Complex cognitive algorithms preserved by selective social learning in experimental populations

B. Thompson1,2, B. van Opheusden2, T. Sumers2, T. L. Griffiths3,3

Many human abilities rely on cognitive algorithms discovered by previous generations. Cultural accumulation of innovative algorithms is hard to explain because complex concepts are difficult to pass on. We found that selective social learning preserved rare discoveries of exceptional algorithms in a large experimental simulation of cultural evolution. Participants (N = 3450) faced a difficult sequential decision problem (sorting an unknown sequence of numbers) and transmitted solutions across 12 generations in 20 populations. Several known sorting algorithms were discovered. Complex algorithms persisted when participants could choose who to learn from but frequently became extinct in populations lacking this selection process, converging on highly transmissible lower-performance algorithms. These results provide experimental evidence for hypothesized links between sociality and cognitive function in humans.
a high-performing demonstrator were not themselves high performing (64.9%). This asymmetry indicated an exceptional strategy that is rarely discovered and difficult to pass on.

To deepen our understanding of these strategies, we analyzed the algorithmic structure of participant responses. Using recurrent neural network models (SM 4), we identified eight classes of algorithms (SM 4.3). Participants discovered several known sorting algorithms. Two algorithms were more frequent than all others. The first algorithm is known in computer science as selection sort. Selection sort generates 15 specific comparisons (1-2, 1-3, 1-4, 1-5, 1-6, 2-3, 2-4, 2-5, 2-6, 3-4, 3-5, 3-6, 4-5, 4-6, and 5-6; Fig. 3A) that are guaranteed to succeed (performance = 0.55). The second algorithm is an even more efficient solution, known as gnome sort. The comparisons implied by gnome sort depend on the outcome of earlier comparisons, so its behavior varies. Participants using gnome sort made specific sweeps of adjacent comparisons until a pair failed to swap, remembering where each sweep started (Fig. 3B).

Overall, 80% of participants who used an identifiable algorithm used selection sort or gnome sort (SM 4.2.1). Figure 4 shows major independent lineages of algorithms in four networks (all networks are shown in the SM). Only 44% of asocial participants (66 of 150) used an identifiable algorithm: Among asocial participants, 16% (26) used selection sort and just 13% (20) used gnome sort. All other algorithms were even rarer. In early generations, selection sort began to spread in both the RM and SSL groups (SM 2.2.2), independently becoming the most frequent algorithm in 7 of 10 network pairs. In the RM group, selection sort continued to spread, dominating 9 of 10 populations by generations 9 to 12 (67% of identifiable algorithms). However, in the SSL group, selection sort began to decline after generation 3 (Fig. 4). In the SSL group, but not the RM group (SM 2.2.3), gnome sort dominated 8 of 10 populations. By the final two generations, more than half of all SSL participants used gnome sort.

Participants successfully transmitted selection sort and gnome sort from person to person. Thompson et al., Science 376, 95–98 (2022)
person. However, transmission fidelity differed (SM 2.3). Selection sort uses a fixed comparison sequence, so it is easier to describe and learn. Several algorithms (e.g., comb sort, bubble sort, insertion sort; SM 4.3) share this property but were rare, suggesting that selection sort is particularly intuitive or memorable [consistent with sequence-learning studies (29) and mathematical analyses of attractors (30)]. Gnome sort was harder to pass on. Its conditional logic improved performance (sometimes needing only five comparisons) but made the algorithm harder to describe, learn, and use (SM 7). A follow-up study (SM 1.4) showed that transmission of complex algorithms in this task was primarily facilitated by participant demonstrations, not written descriptions (though descriptions do improve transmission; SM 2.1.8). Finally, we found that selective social learning counteracted differences in algorithm transmission fidelity. SSL participants chose higher-performing demonstrators and therefore encountered gnome sort more often (SM 2.4), offsetting the complexity disadvantage at the population level. Numerical simulations support this dynamic (SM 8).

Our study offers insight into one potential mechanism linking sociality and the transmission of complex discoveries, supporting assumptions of mathematical models (31). Random mixing led to an evolutionary process shaped by how difficult the algorithms were to learn and convey, favoring highly transmissible algorithms (e.g., selection sort). By contrast, selective social learning led to an evolutionary process heavily influenced by how efficiently participants could solve the underlying problem, favoring more complex algorithms (e.g., gnome sort).

Sequential decision-making problems arise in many higher cognitive functions such as planning, social interaction, navigation, and tool use. Like the sorting problem, these challenges call for procedural strategies that we can follow to reliably achieve a goal when interacting with a dynamic task. Our study showed that a simple form of selective social learning helped populations establish such
solutions by increasing the take-up of rare but innovative algorithms. Alternative routes to increased uptake, such as forms of content-biased learning (13), may have analogous evolutionary consequences.

Our study does not address potential consequences of population size, demographic profiles, or more complex forms of demonstrator selection that may arise in richer contexts (e.g., strategies that account for potential relationships between expertise and teaching skills). Our findings highlight interactions between reconstructive and preservative aspects of cultural transmission (30). Choosing who to learn from helps complex ideas be preserved and built on by future generations in evolving populations.

REFERENCES AND NOTES

ACKNOWLEDGMENTS
Funding: This work was supported by Defense Advanced Research Projects Agency (DARPA) agreement D17AC000004 and the Schmidt Family Foundation (T.L.G.) and a National Defense Science and Engineering Graduate Fellowship (T.S.). Author contributions: Conceptualization: B.T., B.v.O., T.S., T.L.G.; Methodology: B.T., B.v.O., T.S., T.L.G.; Investigation: B.T., B.v.O., T.S., T.L.G.; Visualization: B.T., B.v.O., T.S., T.L.G.; Writing: B.T., B.v.O., T.S., T.L.G. Competing interests: None declared. Data and materials availability: Data, materials, and study registrations are available through the Open Science Framework at https://osf.io/rbc7a/. All other data needed to evaluate the conclusions in the paper are present in the paper or the supplementary materials.

SUPPLEMENTARY MATERIALS
science.org/doi/10.1126/science.abn0915 Materials and Methods Figs. S1 to S55 Tables S1 to S15 References (32, 33)
3 November 2021; accepted 25 February 2022 10.1126/science.abn0915
Complex cognitive algorithms preserved by selective social learning in experimental populations
B. Thompson B. van Opheusden T. Sumers T. L. Griffiths

Science, 376 (6588), • DOI: 10.1126/science.abn0915

Humans succeed through social learning
Our capacity to accumulate complex algorithms over generations allows human beings to adapt to diverse environments and solve challenges that go beyond our individual limitations. However, cultural accumulation of innovative algorithms is difficult to explain. Thompson et al. studied a large number of participants to explore the evolution of algorithms under different learning conditions (see the Perspective by Henrich). Selective social learning that involved knowledge of the success level of different strategies or of different models preserved difficult-to-invent, efficient algorithms more than random social learning or one-attempt asocial learning. Two efficient algorithms were used by many people, but the most efficient one only spread under selective social learning. —PRS

View the article online
https://www.science.org/doi/10.1126/science.abn0915
Permissions
https://www.science.org/help/reprints-and-permissions