creators of the task (puz-
zles 1, 2, and 3) or designed ourselves (puzzles 4, 5, and 6).

Conditions In a between subjects design, we assign par-
ticipants to four conditions in which they solve the six test
puzzles in variants of the Lightbot task. The four conditions
differ as follows:

1. Efficient Flat: Participants write flat solutions and are not
given the capacity to use sub-processes. Participants are
instructed to write solutions that use the fewest number
of primitive actions and receive monetary bonuses propor-
tional to their performance.

2. Default Flat: Participants write flat solutions and are not
given the capacity to use sub-processes. Participants re-
ceive no instructions regarding solution length and receive
a fixed bonus for each puzzle they complete.

3. Efficient Hierarchy: Participants are given the capacity to

store four sub-processes per puzzle, which they may call
any number of times. Participants are instructed to write
programs that use the fewest number of stored instruc-
tions and receive bonuses proportional to performance. A
counter displaying the length of the participant’s program
is visible while the participant generates solutions.

4. Default Hierarchy: Participants are given the capacity to
store four sub-processes per puzzle, which they may call
any number of times. Participants receive no instructions
regarding program length and receive a fixed bonus for
each puzzle they complete. No program length counter is
present.

In all conditions, there are no imposed limits on the number
of instructions in a sub-process or main program.

Task structure All participants first read through an illus-
trated tutorial explaining the game objectives and mechanics.
In the Hierarchy conditions, this includes explanations of how
to use sub-processes and how to call a sub-process within it-
self. In the Efficient Flat and Efficient Hierarchy conditions,
participants additionally receive explanations and examples
of action efficiency (Flat) or program efficiency (Hierarchy).

Participants construct programs by dragging and dropping
instructions into a program frame and are given the capacity
to reorder and delete instructions. Participants can test their
program at any time, which initiates an animation of Light-
bot executing the program from the beginning. When a test
of the program results in the completion of the level (all light
tiles turned on), the experiment progresses to the next puz-
zle. Participants are given the capacity to skip a level after
six minutes but receive no bonuses for skipped levels. Partic-
ipants in all conditions receive the same set of nine puzzles:
three simple tutorial puzzles presented in fixed order followed
by the six test puzzles displayed in Figure 2. Puzzles 1, 2, and
3 are presented first in random order, followed by puzzles 4,
5, and 6 in random order.

Participants 203 participants were recruited through Ama-
zon Mechanical Turk and completed the Lightbot task in a
web application. We excluded participants who reported ex-
perience with computer programming (39 participants) leav-
ing a final participant pool of 164. No participants reported
prior experience with the Lightbot game. The application was
presented in full-screen mode to eliminate participant multi-
tasking. The task required an average of 40 minutes across
all conditions. Participants were assigned to one of four con-
ditions: Efficient Flat, Default Flat, Efficient Hierarchy, and
Default Hierarchy. Participants in the Efficient conditions
were paid $5.00 as a base rate and participants in the De-
fault conditions received a $4.50 base rate. Participants in
all conditions were able to earn up to an additional $3.00 in
bonuses. In the Efficient Flat conditions, all participants who
gave the shortest solution to a puzzle out of the participant
pool received a $0.50 bonus per puzzle. Longer solutions re-
ceived bonuses that decreased linearly with their distance to
the shortest solution. Participants were not informed the value

of their bonuses during the task. In the Default conditions,
participants received a bonus of $0.50 for each test puzzle
that they completed regardless of program efficiency. Partic-
ipants received an average bonus of $2.64 across all condi-
tions. For all analyses, we include only data from complete
solutions (not skipped). Thus, we are left with an average of
37 solutions per puzzle in the Efficient Flat condition, 38 in
the Default Flat condition, 35 in the Efficient Hierarchy con-
dition, and 46 in the Default Hierarchy condition.

Results and Analyses
We first examine the efficiency of participants’ flat solutions
in the flat conditions to determine whether participants par-
ticipants optimize action efficiency for flat solutions.

Flat solutions
Figure 3 shows the mean distance between the lengths of par-
ticipants’ flat solutions and the optimal flat solutions. Dis-
tance is in number of instructions and is normalized per puz-
zle by the min and max distances of the provided solutions,
to facilitate comparison across puzzles. Across all puzzles,
participants write solutions that are close but significantly
longer than the optimal flat solutions in both the Efficient Flat
(p < .0001) and Default Flat (p < .0001) conditions. There
is a significant difference between the two conditions, with
participants in the Default Flat condition generating solutions
that are farther from the optimal solutions than participants
in the Efficient Flat solutions (t = 2.98, p = .003). Notably,
the mode distance from optimal solutions in both of the flat
conditions is 0; 61% of the solutions participants gave in the
Efficient Flat condition and 55% of the solutions participants
gave in the Default Flat condition are optimal flat solutions.

