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Complex cognitive algorithms preserved by selective
social learning in experimental populations
B. Thompson1*†, B. van Opheusden2†, T. Sumers2, T. L. Griffiths2,3

Many human abilities rely on cognitive algorithms discovered by previous generations. Cultural
accumulation of innovative algorithms is hard to explain because complex concepts are difficult to
pass on. We found that selective social learning preserved rare discoveries of exceptional algorithms
in a large experimental simulation of cultural evolution. Participants (N = 3450) faced a difficult
sequential decision problem (sorting an unknown sequence of numbers) and transmitted solutions
across 12 generations in 20 populations. Several known sorting algorithms were discovered. Complex
algorithms persisted when participants could choose who to learn from but frequently became extinct in
populations lacking this selection process, converging on highly transmissible lower-performance
algorithms. These results provide experimental evidence for hypothesized links between sociality and
cognitive function in humans.

R
eading, counting, cooking, and sailing
are just some of the human abilities
passed from generation to generation
through social learning (1, 2). Complex
abilities like these often depend on

learned cognitive algorithms: procedural rep-
resentations of a problem that coordinatemem-
ory, attention, and perception into sequences
of useful computations and actions. Accumu-
lation of complex algorithms—from ancient
tool-making techniques to breadmaking, boat
building, or horticulture—is central to human
adaptation (3–5) yet challenging to explain
because algorithmic concepts can be difficult
to discover, communicate, and learn from ob-
servation (6), making them vulnerable to loss
(7–10). Theories of cultural evolution suggest
that human social learning may help overcome
this fragility (11, 12). For example,mathematical
models (13) predict that choosing to learn from
successful or prestigious individuals can pre-
vent the loss of rare innovations. However, this
potential link between sociality and complex
abilities (14) is challenging to establish.
We conducted large-scale simulations of

cultural evolution with human participants
to assess how selective social learning in-
fluenced the evolution of cognitive algorithms.
Prior research (15–22) shows that social learn-
ing can improve decisions in multiple-choice
tasks (23), perceptual judgments (24), and
search problems (25) and can improve arti-
facts such as physical structures (26) or com-
puter programs (27). However, the evolution of
cognitive algorithms at the population level
has been difficult to study (28). We developed
custom software to recruit large numbers of
participants online and organize them into

evolving societies facing a common problem.
Twenty populations tackled a sequential de-
cision problem (Fig. 1A and materials and
methods 1.1). Presented with six images, par-
ticipants attempted to establish hidden arbi-
trary orderings using pairwise comparisons.
Out-of-order pairs swapped positions when
compared. Participants were rewarded for
establishing the ordering using fewer com-
parisons. This task poses a sorting problem,
requiring a strategy for executing appropriate
sequences of actions, analogous to culturally
evolved strategies for making tools or food.
Participants transmitted their strategies

across 12 generations (Fig. 1B). Initial asocial
generations completed the task individually.
Participants in generations 2 to 12 were ran-
domly assigned to either the experimental
selective social learning (SSL) treatment (par-
ticipants could choose demonstrators from the
previous generation based on demonstrator
performance) or to a control random mixing
(RM) treatment (demonstrator performance
was not visible). Participants were incentivized

to improve on strategies that they observed
and provide a helpful description and demon-
stration of their own strategy (materials and
methods 1.1.13).
Figure 2 shows task performance. Asocial

participants achieved the lowest scores [mean
over scored trials = 0.33, SD = 0.19, relative to
a theoretical maximum of 1; supplementary
materials (SM) 3; mean number of success-
ful trials = 6.45 of 10 scored trials, SD = 2.89;
SM 2.1.1]. Asocial participants improved over
trials, confirmingwithin-task learning {regres-
sion coefficient posterior mean (b) = 0.14, 97%
highest density interval (HDI) = [0.11, 0.16];
SM 2.1.1}. Participants who learned socially
(generations 2 to 12) achieved higher perform-
ance [mean (M) = 0.446, SD = 0.199] than
asocial participants (b = 0.114, 97% HDI =
[0.083, 0.145]; SM 2.1.2). RM participants (M =
0.399, SD = 0.167) outperformed asocial par-
ticipants (b = 0.067, 97%HDI = [0.036, 0.098];
SM 2.1.3). SSL participants performed highest
(M = 0.493, SD = 0.216), outperforming asocial
(b = 0.162, 97% HDI = [0.13, 0.193]) and RM
(b = 0.095, 97%HDI = [0.095, 0.107]; SM 2.1.3)
participants.
By the final generations (9 to 12), perform-

ance among SSL (M = 0.514, SD = 0.216) and
RM (M = 0.433, SD = 0.163) participants in-
creased substantially relative to asocial par-
ticipants (SSL: b = 0.181, 97% HDI = [0.147,
0.221]; RM: b = 0.101, 97%HDI = [0.071, 0.132];
SM 2.1.5 and 2.1.6). This was not just a con-
sequence of accumulating more knowledge
of the task: In a follow-up experiment, asocial
participants completed 52 trials (equivalent to
four generations) yet performed worse than
SSL participants (but better than RM partic-
ipants; SM 1.3). In the SSL group, but not the
RM group, a distinct population of high per-
formers emerged (performance > 0.6; Fig. 2B).
Most of these participants (85.2%) learned
from a high-performing demonstrator (Fig.
2C). However, most people who learned from
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Fig. 1. Problem-solving task and study design. (A) Sorting task. (B) Participants chose up to three
demonstrators from a sample of eight (out of 15) members of the preceding generation. Ten SSL networks
were paralleled by 10 RM networks yoked to shared initial generations.
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a high-performing demonstrator were not
themselves high performing (64.9%). This
asymmetry indicated an exceptional strategy
that is rarely discovered and difficult to pass on.
To deepen our understanding of these strat-

egies, we analyzed the algorithmic structure
of participant responses. Using recurrent
neural network models (SM 4), we identified
eight classes of algorithms (SM 4.3). Partici-
pants discovered several known sorting algo-
rithms. Two algorithms were more frequent
than all others. The first algorithm is known in
computer science as selection sort. Selection
sort generates 15 specific comparisons (1-2, 1-3,
1-4, 1-5, 1-6, 2-3, 2-4, 2-5, 2-6, 3-4, 3-5, 3-6, 4-5, 4-
6, and 5-6; Fig. 3A) that are guaranteed to
succeed (performance = 0.55). The second algo-
rithm is an evenmore efficient solution, known
as gnome sort. The comparisons implied by
gnome sort depend on the outcome of earlier
comparisons, so its behavior varies. Participants
using gnome sort made specific sweeps of adja-
cent comparisons until a pair failed to swap, re-
membering where each sweep started (Fig. 3B).
Overall, 80% of participants who used an

identifiable algorithm used selection sort or
gnome sort (SM 4.2.1). Figure 4 shows major
independent lineages of algorithms in four
networks (all networks are shown in the SM).
Only 44% of asocial participants (66 of 150)
used an identifiable algorithm: Among asocial
participants, 16% (26) used selection sort and
just 13% (20) used gnome sort. All other algo-
rithms were even rarer. In early generations,
selection sort began to spread in both the RM
and SSL groups (SM 2.2.2), independently
becoming the most frequent algorithm in 7 of
10 network pairs. In the RM group, selection
sort continued to spread, dominating 9 of

10 populations by generations 9 to 12 (67% of
identifiable algorithms). However, in the SSL
group, selection sort began to decline after
generation 3 (Fig. 4). In the SSL group, but not
the RM group (SM 2.2.3), gnome sort domi-

nated 8 of 10 populations. By the final two gen-
erations, more than half of all SSL participants
used gnome sort.
Participants successfully transmitted se-

lection sort and gnome sort from person to
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Fig. 2. Performance in the sorting task. (A) Performance over generations. Error bars show 95% confidence intervals. A, asocial. (B) Performance among SSL
(top), RM (middle), and asocial (bottom) participants. The vertical axis shows the number of participants. The vertical dashed line indicates the high-performance
threshold (0.6). (C) Participant performance relative to their demonstrators. t, time (generation number).