0.0

0.2

efficient
flat

default
flat

0.1

0.3

no
rm

al
iz

ed
 d

is
ta

nc
e

fr
om

op

tim
al

 s
ol

ut
io

ns

Figure 3: Mean normalized distance of the length of participants’
solutions in the flat conditions to the lengths of the optimal flat solu-
tions, across all test puzzles. Error bars show 95% CI.

These results indicate that participants are highly effective
at finding solutions that optimize action efficiency, even with-
out explicit instruction.

Hierarchical solutions
Length of flattened programs We now ask whether the hi-
erarchical solutions given by participants optimize efficiency
in action or representation. We address this question by an-
alyzing the length and compressibility of the “flattened” ver-
sion of participants’ hierarchical programs. A flattened pro-
gram consists of all actions that a hierarchical program gener-
ates. For example, the flattened program in Figure 1 consists
of 38 instructions, whereas the hierarchical program consists
of 13. If participants optimize efficiency in the number of

actions their program generates, we would expect to see no
difference in the length of the flattened solutions given by
participants in the Hierarchy condition and participants in the
Flat conditions. Further, all of the puzzles we have used (with
the exception of puzzle 2) are designed so that the flat version
of the best algorithmic solution is longer than the best flat
solution. Thus, if participants generate hierarchical solutions
by minimizing program complexity, we expect to see longer
flattened solutions to these puzzles.

Figure 4 shows the mean lengths of the flattened versions
of programs participants generate, normalized per puzzle by
the min and max flat lengths. Aggregating across all puz-
zles, the mean normalized flattened length in the Default and
Efficient Hierarchy conditions is significantly greater than in
the Efficient Flat (Default Hierarchy: t = 6.55, p < .0001;
Efficient hierarchy: t = 10.334, p < .0001) and Default Flat
conditions (Default Hierarchy: t = 4.00, p < .0001; Efficient
Hierarchy: t = 7.85, p < .0001). The programs that partici-
pants write in the Hierarchical conditions are, however, sig-
nificantly shorter than the flat solutions provided in the Ef-
ficient (Default Hierarchy: t = 3.47, p < .001; Efficient Hi-
erarchy: t = 6.49, p < .0001) and Default Flat conditions
(Default Hierarchy: t = 3.76, p < .001; Efficient Hierarchy:
t = 6.74, p < .0001).

m
ea

n
no

rm
al

iz
ed

 fl
at

te
ne

d
le

ng
th

0.0

0.2

0.4

efficient
flat

default
flat

default
hierarchy

efficient
hierarchy

Figure 4: Mean normalized flattened program length, across all test
puzzles. Error bars show 95% CI.

This dissociation reflects the trade-off between action and
representational efficiency built in to the solutions and sug-
gests that participants do not simply optimize action effi-
ciency when generating hierarchical solutions. Further, the
flattened versions of solutions participants generate in the
Efficient Hierarchy condition are also significantly longer
than those generated in the Default Hierarchy condition (t =
4.60, p < .0001), despite programs in the Efficient Hierarchy
condition being significantly shorter than those in the Default
Hierarchy condition (t = 5.11, p < .0001), showing that this
dissociation becomes stronger when participants are explic-
itly instructed to optimize representational efficiency.

To more explicitly target the representational efficiency of
participants’ solutions, we analyze the explicit “compressibil-
ity” of participants’ hierarchical and flat solutions.

Compressibility of flat paths Puzzles 4, 5, and 6 were de-
signed so that the shortest flat solutions is only marginally
compressible, whereas the path that the best hierarchical so-

lution generates contains considerable repeated structure that
can be exploited by a hierarchical program. Thus, partici-
pants who optimize action efficiency will produce solutions
to these puzzles whose flattened versions will show minimal
compressibility.

To quantify the degree of compressibility in participants’
solutions, we implement a simple algorithm that compresses
a flat sequence of actions into a hierarchical program. The
algorithm iteratively stores the longest, most-repeated sub-
sequence as a subprocess until there are no more repeated
subsequences it can compress, or it has stored 4 subprocesses.
We impose the minimal requirement that the sub-sequence
must contain at least two actions and must be repeated at
least twice to be stored as a sub-process. After compress-
ing a sequence, the algorithm checks whether some recursion
is possible, by identifying whether the main program consists
only of a repeated call to a single subprocess. If it does, the
algorithm appends the sub-process label to the end of that
sub-process and replaces the main program with a single call
to the sub-process.

Given a flat path of actions, this algorithm is able to gener-
ate compact, hierarchically structured programs that are close
approximations to optimal programmatic compressions of flat
paths. We use this algorithm to compress the flat and flattened
solutions generated by participants to compute the compress-
ibility of a participant’s solution as:

compressibility =
flat length− compressed length

flat length

m
ea

n
no

rm
al

iz
ed

 c
om

pr
es

si
bi

lit
y

0.0

0.2

0.4

0.6

efficient
flat

default
flat

default
hierarchy

efficient
hierarchy

Figure 5: Mean normalized compressibility for puzzles 4, 5 and 6.
Error bars show 95% CI.

Figure 5 shows rates of compressibility for the three rel-
evant puzzles, normalized per puzzle by the min and max
score. Across all three puzzles, participants in the Efficient
Hierarchy and Default Hierarchy condition produce solutions
whose flattened versions are more compressible than those in
the Efficient (Default Hierarchy: t = 6.51, p < .0001; Effi-
cient Hierarchy: t = 8.50, p < .0001) and Default Flat (De-
fault Hierarchy: t = 4.80, p < .0001; Efficient Hierarchy:
t = 9.11, p < .0001) conditions. Taken with the finding that
participants in the Hierarchy conditions generate solutions are
longer in the actions that they generate, this finding supports
the hypothesis that participants are maximizing representa-
tional efficiency over action efficiency.

We also see a significant difference in the compressibil-
ity of solutions generated in the Efficient and Default Flat
conditions for puzzles 5 and 6 (5: t = 2.05, p < 0.05; 6:
t = 2.22, p < .05; no significance for puzzle 4: t = .3, p =
.76), for which participants in the Default Flat condition gen-
erate solutions that are significantly more compressible than
those generated in the Efficient Flat condition. This is despite
the fact that participants are writing flat solutions (for which
compressibility confers no explicit advantage), as well as the
fact that the compressible solutions are longer than the in-
compressible, efficient solutions to the problem. Participants
in the Default Flat condition received minimal guidance for
how to solve Lightbot problems, so this condition provides
insight into the ‘default’ method for solving these problems.
Although there is no explicit advantage to using compressible
flat sequences in the Default Flat condition, there is an im-
plicit advantage in reducing working memory demands while
planning. This exemplifies the idea that minimizing represen-
tational complexity may be a natural, default objective for a
problem solving task with sufficient algorithmic complexity.

Discussion
The hierarchical reinforcement learning literature has focused
on learning hierarchical abstractions that allow an agent to ef-
ficiently navigate the problem space, with less emphasis on
modeling the structure of the specific problem currently un-
der consideration. Indeed, recent work has emphasized learn-
ing to chain together temporally-extended actions, such as
learning high level controllers that learn to break tasks down
into subgoals (Vezhnevets et al., 2017; Kulkarni, Narasimhan,
Saeedi, & Tenenbaum, 2016), learning options and their ter-
mination conditions simultaneously (Bacon, Harb, & Precup,
2017; Harb, Bacon, Klissarov, & Precup, 2017), and learn-
ing reusable behaviors shared across tasks (Frans, Ho, Chen,
Abbeel, & Schulman, 2017; Florensa, Duan, & Abbeel,
2017). However, a problem may exhibit much more algorith-
mic structure than a linear chain, highlighting the large gap
between the limited expressiveness of current HRL methods
and the rich structure of problems that demand abstraction.

Here, we have introduced a task compatible with the RL
framework that introduces a novel objective: solving the task
as computationally efficiently as possible. With this task, we
find that naive participants show a preference for generat-
ing hierarchical solutions that optimize representational ef-
ficiency over action efficiency, which emphasizes the impor-
tance of representation learning and efficient coding for re-
inforcement learning. In future empirical work, we plan to
examine other structural properties of the hierarchical solu-
tions participants generate that may trade off with program
length, such as symmetry, balance, depth, and the branching
factors of their execution trees. Our task facilitates conver-
sation between hierarchical approaches to problem solving in
cognitive science and computer science, and may be used as
a benchmark task in future computational work.