Fig. 3. Selection sort and gnome sort. (A and B) Strategy descriptions and executions by participants
using selection sort [(A); participant 1546] and gnome sort [(B); participant 1281]. Squares show swap (solid)
or no swap (transparent). G, generation.
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person.However, transmission fidelity differed
(SM 2.3). Selection sort uses a fixed compar-
ison sequence, so it is easier to describe and
learn. Several algorithms (e.g., comb sort,
bubble sort, insertion sort; SM 4.3) share this
property but were rare, suggesting that selec-
tion sort is particularly intuitive ormemorable
[consistent with sequence-learning studies (29)
and mathematical analyses of attractors (30)].
Gnome sort was harder to pass on. Its condi-
tional logic improved performance (sometimes
needing only five comparisons) but made the
algorithm harder to describe, learn, and use
(SM 7). A follow-up study (SM 1.4) showed
that transmission of complex algorithms in
this task was primarily facilitated by partici-

pant demonstrations, not written descriptions
(though descriptions do improve transmis-
sion; SM 2.1.8). Finally, we found that selective
social learning counteracted differences in
algorithm transmission fidelity. SSL partici-
pants chose higher-performing demonstra-
tors and therefore encountered gnome sort
more often (SM2.4), offsetting the complexity
disadvantage at the population level. Numer-
ical simulations support this dynamic (SM 8).
Our study offers insight into one potential

mechanism linking sociality and the trans-
mission of complex discoveries, supporting
assumptions of mathematical models (31).
Randommixing led to an evolutionary process
shaped by how difficult the algorithms were

to learn and convey, favoring highly trans-
missible algorithms (e.g., selection sort). By
contrast, selective social learning led to an
evolutionary process heavily influenced by
how efficiently participants could solve the
underlying problem, favoring more complex
algorithms (e.g., gnome sort).
Sequential decision-making problems arise

in many higher cognitive functions such as
planning, social interaction, navigation, and
tool use. Like the sorting problem, these chal-
lenges call for procedural strategies that we
can follow to reliably achieve a goal when in-
teracting with a dynamic task. Our study
showed that a simple form of selective social
learning helped populations establish such
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Fig. 4. Algorithm lineages. (Top) Major lineages (connected subcomponents exceeding 20 participants) in two network pairs. (Bottom) Algorithm frequencies under
RM (left) and SSL (right).
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solutions by increasing the take-up of rare
but innovative algorithms. Alternative routes
to increased uptake, such as forms of content-
biased learning (13), may have analogous
evolutionary consequences.
Our study does not address potential con-

sequences of population size, demographic
profiles, or more complex forms of demon-
strator selection that may arise in richer con-
texts (e.g., strategies that account for potential
relationships between expertise and teaching
skills). Our findings highlight interactions be-
tween reconstructive and preservative aspects
of cultural transmission (30). Choosing who to
learn from helps complex ideas be preserved
and built on by future generations in evolving
populations.
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Complex cognitive algorithms preserved by selective social learning in
experimental populations
B. ThompsonB. van OpheusdenT. SumersT. L. Griffiths

Science, 376 (6588), • DOI: 10.1126/science.abn0915

Humans succeed through social learning
Our capacity to accumulate complex algorithms over generations allows human beings to adapt to diverse
environments and solve challenges that go beyond our individual limitations. However, cultural accumulation of
innovative algorithms is difficult to explain. Thompson et al. studied a large number of participants to explore the
evolution of algorithms under different learning conditions (see the Perspective by Henrich). Selective social learning
that involved knowledge of the success level of different strategies or of different models preserved difficult-to-invent,
efficient algorithms more than random social learning or one-attempt asocial learning. Two efficient algorithms were
used by many people, but the most efficient one only spread under selective social learning. —PRS
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