Acknowledgments. This work was supported by Air Force Office

of Scientific Research grant number FA9550-18-1-0077.

References
Bacon, P.-L., Harb, J., & Precup, D. (2017). The option-critic ar-

chitecture. In Association for the advancement of artificial intel-
ligence (pp. 1726–1734).

Barlow, H. (1961). Possible principles underlying the transforma-
tions of sensory messages. In R. W (Ed.), Sensory communication
(pp. 217–234). MIT press.

Barto, A. G., Konidaris, G., & Vigorito, C. (2013). Behavioral
hierarchy: exploration and representation. In Computational and
robotic models of the hierarchical organization of behavior (pp.
13–46). Springer.

Barto, A. G., & Mahadevan, S. (2003). Recent advances in hierar-
chical reinforcement learning. Discrete Event Dynamic Systems,
13(4), 341–379.

Botvinick, M., Niv, Y., & Barto, A. (2009). Hierarchically organized
behavior and its neural foundations: a reinforcement learning per-
spective. Cognition, 113(3), 262–280.

Botvinick, M., Weinstein, A., Solway, A., & Barto, A. (2015). Re-
inforcement learning, efficient coding, and the statistics of natural
tasks. Current Opinion in Behavioral Sciences, 5, 71–77.

Chase, W. G., & Simon, H. A. (1973). Perception in chess. Cogni-
tive psychology, 4(1), 55–81.

Chomsky, N. (1957). Syntactic structures. The Hague: Mouton and
Co.

Florensa, C., Duan, Y., & Abbeel, P. (2017). Stochastic neural
networks for hierarchical reinforcement learning. arXiv preprint
arXiv:1704.03012.

Frans, K., Ho, J., Chen, X., Abbeel, P., & Schulman, J. (2017). Meta
learning shared hierarchies. arXiv preprint arXiv:1710.09767.

Harb, J., Bacon, P.-L., Klissarov, M., & Precup, D. (2017). When
waiting is not an option: Learning options with a deliberation
cost. arXiv preprint arXiv:1709.04571.

Kolmogorov, A. N. (1963). On tables of random numbers. Sankhyā:
The Indian Journal of Statistics, Series A, 369–376.

Konidaris, G., & Barto, A. G. (2007). Building portable options:
Skill transfer in reinforcement learning. In International joint
conference on artificial intelligence (Vol. 7, pp. 895–900).

Kulkarni, T. D., Narasimhan, K., Saeedi, A., & Tenenbaum, J.
(2016). Hierarchical deep reinforcement learning: Integrating
temporal abstraction and intrinsic motivation. In Advances in neu-
ral information processing systems (pp. 3675–3683).

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O.
(2017). Proximal policy optimization algorithms. arXiv preprint
arXiv:1707.06347.

Simon, H. A. (1991). The architecture of complexity. In Facets of
systems science (pp. 457–476). Springer.

Şimşek, Ö., & Barto, A. G. (2009). Skill characterization based
on betweenness. In Advances in neural information processing
systems (pp. 1497–1504).

Solway, A., Diuk, C., Córdova, N., Yee, D., Barto, A. G., Niv, Y.,
& Botvinick, M. M. (2014). Optimal behavioral hierarchy. PLoS
computational biology, 10(8), e1003779.

Sutton, R. S., Precup, D., & Singh, S. (1999). Between MDPs and
semi-MDPs: A framework for temporal abstraction in reinforce-
ment learning. Artificial intelligence, 112(1-2), 181–211.

Tishby, N., & Polani, D. (2011). Information theory of decisions
and actions. In Perception-action cycle (pp. 601–636). Springer.

van Dijk, S. G., & Polani, D. (2011). Grounding subgoals in in-
formation transitions. In IEEE symposium on adaptive dynamic
programming and reinforcement learning (pp. 105–111).

Van Essen, D. C., & Maunsell, J. H. (1983). Hierarchical orga-
nization and functional streams in the visual cortex. Trends in
neurosciences, 6, 370–375.

Vezhnevets, A. S., Osindero, S., Schaul, T., Heess, N., Jaderberg,
M., Silver, D., & Kavukcuoglu, K. (2017). Feudal networks for
hierarchical reinforcement learning. In Proceedings of the inter-
national conference on machine learning (pp. 3540–3549).

Vigorito, C. M., & Barto, A. G. (2010). Intrinsically motivated hi-
erarchical skill learning in structured environments. IEEE Trans-
actions on Autonomous Mental Development, 2(2), 132–143.

